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GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 6, NO. 2, PAGES 101-124, JUNE 1992 

INTERACTIONS BETWEEN CARBON AND 

NITROGEN DYNAMICS IN ESTIMATING NET 

PRIMARY PRODUCTIVITY FOR POTENTIAL 

VEGETATION IN NORTH AMERICA 

A.D. McGuire, 1'2 J. M. Melillo, 1 L. A. Joyce, 2 
D. W. Kicklighter, • A. L. Grace, 3 B. Moore 111, 3 
and C. J. Vorosmarty 3 

Abstract. We use the terrestrial ecosystem model 
(TEM), a process-based model, to investigate how 
interactions between carbon (C) and nitrogen (N) 
dynamics affect predictions of net primary productivity 
(NPP) for potential vegetation in North America. Data 
on pool sizes and fluxes of C and N from intensively 
studied field sites are used to calibrate the model for 

each of 17 non-wetland vegetation types. We use 
information on climate, soils, and vegetation to make 
estimates for each of 11,299 non-wetland, 0.5 ø latitude x 
0.5 ø longitude, grid cells in North America. The 
potential annual NPP and net N mineralization 
(NETNMIN) of North America are estimated to be 
7.032 x 10 •5 g C yr 4 and 104.6 x 10 •2 g N yr 4, respec- 
tively. Both NPP and NETNMIN increase along 
gradients of increasing temperature and moisture in 
northern and temperate regions of the continent, 
respectively. Nitrogen limitation of productivity is weak 
in tropical forests, increasingly stronger in temperate 
and boreal forests, and very strong in tundra ecosystems. 
The degree to which productivity is limited by the 
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availability of N also varies within ecosystems. Thus 
spatial resolution in estimating exchanges of C between 
the atmosphere and the terrestrial biosphere is 
improved by modeling the linkage between C and N 
dynamics. We also perform a factorial experiment with 
TEM on temperate mixed forest in North America to 
evaluate the importance of considering interactions 
between C and N dynamics in the response of NPP to an 
elevated temperature of 2 ø C. With the C cycle 
uncoupled from the N cycle, NPP decreases primarily 
because of higher plant respiration. However, with the C 
and N cycles coupled, NPP increases because 
productivity that is due to increased N availability more 
than offsets the higher costs of plant respiration. Thus, 
to investigate how global change will affect biosphere- 
atmosphere interactions, process-based models need to 
consider linkages between the C and N cycles. 

INTRODUCTION 

Terrestrial ecosystems play a major role in the global 
carbon budget. Through the process of photosynthesis, 
land plants annually remove between 90 and 120 x 10 •5 g 
carbon from the atmosphere [Houghton et al., 1985]. 
This is about 20 times more carbon than is emitted to 

the atmosphere during fossil fuel combustion. 
Approximately half of the carbon taken up by plants is 
returned to the atmosphere during plant respiration, 
and the remainder, known as net primary productivity 
(NPP), is incorporated into plant matter. Humans are 
dependent on a fraction of this NPP for food, fuel, and 
fiber. 

Global change has the potential to alter the 
magnitude and temporal and spatial patterns of NPP for 
the terrestrial biosphere. Changes in a variety of factors 
including temperature, moisture, cloudiness, 
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atmospheric CO2 concentration, nutrient inputs in 
precipitation, and land-use patterns will affect NPP. 
These changes may alter productivity by affecting plant 
physiology and/or nutrient cycling rates. An important 
challenge is to develop the ability to predict how global 
change will affect NPP. Working toward this goal, we 
have developed the terrestrial ecosystem model (TEM) 
[Raich et at., 1991]. 

The TEM is a process-based model that was designed 
to estimate the spatial and temporal distribution of 
major carbon (C) and nitrogen (N) fluxes and pool sizes 
at continental to global scales. It was first applied to 
estimate the net primary productivity of potential 
vegetation in South America [Raich et at., 1991]. 
Although the spatial and temporal predictions of NPP in 
South America were evaluated by Raich et at. [1991], 
interactions between the C and N cycles in estimating 
productivity were not explicitly explored. Because much 
of the Amazon Basin is covered with phosphorous- 
deficient soils [Sanchez et at., 1982], this evaluation was 
not appropriate for South America. 

In many northern and temperate ecosystems, NPP is 
known to be limited by the availability of inorganic N 
[Mitchell and Chandler, 1939; Safford and Fitip, 1974; 
Van Cteve and Zasada, 1976; Auchmoody and Smith, 
1977; Dodd and Lauenroth, 1979; Ellis, 1979; Shaver 
and Chapin, 1980; Risser et at., 1981; Aber et at., 1982; 
Peterson, 1982; Pastor et at., 1984; Chapin et at., 1986; 
Shaver and Chapin, 1986; Chapin, 1991a; Vitousek and 
Howarth, 1991]. In North America these ecosystems 
have been well studied relative to other continents. 

Patterns of NPP are understood, at least qualitatively, 
along north-south temperature gradients in northern 
North America and east-west moisture gradients in 
temperate North America. These gradients provide an 
opportunity to qualitatively check predictions of NPP 
and to examine how the strength of the linkages 
between C and N dynamics varies spatialty. In this study 
we apply TEM to North America and evaluate how 
interactions between the C and N cycles affect 
predictions of NPP. 

Interactions between the C and N cycles are predicted 
to be important in the response of some ecosystems to 
elevated temperature [Pastor and Post, 1986, 1988; 
Bonan et at., 1990; Schimet et at., 1990; Nadethoffer et 
at., 1991; Rastetter et al., 1991]. We were interested in 
evaluating the importance of considering the linkage 
between C and N dynamics in predicting the response of 
NPP. We do this by performing a factoriat experiment 
on temperate mixed forest in North America in which 
we run TEM under different temperature scenarios with 
the C and N cycles either coupled or uncoupled. 

MODEL DESCRIPTION AND MODIFICATIONS 

Model Description 

The TEM uses spatialty referenced information 
(resolution: 0.5 ø latitude x 0.5 ø longitude) on climate, 
soils, and vegetation to make monthly estimates of 
important C and N fluxes and pool sizes. TEM is a 

highly aggregated model (Figure 1) that consists of five 
pools (C in vegetation, N in vegetation, C in soil, 
organic N in soil, inorganic N in soil) and nine fluxes 
(gross primary productivity, plant respiration, C in litter 
production, soil respiration, N input to the ecosystem, N 
uptake by vegetation, N in litter production, net N 
mineratization, N lost from the ecosystem). 

The basic strategy in extrapolating TEM for a region 
is to run the model to equilibrium for each grid cell (0.5 ø 
latitude x 0.5 ø longitude). Running the model for a 
particular grid cell requires the use of monthly climatic 
data and the soil-and vegetation-specific parameters 
appropriate to the grid cell. The water balance model 
(WBM) of Vorosmarty et at. [1989] is used to produce 
hydrologic inputs for TEM. Although some of the 
vegetation-specific parameters in the model can be 
defined from published information, others must be 
determined by calibrating the model to the steady state 
fluxes and pool sizes of an intensively studied field site, 
the calibration site (see Table 1). 

The version of the model applied to South America is 
fully described by Raich et at. [1991]. We have made 
several modifications to the original model. Foremost 
among these is the design of a new feedback algorithm 
between C and N uptake. Other changes involve 
calculation of N in litter production, temperature effects 
on gross primary productivity and plant maintenance 
respiration, and leaf conductivity to carbon dioxide in 
arid regions. 
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NI 

CO 2 CO2 

i 

Lc 
ß 
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Fig. 1. The terrestrial ecosystem model (TEM). The 
state variables are: carbon in vegetation (Cv); nitrogen 
in vegetation (Nv); organic carbon in soils and detritus 
(Cs); organic nitrogen in soils and detritus (Ns); and 
available soil inorganic N (N^v). Arrows show carbon 
and nitrogen fluxes: GPP, gross primary productivity; 
R^, autotrophic respiration; RI-i, heterotrophic 
respiration; L½, litterfall C; LN, litterfall N; NUPTAKE, 
N uptake by vegetation; NETNMIN, net N 
mineratization of soil organic N; NINPUT, N inputs 
from outside the ecosystem; and NLOST, N losses from 
the ecosystem. 
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TABLE 1. Study Sites From Which Data Was Gathered and Used to Calibrate Some of the Vegetation-Specific 
Parameters in the Terrestrial Ecosystem Model 

Site Name Vegetation Type Location 

Toolik Lake (USA) polar desert/alpine tundra 65 ø 26'N, 145 ø 30'W 
Toolik Lake (USA) wet/moist tundra 65 ø 26'N, 145 ø 30'W 
Schefferville (Canada) boreal woodland 54 ø 43'N, 66 ø 42'W 
Bonanza Creek (USA) boreal forest 64 ø 45'N, 148 ø 15'W 
H.J. Andrews (USA) temperate coniferous forest 44 ø 15'N, 122 ø 20'W 
Curlew Valley (USA) arid shrubland 41 ø 05'N, 113 ø 05'W 
Pawnee (USA) short grassland 40 ø 49'N, 104 ø 46'W 
Osage (USA) tall grassland 36 ø 57'N, 96 ø 33'W 
Cedar Creek (USA) temperate savanna 45 ø 35'N, 93 ø 10'W 
Harvard Forest (USA) temperate deciduous forest 42 ø 32'N, 72 ø 10'W 
Harvard Forest (USA) temperate mixed forest 42 ø 32'N, 72 ø 10'W 
Taita (New Zealand) temperate broadleaved evergreen forest 41 ø 11'S, 174 ø 58'E 
Nylsvley (South Africa) tropical savanna 24 ø 39'S, 28 ø 42'E 
Guanica (Puerto Rico) xeromorphic woodland 17 ø 55'N, 66 ø 55'W 
Chakia (India) tropical deciduous forest 25 ø 20'N, 83 ø 00'E 
Ducke (Brazil) tropical evergreen forest 2 ø 50'S, 59 ø 57'W 

Feedback Between C and N Uptake by the Vegetation 

In the initial version of TEM, feedback between C 
and N uptake by the vegetation was designed to 
maintain the vegetation C to N ratio at a target ratio 
that was specific to the vegetation type. This was 
accomplished by allowing the vegetation to acclimate to 
the environment of the grid cell by adjusting allocation 
of effort between C and N uptake. This is analagous to 
adjusting the shoot to root ratio of the vegetation. 

This feedback algorithm, although interesting from 
the perspective of allocation theory, has several 
drawbacks. First, because the rate of acclimation in the 

model is chosen arbitrarily, the algorithm can only be 
used to find the equilibrium solution of a grid cell; the 
transient response may be inappropriate. Second, the 
algorithm is not designed to respond to changes in 
carbon-nitrogen balance that occur on a monthly time 
scale; use of the model to look at seasonal exchanges of 
gases with the atmosphere requires subannual feedback. 
Finally, C to N ratios of many vegetation types are 
known to change during succession. This is especially 
the case for forests in which C-rich heartwood increases 

through succession resulting in an increasing C to N 
ratio. To assist in future development of a successional 
version of TEM, we needed to modify the model so that 
the aggregated C:N of vegetation was not maintained as 
a constant. We therefore designed a new feedback 
algorithm between C and N uptake. 

Photosynthesis is known to decrease when the 
availability of inorganic N is restricted [Chapin, 1980; 
Evans, 1983; Clarkson, 1985; Chapin et al., 1988; 
Chapin, 1991b]. This response is the result of the 
feedback of N availability on C uptake. The C to N ratio 
of new production (Pcn) is commonly measured in 
ecosystem studies, and this information can be used by 
TEM to determine when the vegetation is stressed by 
the availability of N: if the calculated C to N ratio of 

production (PPRODcn, the potential C to N ratio of 
production) is greater than Pcn, then the vegetation is 
stressed by the availability of N. We expect 
photosynthesis to monotonically decrease as N stress 
increases. This relationship, as we have described it, is a 
feedback curve of the effect of N availability on C 
uptake. 

If the relationship is scaled to decrease from 1 to 0 as 
N stress increases, then the feedback curve f(NA) can 
be used in the GPP equation to quantify the effect of N 
availability on C uptake (similar to the effects of other 
factors): 

GPP = Cma x f(PAR) f(CO2,H20 ) f(LEAF) f(T) f(NA) 

where Cma x is the maximum rate of C assimilation, PAR 
is photosynthetically active radiation, LEAF (i.e., leaf 
phenology) is leaf area relative to the maximum leaf 
area, T is temperature, and NA is nitrogen availability. 
We assume that the shape of f(NA) is parabolic (Figure 
2). The amount of C potentially available for production 
is the calculated NPP based on GPP with f(NA) set to 1. 
The point at which f(NA) becomes 0, the parameter 
CNmax, is important in quantifying the severity of the 
feedback. 

If, after applying f(NA) on the calculation of GPP, the 
resulting NPP to N uptake ratio falls below Pcn, then 
feedback is curtailed during model operation so that the 
ratio equals Pcn' Thus the photosynthetic machinery is 
only slowed to the point at which the vegetation takes 
up enough C to match N uptake. For the case when the 
final NPP to N uptake ratio is greater than Pcn, the 
additional N required to build tissue is implicitly 
assumed to come from the recycling of N within the 
vegetation. On an annual basis this means that N in 
production must equal the sum of N in uptake and 
recycled N. This aspect of the feedback algorithm is 
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Fig. 2. Effect of nitrogen availability (NA) on the 
relative uptake of C by the vegetation [f(NA)], i.e., 
relative GPP. Nitrogen stress increases as the potential 
C to N ratio of production (PPRODcn) rises above Pcn, 
the annual C to N of production at the calibration site. 
When PPRODcn is less than Pcn, f(NA) is unaffected. As 
PPRODcn increases above Pen, f(NA) decreases 
according to a parabolic function. The calibrated 
parameter CNmax, which describes the severity of the 
feedback, is the point at which f(NA) goes to 0. 

particularly important in the N cycle of arctic and 
subarctic ecosystems, where recycling of N by the 
vegetation is substantial [Chapin et at., 1980; Chapin 
and Kedrowski, 1983; Jonasson and Chapin, 1985; 
Shaver et at., 1990; Chapin and Moitanen, 1991; Shaver 
and Chapin, 1991]. 

Similar to the effect of N availability on C uptake, the 
uptake of N should monotonically decrease as the 
potential C to N ratio of production decreases below 
Pcn, i.e., the uptake of N should decrease as C stress 
increases. We have incorporated this relationship into 
the equation for N uptake as the parabolic function 
f(CA): 

NUPTAKE = Nma x f(inorganic N,H20) f(T) f(CA) 

where Nma x is the maximum rate of N uptake by the 
vegetation, T is temperature, and CA is carbon 
availability. The amount of N potentially available for 
production is determined with f(CA) set to 1. In the 
implementation of this feedback, f(CA) goes to 0 as 
NPP goes to 0. 

N in Litter Production 

In the previous version of TEM, N in litter production 
was controlled to maintain the C to N ratio of the 

vegetation at a target ratio. Because we are not directly 
controlling the C to N ratio of vegetation in this version 
of TEM, we changed the calculation of this flux. We 
calculate the amount of N in litter production similar to 
the calculation of the amount of C in litter production: 

NFALL = (annual N uptake) 
12 (mean annual Nv) 

LNt-- Nvt (NFALL) 

where annual N uptake and mean annual Nv are 
defined from literature sources for the specific sites 
used to calibrate TEM, and LNt and Nvt are the amount 
of N in litter production and vegetation, respectively, at 
the time step t. The parameter NFALL is assumed to be 
constant within each vegetation type. This algorithm 
causes LN to track seasonal changes in Nv. 

Temperature Effects on Gross Primary Productivity 

In the initial version of TEM the temperature effects 
on gross primary production (GPP) were assumed to be 
the same as the measured effects on net photosynthesis. 
This was modeled with a parabolic function that rose 
from 0 to 1 between the minimum and optimum 
temperatures for photosynthesis and decreased from 1 
to 0 between the optimum and maximum temperatures 
for photosynthesis. Although the shape of this 
relationship is reasonable for net photosynthesis, which 
is the difference between gross photosynthesis and leaf 
respiration, it is not appropriate for gross 
photosynthesis. Because of photorespiration, gross 
photosynthesis generally approaches an asymptote as 
temperature increases [Larcher, 1980; Fitter and Hay, 
1981] and does not decrease until temperatures are high 
enough to cause denaturing of photosynthetic enzymes. 
In the current version of TEM we allowed the 

temperature effects on GPP to increase from 0 to 1 
between the minimum and optimum temperature of 
photosynthesis as in the original version of TEM but 
maintained the temperature multiplier of GPP to be 1 
above the optimum temperature. We did not simulate 
the denaturing effects of temperature because the 
temperatures in our climatic data sets never rise into the 
region of denaturation. Even if the temperatures were 
to rise into the denaturing region, other factors in the 
model would invariably cause GPP to drop to very small 
values. 

Temperature Effects on Plant Maintenance Respiration 

As in the initial version of TEM, we model plant 
maintenance respiration (Rm) as follows: 

Rm _- Kr (Cv) e(rx)T 

where Kr is the per-gram-biomass respiration rate of the 
vegetation at 0 ø C, Cv is the mass of carbon in the 
vegetation, T is the mean monthly air temperature, and 
rT is the instantaneous rate of change in respiration. In 
the initial version of TEM, rT was determined by 
assuming that Ql0, the rate of change in respiration due 
to a 10 ø increase in temperature, is 2. Because rT = 
Ln(Q10)/10, this resulted in rT of 0.0693. The measured 
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values of Q10 are commonly around 2 in the region of 
5o-20 ø C but below 5 ø C become greater and above 20 ø C 
fall off to 1.5 or less [Larcher, 1980]. We assumed a 
linear increase of Q10 from 2.0 to 2.5 between 5 ø and 0 ø 
C, a constant Q10 of 2.0 between 5 ø and 20 ø C, and a 
linear decrease of Q10 from 2.0 to 1.5 between 20 ø and 
40 ø. We modeled this temperature dependence with a 
third-order polynomial regression using integer values 
of temperature between 0 ø and 40 ø C to obtain the 
smooth relationship: 

Qlo = 2.35665 -0.05308T + 0.00238T 2 -0.00004T 3 

where T is the mean monthly temperature. 

Leaf Conductivity to Carbon Dioxide in Arid Regions 

Gv, the unitless multiplier in the model that causes 
leaf conductivity to CO2 to change in response to 
moisture availability, was modified for EET/PET s 0.1, 
as follows: 

Gv = -10 (EET/PET) 2 + 2.9 (EET/PET) 

where EET is estimated evapotranspiration and PET is 
potential evapotranspiration. This function allows the 
minimum possible Gv to be 0 instead of 0.1, a plant 
response that seems possible in extremely arid regions. 
For EET/PET > 0.1, calculation of Gv is the same as in 
the work by Raich et al. [1991]. The shape of the new 
function allows the slopes to match at EET/PET = 0.1. 

METHODS 

Parameterization of TEM 

Parameters in TEM are vegetation-specific (Tables 2 
and 3), soil-specific (Table 4), or constant [see Raich et 
al., 1991]. We defined the vegetation-specific para- 
meters of the leaf phenology submodel (see Table 2) 
based on data from numerous phenology studies. To 
define the parameters that determine the response of 
gross primary production to temperature for each 
vegetation type (Train and ropt; see Table 3), we used 
information compiled by Larcher [1980]. 

We used data from intensively studied field sites to 
estimate the remaining vegetation-specific parameters 
(see Table 3) for 16 non-wetland ecosystems (see 
appendix for compilation of data). Mediterranean 
shrubland, another ecosystem considered by TEM, uses 
the same calibrated parameters as xeromorphic 
woodland. However, the two ecosystems have different 
parameters for the leaf phenology submodel. The WBM 
does not adequately represent the water balance for 
ecosystems with permafrost (i.e., boreal forest, boreal 
woodland, wet/moist tundra, polar desert/alpine 
tundra). For these ecosystems we calibrated and ran the 
model with soil moisture equal to field capacity and 
estimated evapotranspiration equal to potential 
evapotranspiration. 

Fertilization studies in natural ecosystems have often 
been conducted to determine the degree to which NPP 
is limited by N availability. We used data on the 

TABLE 2. Values of Parameters Used to Estimate the Relative Photosynthetic Capacity of the Vegetation, f(LEAF) 

Vegetation Type 
Parameter 

a b c min 

Polar desert/alpine tundra 0.7964 0.4664 -0.0287 0.00 
Wet/moist tundra 0.7964 0.4664 -0.0287 0.00 
Boreal woodland 0.7149 0.2944 0.1329 0.20 
Boreal forest 0.4289 0.3330 0.3223 0.50 
Temperate coniferous forest 0.0000 0.0000 0.0000 1.00 
Arid shrubland 0.4640 0.6708 -0.0068 0.25 
Short grassland 0.4437 0.6520 0.0098 0.10 
Tall grassland 0.4746 0.5807 -0.0564 0.05 
Temperate savanna 0.7808 0.4427 -0.0828 0.05 
Temperate deciduous forest 0.8330 0.3520 -0.0754 0.02 
Temperate mixed forest 0.4162 0.3516 0.2874 0.50 
Temperate broadleaved evergreen forest 0.0000 0.0000 0.0000 1.00 
Mediterranean shrubland 0.2669 0.9592 -0.0773 0.25 
Tropical savanna 0.3366 0.6451 0.0422 0.15 
Xeromorphic woodland 0.4423 0.5426 0.0713 0.25 
Tropical deciduous forest 0.4423 0.5426 0.0713 0.25 
Tropical evergreen forest 0.4423 0.5426 0.0713 0.25 

Parameters are defined by Raich et al. [1991]. 
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maximum response of NPP to N fertilization (NPPSAT 
in the tables of the appendix) to determine, and 
therefore constrain, the maximum rate of C assimilation 
by the vegetation, i.e., the parameter Cmax in the GPP 
equation. With this information in TEM we are able to 
run the C cycle uncoupled from the N cycle to 
determine productivity as if N were not limiting. 

For the calibration sites that were determined to be N 

limited, i.e., the first 12 ecosystems in Table 1, we 
calculated Pcn as the ratio of NPP to N in production; N 
in production is assumed to equal the sum of 
NUPTAKE and NMOBIL in the tables of the appendix. 
The parameter CNrnax was then determined for these 
ecosystems by calibrating the model to the equilibrium 
pools and fluxes of the calibration site. This procedure 
assumes that N in production equals N required for 
production, i.e., "N requirement." However, for systems 
that are not N limited, N in production may not reflect 
N requirement because of the possibility of luxury N 
uptake. We calibrated the tropical and subtropical 
ecosystems, i.e., the last four ecosystems in Table 1, as if 
they were not N limited. For these calibrations we set 
CNmax to 250, a value approximately equal to that for 
temperate deciduous forest, and adjusted Pcn upward 
from the ratio of NPP to N in production until there was 
no N limitation. 

An estimate of gross primary production (GPP) is 
required to calibrate a parameter in the plant 
respiration equation. In cases where the GPP budget of 
the calibration site was lacking, we used the method of 
Ryan [1991a] to estimate GPP. This method determines 
a gross production budget by estimating the following 
quantities: net primary production and associated 
construction respiration of aboveground wood and 
foliage, aboveground maintenance respiration, and 
belowground carbon allocation. Aboveground wood and 
foliage production are determined from field studies 
and construction respiration is estimated to be 25% of 
production. Empirical relationships between respiration 
and structural nitrogen [Ryan, 1991b] are used to 
estimate aboveground maintenance respiration. 
Belowground carbon allocation is estimated from fine 
litterfall using an empirical relationship [Raich and 
Nadethoffer, 1989]. 

In this version of TEM, field capacities for different 
soil textures (FC in Table 4) were defined from Ratlift 
et at. [1983] rather than from Saxton et at. [1986]; the 
estimates of the former are based on field studies, 
whereas those of the latter are based on laboratory 
studies. The soil-specific parameters that define the 
influence of soil moisture on decomposition were 
defined for the new field capacities as described by 
Raich et at. [1991]. 

In the initial version of TEM the half-saturation 

constant for the effect of atmospheric CO2 
concentration on GPP was chosen to yield a 23% 
increase with a doubling of CO2. This value is at the low 
end of those obtained in empirical studies that provided 
adequate nutrients and water to plants (range 24 to 50% 
[see Raich et al., 1991]). In this version of TEM we 
chose an intermediate yield of 37% to define this 
parameter. 
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TABLE 4. Values of Soil-Specific Parameters Used in the Terrestrial Ecosystem Model 

Parameter 
Sand 

Texture 

Sandy Loam Loam Clay Loam Clay 

FC (% saturation) 54.0 
Mopt (% saturation) 62.0 
ml 0.350 

Msat 0.5000 

58.0 62.0 63.0 64.0 

65.0 68.0 71.0 73.0 

0.044 -0.289 -0.425 -0.732 

0.5625 0.6250 0.6875 0.7500 

Parameters are defined by Raich et al. [1991]. 

Application of TEM to North America 

The sources for the air temperature, cloudiness, 
elevation, precipitation, and soil texture data that we 
used for North America are described by Raich et al. 
[1991]. We used the water balance model (WBM) of 
Vorosmarty et al. [1989] with refinements by E. B. 
Rastetter (personal communication, 1991) to produce 
estimates of potential evapotranspiration, actual 
evapotranspiration, and soil moisture. Monthly data sets 
of photosynthetically active radiation and relative leaf 
phenology were generated as described by Raich et al. 
[1991]. As in the application of the model to South 
America, we set the monthly atmospheric concentration 
of CO2 to 340 ppmv for all grid cells. We also assumed 
N inputs and losses to be negligible in each grid cell. 

Each of the 12,260 grid cells in North America was 
assigned to an ecosystem type (Plate 1). For Alaska, 
Canada, and the continental United States we digitized 
maps of potential, i.e., undisturbed natural, vegetation 
to a resolution of 0.5 ø latitude x 0.5 ø longitude [Joint 
Federal-State Land Use Planning Commission for 
Alaska, 1973; Rowe, 1972; Kuchler, 1964]. For Mexico 

and Central America we modified an extant 1 ø x 1 ø data 

set [Matthews, 1983] to more accurately represent 
transitions between vegetation types at the 0.5 ø x 0.5 ø 
resolution. The 11,299 grid cells for which we ran the 
model account for 93.8% of the 22.14 x 106 km 2 in North 

America. We did not make predictions for ice, wetland 
ecosystems, and open water. 

For extrapolating TEM the run for each grid cell 
starts with the January values of the driving variables. 
Therefore the initial values of the pools for a grid cell 
were set equal to those of December from the 

.. 

appropriate vegetation-specific calibration (Table 5). A 
grid cell was determined to have reached equilibrium 
when the annual fluxes of NPP, C in litter production, 
and soil respiration differed by less than 1 gC m -2 yr 4, 
and those of NETNMIN, N uptake by vegetation, and N 
in litter production differed by less than 0.01 gN m -2 yr 4. 

Experiment Examining the Interactions of C and N 
in the Response of NPP to Elevated Temperature 

We used TEM in a factorial experiment on temperate 
mixed forest in North America to examine interactions 

TABLE 5. Initial Values of the State Variables for Extrapolating the Terrestrial Ecosystem Model to Grid Cells 
Within Each Vegetation Type 

Vegetation Type Cv Nv Cs Ns NAV 

Polar desert/alpine tundra 454.20 6.53 5997.40 259.92 0.42 
Wet/moist tundra 757.69 15.05 17997.88 1099.70 0.41 
Boreal woodland 2208.73 24.10 13340.88 735.16 0.51 
Boreal forest 9006.52 20.06 10991.50 370.11 0.68 

Temperate coniferous forest 43496.64 75.02 21011.28 420.03 0.96 
Arid shrubland 533.51 19.50 10994.65 799.59 1.68 

Short grassland 324.38 8.89 3805.65 389.61 2.24 
Tall grassland 675.25 6.15 16016.03 1549.38 4.38 
Temperate savanna 2120.73 16.28 4337.19 399.51 4.37 
Temperate deciduous forest 15596.35 37.42 11227.59 558.93 2.13 
Temperate mixed forest 14845.94 36.37 10675.52 529.92 2.01 
Temperate broadleaved evergreen forest 14986.23 41.92 13002.84 460.12 0.97 
Tropical savanna 1422.26 24.03 8006.78 401.07 1.89 
Xeromorphic woodland 4516.18 93.14 11121.72 949.23 2.53 
Tropical deciduous forest 12053.10 175.32 7844.72 943.53 1.82 
Tropical evergreen forest 22512.07 300.34 15059.09 900.06 0.59 

The values are defined from the December pools of the corresponding vegetation-specific calibration. The state 
variables are defined in Figure 1. All values are in g m '2. 
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Plate 1. Potential natural vegetation of North America as defined for the terrestrial ecosystem model. 
The vegetation types are: A, polar desert/alpine tundra; B, wet/moist tundra; C, boreal woodland; D, 
boreal forest; E, temperate coniferous forest; F, arid shrubland; G, short grassland; H, tall grassland; I, 
temperate savanna; J, temperate deciduous forest; K, temperate mixed forest; L, temperate broadleaved 
evergreen forest; M, mediterranean shrubland; N, tropical savanna; O, xeromorphic woodland; P, 
tropical deciduous forest; Q, tropical evergreen forest; R, ice; and S, wetland ecosystems. 

of the C and N cycles in the response of NPP to an 
elevated temperature of 2 ø C. The C cycle in TEM can 
be uncoupled from the N cycle by not allowing any 
feedback of N availability on C uptake. This is 
implemented in the model by setting f(NA) to 1. The 
basic design of the experiment is a 2 x 2 factorial of 
nitrogen coupling (uncoupled, coupled) x temperature 
change (TEM[ +0 ø C], TEM[ +2 ø C]). For the response 
in the uncoupled treatments to be comparable with that 
of the coupled treatments, we adjusted the parameter 
Cma x in the uncoupled calibration so that the baseline 
NPP calculated for the calibration site was identical for 

both the uncoupled and coupled versions of the model. 
In the elevated-temperature treatments we increased 
each monthly temperature for all grid cells by 2 ø C. 

Increased temperature may affect the response of 
NPP due to effects of temperature on the metabolism of 
plant/soil processes. However, soil moisture may also 
change as a result of increased evapotranspiration. 

Therefore the response of NPP may also be due, in part, 
to the effects of changes in soil moisture on the 
metabolism of plant/soil processes. We attempted to 
separate these effects by using the WBM-generated 
hydrologic inputs for TEM as a third factor (WBM 
[+0 ø C], WBM[ + 2 ø C]) in the experiment (Table 6). In 
the elevated-temperature scenarios for WBM we 
increased each monthly temperature for all grid cells by 
2 ø C. 

Plate 2. Annual net primary productivity of potential 
vegetation in North America as determined by the 
terrestrial ecosystem model. 

Plate 3. Annual net nitrogen mineralization of 
potential vegetation in North America as determined by 
the terrestrial ecosystem model. 
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TABLE 6. Design of Experiment on Temperate Mixed Forest in North America to Examine Interactions 
of the C and N Cycles in the Response of NPP to an Elevated Temperature of 2 ø C 

C Cycle Uncoupled 
From the N Cycle 

C Cycle Coupled 
to the N Cycle 

TEM[ +0 ø C] TEM[ + 2 ø C] TEM[ +0 ø C] TEM[+2 ø C] 

WBM 

[+0 o c] 

baseline for effects of baseline for effects of 

uncoupled temperature coupled temperature 
response on plant response on plant and 

processes soil processes 

WBM 

[+2ø C] 

effects of effects of 

effects of temperature effects of temperature 
soil moisture and soil soil moisture and soil 

on plant moisture on on plant and moisture on 
processes plant soil processes plant and 

processes soil processes 

The C cycle is uncoupled from the N cycle by not allowing the availability of N to affect the uptake of C. Mean 
monthly temperature was increased by 2 ø C for each grid cell when running the terrestrial ecosystem model (TEM) 
or the water balance model (WBM) for an elevated temperature scenario. 

RESULTS 

Annual Net Primary Productivity 

For undisturbed non-wetland vegetation, TEM 
estimates the annual NPP for North America to be 

7.032 x 10 •5 gC yr 4, or 338.7 gC m -2 yr 4 (Table 7). 
Among all ecosystems, temperate mixed forest accounts 
for the greatest exchange of CO2 with the atmosphere in 

North America (18.8%, Table 7). Mean NPP estimates 
for ecosystems range from 69.5 gC m -2 yr 4 for polar 
desert of northern Canada to 1113.0 gC m '2 yr 4 for 
tropical evergreen forest of Central America. Estimates 
for individual grid cells range from 31.3 gC m -2 yr 4 in 
polar desert to 1489.4 gC m -2 yr 4 in tropical deciduous 
forest (Table 7, Plate 2). 

Polar desert, moist tundra, boreal woodland, boreal 

TABLE 7. Estimates by the Terrestrial Ecosystem Model of Annual Net Primary Productivity (NPP) 
for Potential Vegetation in North America 

Vegetation Type Area, Cells Total NPP, Max NPP, 
106 km 2 10 •5 gC yr 4 gC m -2 yr 4 

Min NPP, 
gC m -2 yr 4 

Polar desert/alpine tundra 1.11 1060 0.077 124.9 
Wet/moist tundra 2.54 2093 0.246 169.3 
Boreal woodland 2.18 1387 0.415 257.5 

Boreal forest 3.43 1991 0.789 358.5 

Temperate coniferous forest 1.51 693 0.596 684.0 
Arid shrubland 2.01 810 0.267 265.2 

Short grassland 1.60 706 0.334 398.2 
Tall grassland 0.77 329 0.252 723.3 
Temperate savanna 1.09 464 0.564 946.8 
Temperate mixed forest 1.80 757 1.323 1020.1 
Temperate deciduous forest 0.90 376 0.659 948.6 
Temperate broadleaved evergreen forest 0.05 19 0.022 915.2 
Mediterranean shrubland 0.06 24 0.021 429.1 

Tropical savanna 0.11 40 0.046 827.3 
Xeromorphic forest 0.48 169 0.212 722.8 
Tropical deciduous forest 0.46 159 0.472 1489.4 
Tropical evergreen forest 0.66 222 0.737 1413.5 

31.3 

56.6 

94.7 

116.8 

185.7 

53.4 

131.6 

201.8 

278.0 

380.7 

408.6 

289.2 

212.0 

212.0 

150.4 
639.0 

716.5 

Total 20.76 11,299 7.032 1489.4 31.3 
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Fig. 3. Mean annual net primary productivity (blank 
bars) and net nitrogen mineralization (diagonally lined 
bars) as determined by the terrestrial ecosystem model 
for ecosystems generally occurring along a north to 
south gradient in (a) northern North America, generally 
occurring along a west to east gradient in (b) temperate 
North America, and in (c) the tropics and subtropics. 

forest, and coniferous forest generally occur 
sequentially from north to south in northern North 
America (Plate 1). Estimates of mean annual NPP 
increase across this ecosystem gradient (Figure 3a). 
Mean annual temperature and NPP generally increase 
along a north-south transect in western Canada that 
spans this ecosystem gradient (Figure 4a). However, as 
the transect crosses the Canadian Rockies, NPP changes 
rapidly because the vegetation is very heterogeneous 
(temperate coniferous forest, boreal forest, and alpine 
tundra). Mean annual temperature is probably 
overestimated in this region because of the lack of 
meteorological stations at the higher elevations. The 
simulated NPP in this area is lower than would be 

expected on the basis of the temperature data because C 
and N dynamics in TEM are constrained by the 
parameters associated with boreal forest and alpine 
tundra. 

Arid shrublands, short grassland, tall grassland, 
temperate savanna, and temperate deciduous and mixed 
forests generally occur sequentially from west to east in 
temperate North America (Plate 1). Estimates of mean 
annual NPP increase along this ecosystem gradient 
(Figure 3b). Both annual precipitation and mean annual 
NPP increase along a west-east transect that travels 
through this ecosystem gradient (Figure 4b). In the 
transition zone between tall grassland and temperate 
savanna, NPP changes rapidly because the vegetation is 
switching back and forth between the two ecosystem 
types. In the tropics and subtropics, TEM predicts that 
forested ecosystems are more productive than 
non-forested ecosystems (Figure 3c). 
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Fig. 4. Mean annual net primary productivity (solid 
lines) as determined by the terrestrial ecosystem model 
for a (a) temperature gradient along longitude 117 ø W 
between latitudes 47 ø N and 77 ø N and a (b) moisture 
gradient along latitude 41.5 ø N between longitudes 110 ø 
W and 75 ø W. Dashed lines indicate mean annual 

temperature in Figure 4a and annual precipitation in 
Figure 4b. Abbreviations: TCF, temperate coniferous 
forest; MTN, mountainous region; BF, boreal forest; 
BW, boreal woodland; TUNDRA, wet/moist tundra; 
PD, polar desert; AS, arid shrubland; SG, short 
grassland; TG, tall grassland; TS, temperate savanna; 
TDF, temperate deciduous forest; and TMF, temperate 
mixed forest. 
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TABLE 8. Estimates by the Terrestrial Ecosystem Model of Annual Net N mineralization (NETNMIN) 
for Potential Vegetation in North America 

Vegetation Type Area, Cells Total Max Min 
106 km 2 NETNMIN, NETNMIN, NETNMIN, 

1012 gN yr 4 gN m '2 yr 4 gN m -2 yr 4 

Polar desert/alpine tundra 1.11 1060 0.5 1.96 0.15 
Wet/moist tundra 2.54 2093 1.7 1.43 0.30 
Boreal woodland 2.18 1387 4.0 2.68 0.92 
Boreal forest 3.43 1991 9.0 4.76 1.61 

Temperate coniferous forest 1.51 693 6.2 11.26 2.14 
Arid shrubland 2.01 810 6.6 6.51 1.53 

Short grassland 1.60 706 6.1 6.56 2.47 
Tall grassland 0.77 329 3.5 9.30 2.85 
Temperate savanna 1.09 464 6.9 10.60 3.33 
Temperate mixed forest 1.80 757 15.0 15.71 4.58 
Temperate deciduous forest 0.90 376 8.3 13.54 5.78 
Temperate broadleaved evergreen forest 0.05 19 0.2 9.58 4.36 
Mediterranean shrubland 0.06 24 0.5 10.46 7.53 

Tropical savanna 0.11 40 1.1 18.14 6.93 
Xeromorphic forest 0.48 169 6.6 24.38 5.39 
Tropical deciduous forest 0.46 159 12.7 35.48 15.72 
Tropical evergreen forest 0.66 222 15.7 31.56 15.93 

Total 20.76 11,299 104.6 35.48 0.15 

Annual Net Nitrogen Mineralization 

For undisturbed non-wetland vegetation, TEM 
estimates the mean annual net nitrogen mineralization 
(NETNMIN) of North America to be 104.6 x 1012 gN 
yr 4, or 5.04 gN m -2 yr 4 (Table 8). Mean NETNMIN 
estimates for ecosystems range from 0.50 gN m -2 yr 4 in 
polar desert to 27.29 gN m -2 yr 4 in tropical deciduous 
forest. Estimates for individual grid cells range from 
0.150 gN m -2 yr 4 in polar desert to 35.48 gN m -2 yr 4 in 
tropical deciduous forest (Table 8, Plate 3). Ranges 
within ecosystems are comparable to those reported by 
Nadelhoffer et al. [1991] (Figure 5). 

In northern ecosystems, mean annual NETNMIN 
increases along a gradient from polar desert to 
temperate coniferous forest (Figure 3a). Similarly, in 
temperate North America NETNMIN increases along a 
gradient from arid shrubland to temperate deciduous 
and mixed forests (Figure 3b). In the tropics and 
subtropics, estimates of NETNMIN are higher for 
forested than for non-forested ecosystems (Figure 3c). 

Limitation of Productivity by Nitrogen Availability 

When the availability of N does not restrict the 
uptake of C by the vegetation (i.e., the C cycle is 
uncoupled from the N cycle), the estimate of mean 
annual NPP for North America is 448.9 gC m -2 yr 4. This 
suggests that productivity could be 32.5% higher if N is 
not limiting. The strength of N limitation differs 
regionally in North America (Figure 6). It is very weak 
in forests of the tropical region, increasingly stronger in 
forests of the temperate and boreal regions, and 

strongest in tundra ecosystems. In tundra ecosystems, 
NPP in the N-limited scenario is on average about 50% 
of that predicted when there is no N limitation. The 
degree to which productivity is limited by the availability 
of N also varies within ecosystems (Figure 6). Along a 
transect from south to north through arctic ecosystems 
in western Canada, productivity initially becomes more 
limited by N availability and then becomes less limited 
(Figure 7). In the northern portion of this transect the 
decrease in the strength of N limitation may be the 

100.000 

I 

>" 1 o.ooo 

I 

E 1.ooo 

z 

E o.•oo 

O.OLO 

ßo 

0 Boreal Temperate 
Forests Forests 

Tundra Temperate Tropical 
Ecosystems Grasslands Forests 

Fig. 5. Comparison between the ranges of annual net 
nitrogen mineralization predicted by the terrestrial 
ecosystem model (filled circles) and those reported by 
Nadelhoffer et al. [1991] (open circles) for tundra and 
grassland ecosystems, and forests of the boreal, 
temperate, and tropical regions. 
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Fig. 6. Predicted effect on regional net primary 
productivity of eliminating limitation due to nitrogen 
availability. Percentage increase in NPP (mean and 
range) is shown for tundra ecosystems and for forests in 
the tropical, temperate, and boreal regions. 

result of photosynthetic processes becoming increasingly 
more affected by lower temperatures than by N 
availability. Thus the tightness of the coupling between 
the C and N cycles may change within ecosystems due to 
interactions with other factors. 

Experiment Examining the Interactions of C and N 
in the Response of NPP to Elevated Temperature 

When TEM is run with the C cycle coupled to the N 
cycle, the estimate of mean annual NPP for temperate 
mixed forest in North America is 735.6 gC m -2 yr 4 
(Table 7). The estimate for the C cycle calibrated and 
run uncoupled from the N cycle is within 10% of this 
value. We use these estimates as the baseline values for 

comparing the response of NPP of temperate mixed 
forest to an elevated temperature of 2 ø C (Table 6). 

When the temperature is elevated by 2 ø for WBM, but 
not for TEM, NPP of temperate mixed forest does not 
respond if N cycling is uncoupled (Figure 8). In the case 
of coupled C and N cycling the negative response of 
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Fig. 7. Predicted effect on net primary productivity in 
the arctic of eliminating limitation due to nitrogen 
availability. Percentage increase in NPP is shown for a 
transect at 117 ø W. 
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Fig. 8. Response of net primary productivity (NPP) and 
net nitrogen mineralization (NETNMIN) for temperate 
mixed forests of North America in an elevated- 

temperature experiment. Monthly temperature was 
increased 2 ø for the terrestrial ecosystem model (TEM) 
or the water balance model (WBM), which provides 
climatic inputs to TEM. Blank and diagonally-lined bars 
correspond to the NPP response when TEM was run 
with the carbon cycle uncoupled or coupled to the 
nitrogen cycle, respectively. The crosshatched bar is the 
NETNMIN response with the carbon cycle coupled to 
the nitrogen cycle. 

NPP is similar to the decrease in NETNMIN. These 

results suggest that lower soil moisture affected NI-'P 
more strongly through N availability than through lower 
leaf conductivity to CO2. 

When temperature is elevated by 2 ø for TEM, but not 
for WBM, NPP of temperate mixed forest responds 
negatively if N cycling is not considered (Figure 8) but 
positively in the case of coupled C and N cycling. 
Because the positive response is much greater than the 
negative response, these results suggest that NPP is 
more affected by elevated N availability than by 
increased plant respiration. 

When temperature is elevated by 2 ø for both TEM 
and WBM, the NPP response is essentially the additive 
results of the two previous treatments (Figure 8). The 
net result is that NPP responds negatively for the C 
cycle uncoupled from the N cycle, but positively in the 
case of coupled C and N cycling. Again, the positive 
response is greater than the negative response. This 
suggests that NPP is more affected by increased N 
availability because of higher mineralization rates than 
by higher plant respiration or lower leaf conductivity to 
CO2. 

The parameter Pcn, which is the ratio of NPP to N 
requirement for the calibration site, is a measure of the 
efficiency of N use by the vegetation. To investigate the 
sensitivity of the net result of the experiment to this 
parameter, we used N requirement and associated 
organic matter increment from the woodlands data set 
of Cole and Rapp [1981] to define Pen for 13 temperate 
coniferous and 14 temperate deciduous forest stands. 
The calculated values of Pcn range from 34.19 to 109.11, 
with temperate deciduous and temperate coniferous 
forest stands occupying the lower and upper ends of the 
distribution, respectively. We developed two additional 
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calibrations for temperate mixed forest using the low 
and high values of Pcn in this distribution and ran the 
model with each of these calibrations for both the 

baseline treatment and the treatment with temperature 
elevated 2 ø C for both TEM and WBM. In our 

experiments with temperate mixed forest the ranges in 
response of NPP and NETNMIN to elevating 
temperature by 2 ø are 2.3 to 4.0% and 9.0 to 13.2%, 
respectively. Thus the net responses of NPP and 
NETNMIN in the experiment are robust to our original 
definition of Pcn for temperate mixed forest. The results 
of this experiment indicate that the coupling of the N 
cycle to the C cycle is important to consider in 
predicting the response of NPP to elevated temperature. 

DISCUSSION 

Importance of C and N Interactions in Estimating NPP 

It has long been recognized that the spatial pattern of 
NPP at continental to global scales can be explained by 
spatial patterns in temperature and moisture [Lieth, 
1973, 1975]. For the northern region of North America, 
NPP estimates of the Miami model of Lieth [1975] 
generally increase from north to south, a pattern 
primarily representing that generated by the 
temperature submodel of the Miami model. Similarly, in 
temperate North America, NPP estimates of the Miami 
model generally increase west to east; this pattern 
primarily represents that generated by the precipitation 
submodel. The Century model [Parton et al., 1987] also 
predicts NPP to increase west to east across the Great 
Plains in the United States, a pattern that correlates 
with increasing precipitation. The spatial patterns of 
NPP generated by TEM in northern and temperate 
North America agree qualitatively with the patterns 
generated by the Miami and Century models. 

In northern and temperate regions of North America, 
estimated patterns of productivity by TEM mirror those 
of NETNMIN. This occurs because the availability of 
inorganic N limits productivity in the ecosystems of 
those regions. Thus the exchange of CO2 between much 
of the terrestrial biosphere and the atmosphere is 
coupled to the N cycle. The models developed by Lieth 
[1975] and his coworkers implicitly rely on the 
correlation between mineralization rates and 

environmental factors to predict NPP. However, as we 
have shown, the degree to which the availability of N 
limits productivity can vary substantially within 
ecosystems. Thus models that explicitly incorporate the 
effect of the N cycle on plant productivity should be 
capable of better spatial resolution in estimating the 
exchanges of C between the atmosphere and the 
terrestrial biosphere. 

Importance of C and N Interactions in Predicting 
the Response of NPP to Elevated Temperature 

Because productivity of much of the terrestrial 
biosphere is limited by the availability of N, determining 
how global change will affect productivity requires 

understanding how it will affect the interaction between 
the C and N cycles. In our elevated-temperature 
experiment the response of NPP is very different 
depending on whether or not N cycling is considered. 
Thus} to investigate how global change will affect 
biosphere-atmosphere interactions, process-based 
models need to incorporate linkages between the C and 
N cycles. 

We did not intend to use our elevated-temperature 
experiments to define the NPP response of temperate 
mixed forest to global change. Changes in CO2, 
precipitation, nutrient deposition, and land use may be 
substantial in temperate regions, and these were not 
considered in our experiment. However, our results may 
have implications for arctic and boreal ecosystems 
where annual temperature increases of between 5 ø and 
10 ø C are expected to occur sometime during the next 
century [Mitchell et al., 1990]. These ecosystems contain 
substantial amounts of organic C and N in their soils 
that could be released in inorganic forms in response to 
elevated temperature [Nadelhoffer et al., 1991]. A large 
release of CO2 from these systems has the potential to 
increase the CO2 concentration of the atmosphere. 
However, increased N availability associated with 
elevated temperature should result in increased NPP. 
This response has the potential to buffer the carbon loss 
from the soil. 

In our experiments the increased NPP in response to 
elevated temperature indicates that such buffering could 
occur. Rastetter et al. [1991] report a similar result in 
elevated-temperature experiments with a general 
biogeochemical model (MBLGEM). The degree of 
buffering will depend on the fate of the "newly 
available" N that has resulted from warming. Increased 
decomposition of soil organic matter because of 
warming will result in the release of C as CO2 to the 
atmosphere and an increase in the size of the soil 
inorganic N pool. If much of the N is taken up by the 
vegetation, the entire ecosystem will function as a net 
carbon sink because the vegetation has a much higher C 
to N ratio than soil. Alternatively, if "newly available" N 
is lost from the ecosystem, then the ecosystem will 
function as a net carbon source. 

Future Application of TEM Results to Trace Gas Modeling 

Our results on NETNMIN are the first reported 
estimates of N cycling at continental to global scales. 
Explicitly modeling the N cycle in a spatially defined 
manner will be important to investigating the interaction 
of the terrestrial biosphere with trace gases such as 
methane and nitrous oxide. Although other factors 
besides N are important in controlling the exchange of 
these gases [Conrad, 1989; Galbally, 1989], a link does 
exist between NETNMIN and both the uptake of 
methane [Steudler et al., 1989; Mosier et al., 1991; 
Steudler et al., 1992] and the production of nitrous 
oxide [Melillo et al., 1983; Matson and Vitousek, 1987; 
Bowden et al., 1991; Steudler et al., 1992]. The dynamics 
of these gases are spatially and seasonally variable 
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[Matson et at., 1989]. The ability of TEM to make 
estimates of NETNMIN that are spatialty and 
temporally resolved is an important development in our 
efforts to investigate the net exchange of these gases 
with the terrestrial biosphere. 

Recommendations for Ecosystem-Level Studies 

Significant improvements in the calibration of TEM 
include the use of information on N recycling and N 
fertilization. These enhancements have advanced our 

ability to model the linkage between the C and N cycles. 
Information on N recycling, in part, is used to define 
carbon-nitrogen balance for an ecosystem. Data on the 
maximum response of NPP to N fertilization are used 
during calibration to define the maximum rate of carbon 
assimilation, a procedure that implicitly constrains leaf 
area. Better data on N recycling and the NPP response 
to N fertilization in ecosystem-level studies would 
certainly improve our calibration of TEM. They would 
also aid in developing new versions of the model to 
more explicitly model the allocation of resources to C 
versus N uptake. 

An improvement in the calibration of the C cycle is 
the ability to estimate GPP for the calibration site in a 
spatialty explicit fashion. This improvement, we believe, 
results in better spatial resolution in the estimates of 
plant respiration by TEM. However, our estimates of 
GPP could be greatly improved if ecosystem-level 
studies consistently measured several quantities [see 
Ryan, 1991a]: aboveground wood production, 
aboveground leaf production, belowground NPP, C in 
sapwood, C in heartwood, organic N in foliage, organic 
N in sapwood, and organic N in heartwood. 

The availability of inorganic phosphorous is known to 
be low in soils of tropical [Jones and Wild, 1975; 
Sanchez et at., 1982] and arctic [Chapin et at., 1980; 
Shaver et at., 1990; Gibtin et at., 1991; Nadelhoffer et 
at., 1991] ecosystems. As discussed by Raich et at. 
[1991], the omission of phosphorous is partially 
overcome by the calibration of the model to correctly 
predict NPP on phosphorous-deficient soils. However, 
this procedure assumes that phosphorous either does or 
does not limit NPP over the entire ecosystem. Therefore 
the inclusion of the effects of phosphorous into TEM 
would improve the spatial resolution of model 
predictions. Unfortunately, compared to the N cycle, the 
phosphorous cycle has been much less studied. 
Measurement in ecosystem-level studies of the 
saturation response of NPP to phosphorous fertilization, 
recycling rates of phosphorous in vegetation, and NPP 

response in factorial studies of phosphorous and 
nitrogen fertilization would greatly improve our ability 
to incorporate phosphorous into our modeling efforts. 

Conclusion 

Other models have been developed to examine 
exchanges of CO2 between the atmosphere and the 
terrestrial biosphere [Houghton et at., 1983; Emanuel et 
al., 1984; Gillette and Box, 1986; Esser, 1987; Fung et 
at., 1987; King et al., 1989]. The TEM model is unique 
among these models because it incorporates feedbacks 
between the C and N cycles in estimating the exchange 
of CO2. The most significant improvement in TEM is 
the design of a new feedback algorithm between C and 
N uptake. The algorithm was designed so that 
information from field studies on N recycling and the 

.,NPP response to N fertilization can be used to calibrate 
the linkage between C and N dynamics. Because 
nitrogen limitation of productivity can vary substantially 
within ecosystems, modeling the linkage between C and 
N dynamics improves spatial resolution in estimating 
exchanges of CO2 between the atmosphere and the 
terrestrial biosphere. Also, the linkage between C and N 
dynamics is essential to consider in estimating the 
response of terrestrial ecosystems to elevated 
temperature. The evaluation in this study of the linkage 
between C and N dynamics in estimating NPP is a step 
forward in our goal of applying TEM to investigate the 
response of the terrestrial biosphere to global change, 
that is, changes in climate, environmental chemistry, 
and land use. 

APPENDIX 

Data used to calibrate the terrestrial ecosystem model 
for each vegetation type are described in the 16 tables of 
this appendix. Mean annual values of carbon in 
vegetation (Cv), nitrogen in vegetation (Nv), carbon in 
soil (Cs), nitrogen in soil (Ns), and inorganic nitrogen in 
soil (N^v) are in g m -2 of either carbon or nitrogen. 
Values of gross primary productivity (GPP), net primary 
productivity (NPP), nitrogen uptake by vegetation 
(NUPTAKE), saturation response of NPP to nitrogen 
fertilization (NPPSAT), and the annual amount of 
nitrogen mobilized for production via recycling 
(NMOBIL) are in g m -2 yr 4. We assume that NPP = 
carbon in litter production = carbon in heterotrophic 
respiration and that NUPTAKE = nitrogen in litter 
production = net nitrogen mineralization (NETNMIN) 
during calibration of the model. 
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TABLE A1. Polar Desert/Alpine Tundra: Toolik Lake, Alaska 

Variable Value Source and Comments 

Cv 450 
Nv 6.5 
Cs 6000 
Ns 260 
N^v 0.4 
GPP 255 

NPP 65 

NPPSAT 130 

NUPTAKE 0.5 

NMOBIL 1.3 

based on Table 11 by Shaver and Chapin [1991]. 
based on Table 5 by Shaver and Chapin [1991]. 
based on Tables 4 and 5 by Giblin et al. [1991]. 
based on Tables 4 and 5 by Giblin et al. [1991]. 
estimated. 

based on respiration budgets of Chapin et al. [1980]. 
based on Table 11 by Shaver and Chapin [1991]. 
based on evergreens at Toolik in Table 2 of Shaver and Chapin [1986]. 
NETNMIN in Table 5.2 of Shaver et al. [1990]. 
based on 75% recycling (values for evergreen leaves range from 60 to 80% in Table 9 of 

Shaver and Chapin [1991]). 

Data are based on vegetation in the heath site. 

TABLE A2. Wet/Moist Tundra: Toolik Lake, Alaska 

Variable Value Source and Comments 

Cv 750 
Nv 15 
Cs 18000 
Ns 1100 
N^v 0.4 
GPP 440 

NPP 120 

NPPSAT 225 

NUPTAKE 0.8 

NMOBIL 3.2 

based on Table 11 by Shaver and Chapin [1991]. 
based on Table 5 by Shaver and Chapin [1991]. 
based on Tables 4 and 5 by Giblin et al. [1991]. 
based on Tables 4 and 5 by Giblin et al. [1991]. 
estimated. 

based on respiration budgets of Chapin et al. [1980]. 
based on Table 11 by Shaver and Chapin [1991]. 
based on Table 2 by Shaver and Chapin [1986]. 
based on Table 5 by Shaver and Chapin [1991] and 80% recycling (values for tundra 

leaves range from 50 to 80% in Table 9 of Shaver and Chapin [1991]). 
based on Table 5 by Shaver and Chapin [1991] and 80% recycling. 

Assumes that vegetation typical of the tussock site, wet site, heath site, and shrub site covers 40%, 40%, 15%, and 
5% of the landscape, respectively. 

TABLE A3. Boreal Woodland: Schefferville, Quebec, Canada 

Variable Value Source and Comments 

Cv 2200 based on 
Nv 24 based on 
Cs 13350 based on 
Ns 735 based on 
N^v 0.5 based on 
GPP 456 based on 

NPP 170 based on 

NPPSAT 265 based on 

NUPTAKE 1.5 based on 

NMOBIL 2.6 based on 

Tables 5 and 7 by Auclair and Rencz [1982]. 
Table 5 by Auclair and Rencz [1982]. 
tundra and boreal forest calibrations. 

tundra and boreal forest calibrations. 

tundra and boreal forest calibrations. 

tundra and boreal forest calibrations. 

tundra and boreal forest calibrations. 

tundra and boreal forest calibrations. 

tundra and boreal forest calibrations. 

tundra and boreal forest calibrations. 

Assumes that vegetation typical of tundra and forest covers 50% of the landscape, respectively. Results from 
running the calibrations for wet/moist tundra and boreal forest on the Schefferville grid cell were used to estimate some 
of the values for this site. 
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TABLE A4. Boreal Forest: Bonanza Creek Experimental Forest, Alaska 

Variable Value Source and Comments 

Cv 9000 
Nv 24 
Cs 11000 
Ns 735 
N^v 0.6 
GPP 55O 

NPP 220 

NPPSAT 330 

NUPTAKE 2.3 

NMOBIL 1.9 

based on Table 2 by Van Cleve et al. [1983]. 
based on Table 2 by Van Cleve et al. [1983]. 
based on Tables 9 and 13 by Van Cleve et al. [1983]. 
based on Tables 10 and 13 by Van Cleve et al. [1983]. 
based on Weber and Van Cleve [1984]. 
see procedure described in methods. 
based on Table 3 by Van Cleve et al. [1983] and Oechel and Van Cleve [1986]. 
based on Van Cleve and Zasada [1976]. 
based on Table 9.5 by Oechel and Van Cleve [1986] and application of recycling estimates 

from Tables 3 and 7 by Van Cleve et al. [1983]. 
based on Tables 3 and 7 by Van Cleve et al. [1983]. 

Assumes that vegetation typical of black spruce, white spruce, and upland hardwoods covers 80%, 10%, and 10% of 
the landscape, respectively. 

TABLE A5. Temperate Coniferous Forest: Andrews Experimental Forest, Watershed 10, Oregon 

Variable Value Source and Comments 

Cv 43500 
Nv 75 
Cs 21000 
Ns 420 
N^v 0.9 
GPP 2200 

NPP 535 

NPPSAT 670 

NUPTAKE 4.2 

NMOBIL 1.8 

based on Table 7 by Grier and Logan [1977]. 
based on Table 2 by Sollins et al. [1980]. 
based on Table 7 by Grier and Logan [1977]. 
based on Table 2 and Figure 4 by Sollins et al. [1980]. 
based on Sollins et al. [1980] and Vitousek et al. [1982]. 
see procedure described in methods. 
based on Table 10 by Grier and Logan [1977]. 
based on Peterson [1982]. 
based on Figure 3 by Sollins et al. [1980]. 
based on Figure 3 by Sollins et al. [1980]. 

TABLE A6. Arid Shrubland: Curlew Valley, Utah 

Variable Value Source and Comments 

Cv 540 
Nv 19.5 
Cs 11000 
Ns 800 
NAV 1.6 
GPP 235 

NPP 110 

NPPSAT 120 

NUPTAKE 2.7 

NMOBIL 0.9 

based on Table 1 by Caldwell et al. [1977]. 
based on Table 1 by Bjerregaard [1971]. 
based on Table 1 by Bjerregaard [1971]. 
based on Table 1 by Bjerregaard [1971]. 
estimated. 

based on Figure 7 by Caldwell et al. [1977]. 
modified from Figure 7 by Caldwell et al. [1977] based on below ground carbon allocation 

analysis method of Raich and Nadelhoffer [1989]. 
based on 10% response [Lajtha and Whitford, 1989]. 
based on Figure 7 by Caldwell et al. [1977], Table 1 by Bjerregaard [1971], and 

25% recycling [Lajtha, 1987]. 
based on Figure 7 by Caldwell et al. [1977], Table 1 by Bjerregaard [1971], and 25% 

recycling [Lajtha, 1987]. 

Assumes that vegetation typical of the Atriplex confertifolia site and the Ceratoides lanata site covers 50% of the 
landscape, respectively. 
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TABLE A7. Short Grassland: Central Plains Experimental Range, Colorado 

Variable Value Source and Comments 

Cv 315 based on 
Nv 8.8 based on 
Cs 3800 based on 
Ns 390 based on 
N^v 2.0 based on 
GPP 388 based on 

NPP 200 based on 
NPPSAT 400 based on 

NUPTAKE 3.5 based on 
NMOBIL 0.2 based on 

Table 1 by Clark [1977]. 
Table 1 by Clark [1977]. 
Table 1 by Clark [1977]. 
Table 1 by Clark [1977]. 
Table 1 by Woodmansee et al. [1978]. 
respiration budget at Osage Grassland in the work by Risser et al. [1981]. 
data by Sims and Singh [1978], Webb et at. [1983], and Burke et at. [1990]. 
Dodd and Lauenroth [1979]. 
Woodmansee et at. [1978] and Schimet et at. [1985]. 
5% recycling (estimated). 

TABLE A8. Tall Grassland: Osage prairie, Oklahoma 

Variable Value Source and Comments 

Cv 650 
Nv 6 
Cs 16000 
Ns 1550 
N^v 4.0 
GPP 965 

NPP 425 

NPPSAT 635 

NUPTAKE 5.5 

NMOBIL 0.6 

based on Table 6.7 by Risser et al. [1981] and Table 2 of Connant and Risser [1974]. 
based on Table 9.4 by Risser et at. [1981] and Table 3 by Bokhari and Singh [1975]. 
see Raich et at. [1991]. 
see Raich et at. [1991]. 
see Raich et al. [1991]. 
based on respiration budget by Risser et at. [1981]. 
based on Figure 6.4 and Table 9.7 by Risser et at. [1981]. 
based on Table 10.30 by Risser et at. [1981]. 
see Raich et at. [1991]. 
based on 10% recycling [Risser et at. 1981, Figure 10.10]. 

TABLE A9. Temperate Savanna: Cedar Creek Natural History Area, Minnesota 

Variable Value Source and Comments 

Cv 2100 
Nv 16 

Cs 4350 
Ns 400 
N^v 4.3 
GPP 890 

NPP 450 

NPPSAT 720 

NUPTAKE 5.5 

NMOBIL 0.8 

based on Table 6 by Ovington et al. [1963]. 
based on assuming 88% of biomass in forest with C:N of 150 and 12% of biomass in 

grassland with C:N of 75. 
based on Table 7 by Grigal et at. [1974]. 
based on Table 7 by Grigat et at. [1974]. 
based on grassland and forest calibrations. 
based on grassland and forest calibrations. 
based on grassland and forest calibrations. 
based on grassland and forest calibrations. 
based on grassland and forest calibrations. 
based on 13% recycling (estimated). 

Assumes that vegetation typical of tall grassland and deciduous forest each covers 50% of the landscape. Results 
from running the calibrations for tall grassland and temperate deciduous forest on the Cedar Creek grid cell were used 
to estimate some of the values for this site. 
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TABLE A10. Temperate Deciduous Forest: Harvard Forest Hardwood Site, Massachusetts 

Variable Value Source and Comments 

C¾ 15500 
Nv 37 

Cs 11250 
Ns 560 
N^v 2.0 
GPP 1410 

NPP 65O 

NPPSAT 810 

NUPTAKE 8.O 

NMOBIL 1.6 

based on McClaugherty et al. [1982] and K. J. Nadelhoffer (unpublished data, 1991). 
based on McClaugherty et al. [1982], Pastor et al. [1984], and J. D. Aber (unpublished data, 

1991). 
assume soil C:N of 20. 

based on Figure 2 by Aber et al. [1983]. 
based on Vitousek et al. [1982]. 
see procedure described in methods. 
based on McClaugherty et al. [1982], Aber et al. [1983], and K. J. Nadelhoffer (unpublished 

data, 1991). 
based on 25% response (J. M. Melillo, personal communication, 1991). 
based on Figure 2 by Aber et al. [1983]. 
based on 17% recycling (estimated). 

Some of the values have been adjusted to account for the sandy soil texture of the grid cell. 

Table All. Temperate Mixed Forest: Harvard Forest, Massachusetts 

Variable Value Source and Comments 

Cv 14800 
Nv 36 

Cs 10700 
Ns 530 
N^v 2.0 
GPP 1670 

NPP 65O 

NPPSAT 810 

NUPTAKE 6.5 

NMOBIL 2.0 

based on McClaugherty et al. [1982] and K. J. Nadelhoffer (unpublished data, 1991). 
based on McClaugherty et al. [1982], Pastor et al. [1984], and J. D. Aber (unpublished data, 

1991). 
assumes soil C:N of 20. 

based on Figure 2 by Aber et al. [1983]. 
based on Vitousek et al. [1982]. 
see procedure described in methods. 
based on calibrations for deciduous and coniferous forests. 

based on 25% response (J.M. Melillo, personal communication, 1991). 
based on Figure 2 by Aber et al. [1983] and coniferous forest calibration. 
based on recycling in calibrations for deciduous and coniferous forests. 

Assumes that vegetation typical of deciduous forest and coniferous forest covers 50% of the landscape, respectively. 
Data from the red pine plantation were used where appropriate. The calibration for temperate coniferous forest was run 
on the Harvard Forest grid cell to help estimate some of the values for this calibration. 

TABLE A12. Temperate Broadleaved Evergreen Forest: Taita Experimental Station, North Island, New Zealand 

Variable Value Source and Comments 

Cv 15000 
Nv 42 
Cs 13000 
Ns 460 
N^v 1.0 
GPP 1700 

NPP 725 

NPPSAT 810 

NUPTAKE 6 

NMOBIL 1.8 

see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
see procedure described in methods. 
see Raich et al. [1991]. 
based on 25% response (estimated). 
see Raich et al. [1991]. 
based on 23% recycling (same as for temperate mixed forest calibration). 
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TABLE A13. Tropical Savanna: Nylsvley Nature Reserve, South Africa 

Variable Value Source and Comments 

Cv 1500 
Nv 25 
Cs 8000 
Ns 400 
N^v 2.0 
GPP 1100 

NPP 435 

NPPSAT 435 

NUPTAKE 10 

NMOBIL 0.0 

see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
based on Frost [1985]. 
used assumption of 80% biomass in tropical deciduous forest and 20% in tall grassland 

to define plant respiration parameter for this site. 
see Raich et al. [1991]. 
based on assumption that productivity is not N limited. 
see Raich et al. [1991]. 
estimated. 

TABLE A14. Xeromorphic Forest: Guanica State Forest, Puerto Rico 

Variable Value Source and Comments 

Cv 4300 
Nv 90 
Cs 11150 
Ns 950 
N^v 5.0 
GPP 3150 

NPP 55O 

NPPSAT 550 

NUPTAKE 14 

NMOBIL 0.0 

see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
see procedure described in methods. 
see Raich et al. [1991]. 
based on assumption that productivity is not N limited. 
see Raich et al. [1991]. 
estimated. 

TABLE A15. Tropical Deciduous Forest: Chakia, India 

Variable Value Source and Comments 

Cv 11350 
Nv 170 
Cs 7900 
Ns 950 
N^v 5.0 
GPP 5600 

NPP 700 

NPPSAT 700 

NUPTAKE 27 

NMOBIL 0.0 

see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
estimated. 

see procedure described in methods. 
see Raich et al. [1991]. 
based on assumption that productivity is not N limited. 
see Raich et al. [1991]. 
estimated. 
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TABLE A16. Tropical Evergreen Forest: Ducke Forest, Manaus, Brazil 

Variable Value Source and Comments 

Cv 22500 
Nv 300 
Cs 15000 
Ns 900 
N^v 1.0 
GPP 8500 

NPP 1050 

NPPSAT 1050 

NUPTAKE 24 

NMOBIL 0.0 

see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
see Raich et al. [1991]. 
see procedure described in methods. 
see Raich et al. [1991]. 
based on assumption that productivity is not N limited. 
see Raich et al. [1991]. 
estimated. 
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