22 research outputs found

    Hard Exudate Extraction from Fundus Images using Watershed Transform

    Get PDF
    Diabetic Retinopathy is a medical condition which affects the eyes due to increased blood sugar levels. This is characterized by presence of exudates - deposits of lipids in the posterior pole of the retina. If this ailment is not treated in earlier stages these deposits can cause blurred vision or even permanent blindness. This paper concentrates on extraction of hard exudates and optic disc from the retinal images of eyes using Marker based Watershed approach, which uses the minima imposition method to create mask and marker. The varying contrast across all the images has been taken care by a non-linear equation. Once these bright objects have been extracted from fundus images, area estimation is performed to eliminate the optic disk, thus retaining only exudates. These images have been procured from publicly available databases. Though software systems are easy to install, they prove to be expensive in terms of time and cost; thus this method has also been implemented on FPGA for an on-chip solution. The precision and sensitivity for exudate extraction sans optic disk are found to be 92.4% and 83.78% respectively.  Though other techniques exist which provide better accuracy, the method described in this paper is found to be hardware friendly in comparison with other proven methods. Few steps of the algorithm developed are implemented on FPGA to provide an embedded system approach to this work, considering the advantages of a hardware-software combination

    Removal of multiple artifacts from ECG signal using cascaded multistage adaptive noise cancellers

    Get PDF
    Although cascaded multistage adaptive noise cancellers have been employed before by researchers for multiple artifact removal from the ElectroCardioGram (ECG) signal, they all used the same adaptive algorithm in all the cascaded multi-stages for adjusting the adaptive filter weights. In this paper, we propose a cascaded 4-stage adaptive noise canceller for the removal of four artifacts present in the ECG signal, viz. baseline wander, motion artifacts, muscle artifacts, and 60 Hz Power Line Interference (PLI). We have investigated the performance of eight adaptive algorithms, viz. Least Mean Square (LMS), Least Mean Fourth (LMF), Least Mean Mixed-Norm (LMMN), Sign Regressor Least Mean Square (SRLMS), Sign Error Least Mean Square (SELMS), Sign-Sign Least Mean Square (SSLMS), Sign Regressor Least Mean Fourth (SRLMF), and Sign Regressor Least Mean Mixed-Norm (SRLMMN) in terms of Signal-to-Noise Ratio (SNR) improvement for removing the aforementioned four artifacts from the ECG signal. We employed the LMMN, LMF, LMMN, LMF algorithms in the proposed cascaded 4-stage adaptive noise canceller to remove the respective ECG artifacts as mentioned above. We succeeded in achieving an SNR improvement of 12.7319 dBs. The proposed cascaded 4-stage adaptive noise canceller employing the LMMN, LMF, LMMN, LMF algorithms outperforms those that employ the same algorithm in the four stages. One unique and powerful feature of our proposed cascaded 4-stage adaptive noise canceller is that it employs only those adaptive algorithms in the four stages, which are shown to be effective in removing the respective ECG artifacts as mentioned above. Such a scheme has not been investigated before in the literature

    Drug interaction prediction using ontology-driven hypothetical assertion framework for pathway generation followed by numerical simulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In accordance with the increasing amount of information concerning individual differences in drug response and molecular interaction, the role of <it>in silico </it>prediction of drug interaction on the pathway level is becoming more and more important. However, in view of the interferences for the identification of new drug interactions, most conventional information models of a biological pathway would have limitations. As a reflection of real world biological events triggered by a stimulus, it is important to facilitate the incorporation of known molecular events for inferring (unknown) possible pathways and hypothetic drug interactions. Here, we propose a new Ontology-Driven Hypothetic Assertion (OHA) framework including pathway generation, drug interaction detection, simulation model generation, numerical simulation, and hypothetic assertion. Potential drug interactions are detected from drug metabolic pathways dynamically generated by molecular events triggered after the administration of certain drugs. Numerical simulation enables to estimate the degree of side effects caused by the predicted drug interactions. New hypothetic assertions of the potential drug interactions and simulation are deduced from the Drug Interaction Ontology (DIO) written in Web Ontology Language (OWL).</p> <p>Results</p> <p>The concept of the Ontology-Driven Hypothetic Assertion (OHA) framework was demonstrated with known interactions between irinotecan (CPT-11) and ketoconazole. Four drug interactions that involved cytochrome p450 (CYP3A4) and albumin as potential drug interaction proteins were automatically detected from Drug Interaction Ontology (DIO). The effect of the two interactions involving CYP3A4 were quantitatively evaluated with numerical simulation. The co-administration of ketoconazole may increase AUC and Cmax of SN-38(active metabolite of irinotecan) to 108% and 105%, respectively. We also estimates the potential effects of genetic variations: the AUC and Cmax of SN-38 may increase to 208% and 165% respectively with the genetic variation UGT1A1*28/*28 which reduces the expression of UGT1A1 down to 30%.</p> <p>Conclusion</p> <p>These results demonstrate that the Ontology-Driven Hypothetic Assertion framework is a promising approach for <it>in silico </it>prediction of drug interactions. The following future researches for the <it>in silico </it>prediction of individual differences in the response to the drug and drug interactions after the administration of multiple drugs: expansion of the Drug Interaction Ontology for other drugs, and incorporation of virtual population model for genetic variation analysis, as well as refinement of the pathway generation rules, the drug interaction detection rules, and the numerical simulation models.</p

    GPON PLOAMd Message Analysis Using Supervised Neural Networks

    Get PDF
    This paper discusses the possibility of analyzing the orchestration protocol used in gigabit-capable passive optical networks (GPONs). Considering the fact that a GPON is defined by the International Telecommunication Union Telecommunication sector (ITU-T) as a set of recommendations, implementation across device vendors might exhibit few differences, which complicates analysis of such protocols. Therefore, machine learning techniques are used (e.g., neural networks) to evaluate differences in GPONs among various device vendors. As a result, this paper compares three neural network models based on different types of recurrent cells and discusses their suitability for such analysis

    A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks

    Get PDF
    A wireless sensor network is a self-configuring network of mobile nodes connected by wireless links where the nodes have limited capacity and energy. In many cases, the application environment requires the design of an exclusive network topology for a particular case. Cluster-based network developments and proposals in existence have been designed to build a network for just one type of node, where all nodes can communicate with any other nodes in their coverage area. Let us suppose a set of clusters of sensor nodes where each cluster is formed by different types of nodes (e.g., they could be classified by the sensed parameter using different transmitting interfaces, by the node profile or by the type of device: laptops, PDAs, sensor etc.) and exclusive networks, as virtual networks, are needed with the same type of sensed data, or the same type of devices, or even the same type of profiles. In this paper, we propose an algorithm that is able to structure the topology of different wireless sensor networks to coexist in the same environment. It allows control and management of the topology of each network. The architecture operation and the protocol messages will be described. Measurements from a real test-bench will show that the designed protocol has low bandwidth consumption and also demonstrates the viability and the scalability of the proposed architecture. Our ccluster-based algorithm is compared with other algorithms reported in the literature in terms of architecture and protocol measurements

    Integrating multiple clusters for compute-intensive applications

    Get PDF
    Multicluster grids provide one promising solution to satisfying the growing computational demands of compute-intensive applications. However, it is challenging to seamlessly integrate all participating clusters in different domains into a single virtual computational platform. In order to fully utilize the capabilities of multicluster grids, computer scientists need to deal with the issue of joining together participating autonomic systems practically and efficiently to execute grid-enabled applications. Driven by several compute-intensive applications, this theses develops a multicluster grid management toolkit called Pelecanus to bridge the gap between user\u27s needs and the system\u27s heterogeneity. Application scientists will be able to conduct very large-scale execution across multiclusters with transparent QoS assurance. A novel model called DA-TC (Dynamic Assignment with Task Containers) is developed and is integrated into Pelecanus. This model uses the concept of a task container that allows one to decouple resource allocation from resource binding. It employs static load balancing for task container distribution and dynamic load balancing for task assignment. The slowest resources become useful rather than be bottlenecks in this manner. A cluster abstraction is implemented, which not only provides various cluster information for the DA-TC execution model, but also can be used as a standalone toolkit to monitor and evaluate the clusters\u27 functionality and performance. The performance of the proposed DA-TC model is evaluated both theoretically and experimentally. Results demonstrate the importance of reducing queuing time in decreasing the total turnaround time for an application. Experiments were conducted to understand the performance of various aspects of the DA-TC model. Experiments showed that our model could significantly reduce turnaround time and increase resource utilization for our targeted application scenarios. Four applications are implemented as case studies to determine the applicability of the DA-TC model. In each case the turnaround time is greatly reduced, which demonstrates that the DA-TC model is efficient for assisting application scientists in conducting their research. In addition, virtual resources were integrated into the DA-TC model for application execution. Experiments show that the execution model proposed in this thesis can work seamlessly with multiple hybrid grid/cloud resources to achieve reduced turnaround time

    Joint Resource Allocation and UAV Scheduling With Ground Radio Station Sleeping

    Get PDF
    Applications of Unmanned aerial vehicles (UAVs) have advanced rapidly in recent years. The UAVs are used for a variety of applications, including surveillance, disaster management, precision agriculture, weather forecasting, etc. In near future, the growing number of UAV applications would necessitate densification of UAV infrastructure (ground radio station (GRS) and ground control station (GCS)) at the expense of increased energy consumption for UAV communications. Maximizing the energy efficiency of this UAV infrastructure is important. Motivated by this, we propose joint resource allocation and UAV scheduling with GRS sleeping (GRSS). Further, we propose the use of coordinated multi-point (CoMP) with joint transmission (JT) and non-orthogonal multiple access (NOMA) along with GRSS to increase the coverage and data rates, respectively. Through exhaustive simulation results, we show that the proposed CoMP along with GRSS results in up to 10% higher energy savings and 24% increase in coverage. Further, NOMA along with GRSS results in up to 9% enhancement in throughput of the system. © 2013 IEEE
    corecore