2,603 research outputs found

    Potential net primary productivity in South America: application of a global model

    Get PDF
    We use a mechanistically based ecosystem simulation model to describe and analyze the spatial and temporal patterns of terrestrial net primary productivity (NPP) in South America. The Terrestrial Ecosystem Model (TEM) is designed to predict major carbon and nitrogen fluxes and pool sizes in terrestrial ecosystems at continental to global scales. Information from intensively studies field sites is used in combination with continental—scale information on climate, soils, and vegetation to estimate NPP in each of 5888 non—wetland, 0.5° latitude °0.5° longitude grid cells in South America, at monthly time steps. Preliminary analyses are presented for the scenario of natural vegetation throughout the continent, as a prelude to evaluating human impacts on terrestrial NPP. The potential annual NPP of South America is estimated to be 12.5 Pg/yr of carbon (26.3 Pg/yr of organic matter) in a non—wetland area of 17.0 ° 106 km2. More than 50% of this production occurs in the tropical and subtropical evergreen forest region. Six independent model runs, each based on an independently derived set of model parameters, generated mean annual NPP estimates for the tropical evergreen forest region ranging from 900 to 1510 g°m—2°yr—1 of carbon, with an overall mean of 1170 g°m—2°yr—1. Coefficients of variation in estimated annual NPP averaged 20% for any specific location in the evergreen forests, which is probably within the confidence limits of extant NPP measurements. Predicted rates of mean annual NPP in other types of vegetation ranged from 95 g°m—2°yr—1 in arid shrublands to 930 g°m@?yr—1 in savannas, and were within the ranges measured in empirical studies. The spatial distribution of predicted NPP was directly compared with estimates made using the Miami mode of Lieth (1975). Overall, TEM predictions were °10% lower than those of the Miami model, but the two models agreed closely on the spatial patterns of NPP in south America. Unlike previous models, however, TEM estimates NPP monthly, allowing for the evaluation of seasonal phenomena. This is an important step toward integration of ecosystem models with remotely sensed information, global climate models, and atmospheric transport models, all of which are evaluated at comparable spatial and temporal scales. Seasonal patterns of NPP in South America are correlated with moisture availability in most vegetation types, but are strongly influenced by seasonal differences in cloudiness in the tropical evergreen forests. On an annual basis, moisture availability was the factor that was correlated most strongly with annual NPP in South America, but differences were again observed among vegetation types. These results allow for the investigation and analysis of climatic controls over NPP at continental scales, within and among vegetation types, and within years. Further model validation is needed. Nevertheless, the ability to investigate NPP—environment interactions with a high spatial and temporal resolution at continental scales should prove useful if not essential for rigorous analysis of the potential effects of global climate changes on terrestrial ecosystems

    Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America

    Get PDF
    We use the terrestrial ecosystem model (TEM), a process-based model, to investigate how interactions between carbon (C) and nitrogen (N) dynamics affect predictions of net primary productivity (NPP) for potential vegetation in North America. Data on pool sizes and fluxes of C and N from intensively studied field sites are used to calibrate the model for each of 17 non-wetland vegetation types. We use information on climate, soils, and vegetation to make estimates for each of 11,299 non-wetland, 0.5° latitude × 0.5° longitude, grid cells in North America. The potential annual NPP and net N mineralization (NETNMIN) of North America are estimated to be 7.032 × 1015 g C yr−1 and 104.6 × 1012 g N yr−1, respectively. Both NPP and NETNMIN increase along gradients of increasing temperature and moisture in northern and temperate regions of the continent, respectively. Nitrogen limitation of productivity is weak in tropical forests, increasingly stronger in temperate and boreal forests, and very strong in tundra ecosystems. The degree to which productivity is limited by the availability of N also varies within ecosystems. Thus spatial resolution in estimating exchanges of C between the atmosphere and the terrestrial biosphere is improved by modeling the linkage between C and N dynamics. We also perform a factorial experiment with TEM on temperate mixed forest in North America to evaluate the importance of considering interactions between C and N dynamics in the response of NPP to an elevated temperature of 2°C. With the C cycle uncoupled from the N cycle, NPP decreases primarily because of higher plant respiration. However, with the C and N cycles coupled, NPP increases because productivity that is due to increased N availability more than offsets the higher costs of plant respiration. Thus, to investigate how global change will affect biosphere-atmosphere interactions, process-based models need to consider linkages between the C and N cycles

    Continental scale variability in ecosystem processes: Models, data, and the role of disturbance

    Get PDF
    Management of ecosystems at large regional or continental scales and determination of the vulnerability of ecosystems to large-scale changes in climate or atmospheric chemistry require understanding how ecosystem processes are governed at large spatial scales. A collaborative project, the Vegetation and Ecosystem Modeling and Analysis Project (VEMAP), addressed modeling of multiple resource limitation at the scale of the conterminous United States, and the responses of ecosystems to environmental change. In this paper, we evaluate the model-generated patterns of spatial variability within and between ecosystems using Century, TEM, and Biome-BGC, and the relationships between modeled water balance, nutrients, and carbon dynamics. We present evaluations of models against mapped and site-specific data. In this analysis, we compare model-generated patterns of variability in net primary productivity (NPP) and soil organic carbon (SOC) to, respectively, a satellite proxy and mapped SOC from the VEMAP soils database (derived from USDA-NRCS [Natural Resources Conservation Service] information) and also compare modeled results to site-specific data from forests and grasslands. The VEMAP models simulated spatial variability in ecosystem processes in substantially different ways, reflecting the models’ differing implementations of multiple resource limitation of NPP. The models had substantially higher correlations across vegetation types compared to within vegetation types. All three models showed correlation among water use, nitrogen availability, and primary production, indicating that water and nutrient limitations of NPP were equilibrated with each other at steady state. This model result may explain a number of seemingly contradictory observations and provides a series of testable predictions. The VEMAP ecosystem models were implicitly or explicitly sensitive to disturbance in their simulation of NPP and carbon storage. Knowledge of the effects of disturbance (human and natural) and spatial data describing disturbance regimes are needed for spatial modeling of ecosystems. Improved consideration of disturbance is a key ‘‘next step’’ for spatial ecosystem models

    Ecohydrological Controls on Grass and Shrub Above-ground Net Primary Productivity in a Seasonally Dry Climate

    Get PDF
    Seasonally dry, water‐limited regions are often co‐dominated by distinct herbaceous and woody plant communities with contrasting ecohydrological properties. We investigated the shape of the above‐ground net primary productivity (ANPP) response to annual precipitation (Pa) for adjacent grassland and shrubland ecosystems in Southern California, with the goal of understanding the role of these ecohydrological properties on ecosystem function. Our synthesis of observations and modelling demonstrates grassland and shrubland exhibit distinct ANPP‐Pa responses that correspond with characteristics of the long‐term Pa distribution and mean water balance fluxes. For annual grassland, no ANPP occurs below a ‘precipitation compensation point,’ where bare soil evaporation dominates the water balance, and ANPP saturates above the Pawhere deep percolation and runoff contribute to the modelled water balance. For shrubs, ANPP increases at a lower and relatively constant rate across the Pa gradient, while deep percolation and runoff account for a smaller fraction of the modelled water balance. We identify precipitation seasonality, root depth, and water stress sensitivity as the main ecosystem properties controlling these responses. Observed ANPP‐Paresponses correspond to notably different patterns of rain‐use efficiency (RUE). Grass RUE exceeds shrub RUE over a wide range of typical Pa values, whereas grasses and shrubs achieve a similar RUE in particularly dry or wet years. Inter‐annual precipitation variability, and the concomitant effect on ANPP, plays a critical role in maintaining the balance of grass and shrub cover and ecosystem‐scale productivity across this landscape

    Generalization and evaluation of the process-based forest ecosystem model PnET-CN for other biomes

    Get PDF
    Terrestrial ecosystems play an important role in carbon, water, and nitrogen cycling. Process-based ecosystem models, including PnET-CN, have been widely used to simulate ecosystem processes during the last two decades. PnET-CN is a forest ecosystem model, originally designed to predict ecosystem carbon, water, and nitrogen dynamics of temperate forests under a variety of circumstances. Among terrestrial ecosystem models, PnET-CN offers unique benefits, including simplicity and transparency of its structure, reliance on data-driven parameterization rather than calibration, and use of generalizeable relationships that provide explicit linkages among carbon, water and nitrogen cycles. The objective of our study was to apply PnET-CN to non-forest biomes: grasslands, shrublands, and savannas. We determined parameter values for grasslands and shrublands using the literature and ecophysiological databases. To assess the usefulness of PnET-CN in these ecosystems, we simulated carbon and water fluxes for six AmeriFlux sites: two grassland sites (Konza Prairie and Fermi Prairie), two open shrubland sites (Heritage Land Conservancy Pinyon Juniper Woodland and Sevilleta Desert Shrubland), and two woody savanna sites (Freeman Ranch and Tonzi Ranch). Grasslands and shrublands were simulated using the biome-specific parameters, and savannas were simulated as mixtures of grasslands and forests. For each site, we used flux observations to evaluate modeled carbon and water fluxes: gross primary productivity (GPP), ecosystem respiration (ER), net ecosystem productivity (NEP), evapotranspiration (ET), and water yield. We also evaluated simulated water use efficiency (WUE). PnET-CN generally captured the magnitude, seasonality, and interannual variability of carbon and water fluxes as well as WUE for grasslands, shrublands, and savannas. Overall, our results show that PnET-CN is a promising tool for modeling ecosystem carbon and water fluxes for non-forest biomes (grasslands, shrublands, and savannas), and especially for modeling GPP in mature biomes. Limitations in model performance included an overestimation of seasonal variability in GPP and ET for the two shrubland sites and overestimation of early season ER for the two shrubland sites and Freeman Ranch. Future modifications of PnET-CN for non-forest biomes should focus on belowground processes, including water storage in dry shrubland soils, root growth and respiration in grasslands, and soil carbon fluxes for all biomes

    The effects of precipitation variability on C4 photosynthesis, net primary production and soil respiration in a Chihuahuan Desert grassland

    Get PDF
    Although the Earths climate system has always been inherently variable, the magnitude and rate of anthropogenic climate change is subjecting ecosystems and the populations that they contain to novel environmental conditions. Because water is the most limiting resource, arid-semiarid ecosystems are likely to be highly responsive to future climate variability. The goal of my dissertation is to understand how precipitation variability affects primary productivity and soil respiration in desert grassland ecosystems. Initially, I reviewed the literature to understand how climate change affects net ecosystem exchange (NEE) across the warm deserts of North America (Chapter 2). Next, I examined the effects of precipitation frequency and intensity on soil moisture (Ξ), leaf-level photosynthesis (Anet), predawn leaf water potential (ψpd), aboveground net primary productivity (ANPP), and soil respiration (Rs) (Chapter 3). Last, I studied how large (10 mm) and extreme (30 mm) rainfall events with extended dry periods affected the ecophysiological response of two co-occurring dominant perennial C4 grasses, Bouteloua eriopoda and B. gracilis across an arid-semiarid ecotone (Chapter 4)

    Intermediate disturbance on rangelands : Management applicability of the intermediate disturbance hypothesis across Mongolian rangeland ecosystems

    Get PDF
    The current growing body of evidence for diversity-disturbance relationships suggests that the peaked pattern predicted by the intermediate disturbance hypothesis (IDH) may not be the rule. Even if ecologists could quantify the diversity-disturbance relationship consistent with the IDH, the applicability of the IDH to land management has rarely been addressed. We examined two hypotheses related to the generality and management applicability of the IDH to Mongolian rangeland ecosystems: that the diversity-disturbance relationship varies as a function of landscape condition and that some intermediate scales of grazing can play an important role in terms of sustainable rangeland management through a grazing gradient approach. We quantified the landscape condition of each ecological site using an ordination technique and determined two types of landscape conditions, relatively benign and harsh environmental conditions. At the ecological sites characterized by relatively benign environmental conditions, diversity-disturbance relationships were generally consistent with the IDH and maximum diversity was observed at some intermediate distance from the source of the grazing gradient. In contrast, the IDH was not supported at most but not all sites characterized by relatively harsh environmental conditions. The intermediate levels of grazing were generally located below the ecological threshold representing the points or zones at which disturbance should be limited to prevent drastic changes in ecological conditions, suggesting that there is little “conundrum” with regard to intermediate disturbance in the studied systems in terms of land management. We suggest that the landscape condition is one of the primary factors that cause inconsistencies in diversity-disturbance relationships. The ecological threshold can extend its utility in rangeland management because it also has the compatibility with the maintenance of species diversity. This study thus suggests that some intermediate scales of grazing and ecological thresholds are mutually supportive tools for sustainable management of Mongolian rangelands

    Continental Scale Variability in Ecosystem Process: Models, Data, and the Role of Disturbance

    Get PDF
    Management of ecosystems at large regional or continental scales and determination of the vulnerability of ecosystems to large-scale changes in climate or atmospheric chemistry require understanding how ecosystem processes are governed at large spatial scales. A collaborative project, the Vegetation and Ecosystem Modeling and Analysis Project (VEMAP), addressed modeling of multiple resource limitation at the scale of the conterminous United States, and the responses of ecosystems to environmental change. In this paper, we evaluate the model-generated patterns of spatial variability within and between ecosystems using Century, TEM, and Biome-BGC, and the relationships between modeled water balance, nutrients, and carbon dynamics. We present evaluations of models against mapped and site-specific data. In this analysis, we compare model-generated patterns of variability in net primary productivity (NPP) and soil organic carbon (SOC) to, respectively, a satellite proxy and mapped SOC from the VEMAP soils database (derived from USDA-NRCS [Natural Resources Conservation Service] information) and also compare modeled results to site-specific data from forests and grasslands. The VEMAP models simulated spatial variability in ecosystem processes in substantially different ways, reflecting the models’ differing implementations of multiple resource limitation of NPP. The models had substantially higher correlations across vegetation types compared to within vegetation types. All three models showed correlation among water use, nitrogen availability, and primary production, indicating that water and nutrient limitations of NPP were equilibrated with each other at steady state. This model result may explain a number of seemingly contradictory observations and provides a series of testable predictions. The VEMAP ecosystem models were implicitly or explicitly sensitive to disturbance in their simulation of NPP and carbon storage. Knowledge of the effects of disturbance (human and natural) and spatial data describing disturbance regimes are needed for spatial modeling of ecosystems. Improved consideration of disturbance is a key ‘‘next step’’ for spatial ecosystem models

    Soil phosphorus budget in global grasslands and implications for management

    Get PDF
    Grasslands, accounting for one third of the world terrestrial land surface, are important in determining phosphorus (P) cycle at a global scale. Understanding the impacts of management on P inputs and outputs in grassland ecosystem is crucial for environmental management since a large amount of P is transported through rivers and groundwater and detained by the sea reservoir every year. To better understand P cycle in global grasslands, we mapped the distribution of different grassland types around the world and calculated the corresponding P inputs and outputs for each grassland type using data from literature. The distribution map of P input and output revealed a non-equilibrium condition in many grassland ecosystems, with: (i) a greater extent of input than output in most managed grasslands, but (ii) a more balanced amount between input and output in the majority of natural grasslands. Based on the mass balance between P input and output, we developed a framework to achieve sustainable P management in grasslands and discussed the measures targeting a more balanced P budget. Greater challenge is usually found in heavily-managed than natural grasslands to establish the optimum amount of P for grass and livestock production while minimizing the adverse impacts on surface waters. This study provided a comprehensive assessment of P budget in global grasslands and such information will be critical in determining the appropriate P management measures for various grassland types across the globe

    Net primary production of terrestrial ecosystems in China and its equilibrium response to changes in climate and atmospheric CO₂ concentration

    Get PDF
    Includes bibliographical references (p. 14-17).Abstract in HTML and technical report in HTML and PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).The Terrestrial Ecosystem Model (TEM, version 4.0) was used to estimate net primary production (NPP) in China for contemporary climate and NPP responses to elevated CO₂ and climate changes projected by three atmospheric general circulation models (GCMs): Goddard Institute for Space Studies (GISS), Geophysical Fluid Dynamic Laboratory (GFDL) and Oregon State University (OSU). For contemporary climate at 312.5 ppmv CO₂, TEM estimates that China has an annual NPP of 3,653 TgC/yr (10^12 gC/yr). Temperate broadleaf evergreen forest is the most productive biome and accounts for the largest portion of annual NPP in China. The spatial pattern of NPP is closely correlated to the spatial distributions of precipitation and temperature.Annual NPP of China is sensitive to changes in CO₂ and climate. At the continental scale, annual NPP of China increases by 6.0% (219 TgC/yr) for elevated CO₂ only (519 ppmv CO₂). For climate change with no change in CO₂, the response of annual NPP ranges from a decrease of 1.5% (54.8 TgC/yr) for the GISS climate to an increase of 8.4% (306.9 TgC/yr) for the GFDL-q climate. For climate change at 519 ppmv CO₂, annual NPP of China increases substantially, ranging from 18.7% (683 TgC/yr) for the GISS climate to 23.3% (851 TgC/yr) for the GFDL-q climate. Spatially, the responses of annual NPP to changes in climate and CO₂ vary considerably within a GCM climate. Differences among the three GCM climates used in the study cause large differences in the geographical distribution of NPP responses to projected climate changes. The interaction between elevated CO₂ and climate change plays an important role in the overall response of NPP to climate change at 519 ppmv CO₂.Supported by the National Aeronautics and Space Administration's Earth Observing System. NAGW-2669. Supported by the Dept. of Energy's National Institute for Global Environmental Change. 901214-HAR Supported by the Joint Program on Science and Policy of Global Change at MIT. CE-S-46204
    • 

    corecore