95 research outputs found

    5G NR-๋ฐด๋“œ ๋ฌด์„  ์ฃผํŒŒ์ˆ˜ ์†ก์ˆ˜์‹ ๊ธฐ์˜ ๊ฒ€์ฆ์„ ์œ„ํ•œ ๋ชจ๋ธ๋ง ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ๊น€์žฌํ•˜.๋„๋ž˜ํ•œ ์ดˆ์—ฐ๊ฒฐ์‹œ๋Œ€์—์„œ๋Š” ์Šค๋งˆํŠธํฐ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋‹ค์–‘ํ•œ ์‚ฌ๋ฌผ ์ธํ„ฐ๋„ท ๋””๋ฐ”์ด์Šค๋“ค์ด 5์„ธ๋Œ€ ์ด๋™ํ†ต์‹  ์‹œ์Šคํ…œ์„ ํ™œ์šฉํ•˜๋ฉด์„œ, ๋Š˜์–ด๋‚œ ๋ฐ์ดํ„ฐ๋Ÿ‰๊ณผ ํŠธ๋ž˜ํ”ฝ์„ ๊ฐ๋‹นํ•˜๊ธฐ ์œ„ํ•ด ๋ฐ€๋ฆฌ๋ฏธํ„ฐํŒŒ ๋Œ€์—ญ์˜ ์‚ฌ์šฉ์ด ํ•„์ˆ˜์ ์ผ ๊ฒƒ์ด๋‹ค. ์‹œ์Šคํ…œ์ด ๋ณด๋‹ค ๋Œ€์šฉ๋Ÿ‰ํ™” ๊ทธ๋ฆฌ๊ณ  ๊ด‘๋Œ€์—ญํ™” ๋จ์— ๋”ฐ๋ผ, ํ†ต์‹  ๊ทœ์•ฝ์„ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด, ์ ์ฐจ ๊ฑฐ๋Œ€ํ•œ ๋””์ง€ํ„ธ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ๋ฐ ์‹ ํ˜ธ์ฒ˜๋ฆฌ ๋กœ์ง์ด, ๋ฌด์„  ํ†ต์‹  ์ „๋‹จ๋ถ€ ์นฉ์— ํ•จ๊ป˜ ์ง‘์ ๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฉ€ํ‹ฐ-๋„๋ฉ”์ธ์˜ ์‹ ํ˜ธ(์•„๋‚ ๋กœ๊ทธ/๋””์ง€ํ„ธ/๋ฌด์„ ํ†ต์‹  ์‹ ํ˜ธ)๊ฐ€ ๋ณต์žกํ•˜๊ฒŒ ํ˜ผ์„ฑ๋œ ๋ฌด์„ ํ†ต์‹  ์ง‘์ ํšŒ๋กœ ์นฉ์„, ์งง์€ ๊ฐœ๋ฐœ ๊ธฐ๊ฐ„ ๋™์•ˆ ์ถฉ๋ถ„ํžˆ ๊ฒ€์ฆํ•˜๊ธฐ์—” ์–ด๋ ค์›€์ด ๋”ฐ๋ฅธ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ํ˜ผ์„ฑ ์‹ ํ˜ธ ์‹œ์Šคํ…œ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”, ํ•˜์œ„ ์‹œ์Šคํ…œ์„ ๋ชจ๋‘ ํฌํ•จํ•ด์„œ ์‹œ๊ฐ„ ๋„๋ฉ”์ธ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š”๋ฐ, ์ด๋ฅผ ์œ„ํ•œ ์ŠคํŒŒ์ด์Šค์™€ ์ŠคํŒŒ์ด์Šค-ํ•˜๋“œ์›จ์–ด ๊ธฐ์ˆ  ์–ธ์–ด์˜ co-์‹œ๋ฎฌ๋ ˆ์ด์…˜์€ ์ง€๋‚˜์น˜๊ฒŒ ๋Š๋ฆฌ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋ฉ€ํ‹ฐ-๋„๋ฉ”์ธ์˜ ์‹ ํ˜ธ๋ฅผ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•˜๊ฒŒ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋ชจ๋ธ๋ง ๋ฐฉ๋ฒ•๊ณผ, ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์˜ ๊ฒ€์ฆ ์™„์„ฑ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผœ์ค„ ์žˆ๋Š” ๊ฒ€์ฆ ๊ธฐ์ˆ ์ด ๋ชจ๋‘ ์š”๊ตฌ๋œ๋‹ค. ํ˜ผ์„ฑ ์‹œ์Šคํ…œ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š”, ์•„๋‚ ๋กœ๊ทธ์™€ ๋ฌด์„  ํ†ต์‹  ๋ธ”๋ก๋“ค์„ ์‹œ์Šคํ…œ ๋ฒ ๋ฆด๋กœ๊ทธ ์ƒ์—์„œ ๊ตฌํ˜„๋œ ํ•จ์ˆ˜์  ๋ชจ๋ธ๋กœ ๋Œ€์ฒดํ•˜๊ณ , ๋””์ง€ํ„ธ ๋ธ”๋ก๋“ค๊ณผ ํ•จ๊ป˜ ํ•˜๋‚˜์˜ ๋””์ง€ํ„ธ ํ”Œ๋žซํผ์—์„œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๋Š” ๊ฒƒ์ด ํšจ๊ณผ์ ์ด๋‹ค. ์‹ค์ œ ์„ค๊ณ„ํ•  ๋•Œ, ๋ฌธ์ œ๊ฐ€ ๋˜๋Š” ๋Œ€๋ถ€๋ถ„์˜ ์—๋Ÿฌ๋“ค์€, ์—ฐ๊ฒฐ ์˜ค๋ฅ˜, ๋ถ€ํ˜ธ ์˜ค๋ฅ˜, ์‹ ํ˜ธ ์ˆœ์„œ ์˜ค๋ฅ˜, ํ˜น์€ ์ž˜๋ชป๋œ ํŒŒ์›Œ ๋„๋ฉ”์ธ๊ณผ์˜ ์—ฐ๊ฒฐ๊ณผ ๊ฐ™์ด ์‚ฌ์†Œํ•œ ์˜ค๋ฅ˜๋“ค์ด๋‹ค. ์ด๋Ÿฌํ•œ ์˜ค๋ฅ˜๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด, ์˜ค๋ž˜ ๊ฑธ๋ฆฌ๋Š” ํŠธ๋žœ์ง€์Šคํ„ฐ-๋ ˆ๋ฒจ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ๋ณด๋‹ค๋Š”, ์•„๋‚ ๋กœ๊ทธ ์ŠคํŒŒ์ด์Šค ๋ชจ๋ธ๋“ค์„ ์‹œ์Šคํ…œ ๋ฒ ๋ฆด๋กœ๊ทธ ๋ชจ๋ธ๋“ค๋กœ ๋Œ€์ฒดํ•˜๊ณ , ๋ณด๋‹ค ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋น ๋ฅด๊ฒŒ ๊ฒ€์ฆํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ๊ฒ€์ฆ ์™„์„ฑ๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๋Š”๋ฐ ์ ํ•ฉํ•˜๋‹ค. ๊ทธ๋Ÿผ์—๋„, ์ง€๋‚˜์น˜๊ฒŒ ๋‹จ์ˆœํ•œ ์„ ํ˜• ๋ชจ๋ธ์ด๋‚˜, ์ค‘์š”ํ•œ ํšŒ๋กœ ํŠน์„ฑ์ด ๋น ์ง„ ๋ชจ๋ธ๋กœ๋Š” ์›ํ•˜๋Š” ์ˆ˜์ค€์˜ ๊ฒ€์ฆ์ด ๋ถˆ๊ฐ€๋Šฅํ•  ์ˆ˜ ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ง์ ‘ ๋ณ€์กฐ ๊ตฌ์กฐ์˜ ๋ฌด์„ ํ†ต์‹  ์†ก์ˆ˜์‹ ๊ธฐ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋น„์ด์ƒ ํšจ๊ณผ, ์ €์ „๋ ฅ ๋™์ž‘์„ ํ•˜๋ฉด์„œ ๋ฐœ์ƒํ•˜๋Š” ๋น„์„ ํ˜• ํšจ๊ณผ, ๊ทธ๋ฆฌ๊ณ  ํ”ํžˆ ๋ฉ”๋ชจ๋ฆฌ ํšจ๊ณผ๋Š” ๋ชจ๋ธ์— ํšจ๊ณผ๋ฅผ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•ด ์ฃผ์–ด์•ผ๋งŒ, ์ฃผํŒŒ์ˆ˜ ๋„๋ฉ”์ธ์—์„œ์˜ ๊ฒ€์ฆ, ์„ฑ๋Šฅ ์˜ˆ์ธก ๋“ฑ์˜ ๊ฒ€์ฆ์„ ์˜๋ฏธ ์žˆ๊ฒŒ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ฌธ์ œ๋Š” ๋น„์„ ํ˜• ์‹œ์Šคํ…œ์€ ํ›จ์”ฌ ๋ณต์žกํ•œ ์‹์œผ๋กœ ํ‘œํ˜„๋˜๋ฉฐ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์‹œ ์—ฐ์‚ฐ๋Ÿ‰๋„ ํฌ๊ฒŒ ๋Š˜์–ด๋‚˜๊ธฐ ๋•Œ๋ฌธ์—, ๋น„์„ ํ˜• ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ณ  ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•˜๊ธฐ๊ฐ€ ์‰ฝ์ง€ ์•Š๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋ชจ๋ธ์ด ๋น„์ด์ƒ์„ฑ๋“ค์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜๋ฉด์„œ๋„ ํšจ๊ณผ์ ์ธ ๊ฒ€์ฆ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ๋ชจ๋ธ๋ง/์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐฉ๋ฒ• ์—ญ์‹œ ์š”๊ตฌ๋œ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š”, ๋ฌด์„ ํ†ต์‹  ์†ก์ˆ˜์‹ ๊ธฐ ์ง‘์ ํšŒ๋กœ ์ „์ฒด์˜ ๋ชจ์‚ฌ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋ชจ๋ธ์€ ๋ˆ„์„ค ์‹ ํ˜ธ์™€ ์‹ ํ˜ธ ๊ฐ„ ๋ถˆ์ผ์น˜์— ์˜ํ•œ ๋น„-์ด์ƒ์ ์ธ ํšจ๊ณผ๋ฅผ ์—‘์Šค๋ชจ๋ธ์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•ด ๋ฐ˜์˜ํ•˜์˜€๊ณ , ๋น„์„ ํ˜•์„ฑ๊ณผ ๋ฉ”๋ชจ๋ฆฌ ํšจ๊ณผ๋ฅผ ๋ณผํ…Œ๋ผ-์„ญ๋™๋ฒ•์„ ํ™œ์šฉํ•ด ๋ฐ˜์˜ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ชจ๋ธ์€ ๋‹ค์–‘ํ•œ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ๊ณผ ๋™์ž‘ ๋ชจ๋“œ๋ฅผ ๊ฒ€์ฆํ•˜๋Š”๋ฐ, ๊ธฐ์กด ๋“ฑ๊ฐ€ ๋ฒ ์ด์Šค๋ฐด๋“œ ๋ชจ๋ธ๋ณด๋‹ค 30~1800๋ฐฐ ๋น ๋ฅด๊ฒŒ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•  ์ˆ˜ ์žˆ์—ˆ๊ณ , ๋น„์ด์ƒ ํšจ๊ณผ์— ๋Œ€ํ•ด, ํ†ต์‹  ์„ฑ๋Šฅ๋“ค(์‹ฌ๋ณผ์˜ ์˜ค๋ฅ˜ ๋ฒกํ„ฐ์˜ ํฌ๊ธฐ, ์ธ์ ‘ ์ฑ„๋„์˜ ํŒŒ์›Œ ๊ทธ๋ฆฌ๊ณ  ๋น„ํŠธ ์—๋Ÿฌ)์„ ํ‰๊ฐ€ ๊ฐ€๋Šฅํ–ˆ๋‹ค. ๋‚˜์•„๊ฐ€, ์•„๋‚ ๋กœ๊ทธ ๊ฒ€์‚ฌ๊ธฐ๋ฅผ ํ™œ์šฉํ•œ ๊ธฐ๋Šฅ ๊ฒ€์ฆ๋ฒ•๊ณผ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ปค๋ฒ„๋ฆฌ์ง€ ๋ถ„์„๋ฒ•์„ ์ ์šฉํ•˜์—ฌ, ์‹œ์Šคํ…œ-๋ ˆ๋ฒจ ๊ฒ€์ฆ์˜ ์™„์„ฑ๋„๋ฅผ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ๋ฌด์„ ํ†ต์‹  ์ง‘์ ํšŒ๋กœ ๋ชจ๋ธ์— ๋‹ค์–‘ํ•œ ๋””์ž์ธ/ํŒŒ๋ผ๋ฏธํ„ฐ ์˜ค๋ฅ˜๋ฅผ ์ฃผ์ž…ํ•˜๊ณ , ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋™์•ˆ ๊ฒ€์‚ฌ๊ธฐ๊ฐ€ ์ฐพ์€ ์—๋Ÿฌ์˜ ๊ฐœ์ˆ˜์™€ ์ปค๋ฒ„๋ฆฌ์ง€ ๊ฒฐ๊ณผ๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ๋ณด์˜€๋‹ค.In mobile RF transceiver systems, the large number of digital circuits employed to compensate or calibrate the non-idealities of the RF circuits call for models that can work within the digital verification platform, such as SystemVerilog. While baseband-equivalent real-number models (RNMs) are the current state-of-the-art for modeling RF transceivers in SystemVerilog, their simulation speeds and accuracy are not adequate predicting performance degradation. Since, its signals can only model the frequency components near the carrier frequency but not the DC offsets or high-order harmonic effects arising due to nonlinearities. Therefore, the growing impacts of nonlinearities call for nonlinear modeling of their key components to predict the overall system's performance. This dissertation presents the models for a multi-standard, direct-conversion RF transceiver for evaluating its system-level performance and verifying its digital controllers. Also, this work demonstrates the Volterra series model for the nonlinear analysis of a low-noise amplifier circuit in SystemVerilog, leveraging the functional expression and event-driven simulation capability of XMODEL. The simulation results indicate that the presented models, including the digital configuration/calibration logic for the 5G sub-6GHz-band and mmWave-band transceiver, can deliver 30โ€“1800ร— higher speeds than the baseband-equivalent RNMs while estimating the quadrature amplitude modulation signal constellation and error vector magnitude in the presence of non-idealities such as nonlinearities, DC offsets, and I/Q imbalances. In addition, it implements functionality checkers and parameter coverage analysis to advance the completeness of system-level verification of the RF transceivers model.Chapter 1. Introduction 1 1.1 Design and Verification Flow . 1.2 5G NR Band RF Transceiver IC . 1.3 Baseband-Equivalent and Passband Modeling . 1.4 Thesis Organization . Chapter 2. Modeling and Simulation of RF Transceiver 11 2.1 Direct Conversion RF Transceiver . 2.2 Proposed Transceiver Models . 2.3 System and Simulation Performance . Chapter 3. Nonlinear RF System Modeling 28 3.1 Volterra / Perturbation Method . 3.2 Low Noise Amplifier Example . 3.3 Nonlinearity Analysis . Chapter 4. Coverage Analysis and Functional Verification 42 4.1 Model Parameter Coverage Analysis . 4.2 Self-Checking Testbench . Chapter 5. Conclusion 54 Appendix 55 A.1 Trigonometric Equation for Non-Ideal Effects . A.2 RNM Baseband Equivalent Modeling . A.3 Parameter Coverage Analysis . A.4 List of Models . Bibliography 63 Abstract in Korean 66์„

    Saw-Less radio receivers in CMOS

    Get PDF
    Smartphones play an essential role in our daily life. Connected to the internet, we can easily keep in touch with family and friends, even if far away, while ever more apps serve us in numerous ways. To support all of this, higher data rates are needed for ever more wireless users, leading to a very crowded radio frequency spectrum. To achieve high spectrum efficiency while reducing unwanted interference, high-quality band-pass filters are needed. Piezo-electrical Surface Acoustic Wave (SAW) filters are conventionally used for this purpose, but such filters need a dedicated design for each new band, are relatively bulky and also costly compared to integrated circuit chips. Instead, we would like to integrate the filters as part of the entire wireless transceiver with digital smartphone hardware on CMOS chips. The research described in this thesis targets this goal. It has recently been shown that N-path filters based on passive switched-RC circuits can realize high-quality band-select filters on CMOS chips, where the center frequency of the filter is widely tunable by the switching-frequency. As CMOS downscaling following Mooreโ€™s law brings us lower clock-switching power, lower switch on-resistance and more compact metal-to-metal capacitors, N-path filters look promising. This thesis targets SAW-less wireless receiver design, exploiting N-path filters. As SAW-filters are extremely linear and selective, it is very challenging to approximate this performance with CMOS N-path filters. The research in this thesis proposes and explores several techniques for extending the linearity and enhancing the selectivity of N-path switched-RC filters and mixers, and explores their application in CMOS receiver chip designs. First the state-of-the-art in N-path filters and mixer-first receivers is reviewed. The requirements on the main receiver path are examined in case SAW-filters are removed or replaced by wideband circulators. The feasibility of a SAW-less Frequency Division Duplex (FDD) radio receiver is explored, targeting extreme linearity and compression Irequirements. A bottom-plate mixing technique with switch sharing is proposed. It improves linearity by keeping both the gate-source and gate-drain voltage swing of the MOSFET-switches rather constant, while halving the switch resistance to reduce voltage swings. A new N-path switch-RC filter stage with floating capacitors and bottom-plate mixer-switches is proposed to achieve very high linearity and a second-order voltage-domain RF-bandpass filter around the LO frequency. Extra out-of-band (OOB) rejection is implemented combined with V-I conversion and zero-IF frequency down-conversion in a second cross-coupled switch-RC N-path stage. It offers a low-ohmic high-linearity current path for out-of-band interferers. A prototype chip fabricated in a 28 nm CMOS technology achieves an in-band IIP3 of +10 dBm , IIP2 of +42 dBm, out-of-band IIP3 of +44 dBm, IIP2 of +90 dBm and blocker 1-dB gain-compression point of +13 dBm for a blocker frequency offset of 80 MHz. At this offset frequency, the measured desensitization is only 0.6 dB for a 0-dBm blocker, and 3.5 dB for a 10-dBm blocker at 0.7 GHz operating frequency (i.e. 6 and 9 dB blocker noise figure). The chip consumes 38-96 mW for operating frequencies of 0.1-2 GHz and occupies an active area of 0.49 mm2. Next, targeting to cover all frequency bands up to 6 GHz and achieving a noise figure lower than 3 dB, a mixer-first receiver with enhanced selectivity and high dynamic range is proposed. Capacitive negative feedback across the baseband amplifier serves as a blocker bypassing path, while an extra capacitive positive feedback path offers further blocker rejection. This combination of feedback paths synthesizes a complex pole pair at the input of the baseband amplifier, which is up-converted to the RF port to obtain steeper RF-bandpass filter roll-off than the conventional up-converted real pole and reduced distortion. This thesis explains the circuit principle and analyzes receiver performance. A prototype chip fabricated in 45 nm Partially Depleted Silicon on Insulator (PDSOI) technology achieves high linearity (in-band IIP3 of +3 dBm, IIP2 of +56 dBm, out-of-band IIP3 = +39 dBm, IIP2 = +88 dB) combined with sub-3 dB noise figure. Desensitization due to a 0-dBm blocker is only 2.2 dB at 1.4 GHz operating frequency. IIFinally, to demonstrate the performance of the implemented blocker-tolerant receiver chip designs, a test setup with a real mobile phone is built to verify the sensitivity of the receiver chip for different practical blocking scenarios

    Interference Suppression Techniques for RF Receivers

    Get PDF

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-ยตm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emittersโ€™ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86ยบ, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-ยตm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emittersโ€™ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86ยบ, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    A 300-800MHz Tunable Filter and Linearized LNA applied in a Low-Noise Harmonic-Rejection RF-Sampling Receiver

    Get PDF
    A multiband flexible RF-sampling receiver aimed at software-defined radio is presented. The wideband RF sampling function is enabled by a recently proposed discrete-time mixing downconverter. This work exploits a voltage-sensing LNA preceded by a tunable LC pre-filter with one external coil to demonstrate an RF-sampling receiver with low noise figure (NF) and high harmonic rejection (HR). The second-order LC filter provides voltage pre-gain and attenuates the source noise aliasing, and it also improves the HR ratio of the sampling downconverter. The LNA consists of a simple amplifier topology built from inverters and resistors to improve the third-order nonlinearity via an enhanced voltage mirror technique. The RF-sampling receiver employs 8 times oversampling covering 300 to 800 MHz in two RF sub-bands. The chip is realized in 65 nm CMOS and the measured gain across the band is between 22 and 28 dB, while achieving a NF between 0.8 to 4.3 dB. The IIP2 varies between +38 and +49 dBm and the IIP3 between -14 dBm and -9 dBm, and the third and fifth order HR ratios are more than 60 dB. The LNA and downconverter consumes 6 mW, and the clock generator takes 12 mW at 800 MHz RF.\ud \u

    Auxiliary-Path-Assisted Digital Linearization of Wideband Wireless Receivers

    Get PDF
    Wireless communication systems in recent years have aimed at increasing data rates by ensuring flexible and efficient use of the radio spectrum. The dernier cri in this field has been in the area of carrier aggregation and cognitive radio. Carrier aggregation is a major component of LTE-Advanced. With carrier aggregation, a number of separate LTE carriers can be combined, by mobile network operators, to increase peak data rates and overall network capacity. Cognitive radios, on the other hand, allow efficient spectrum usage by locating and using spatially vacant spectral bands. High monolithic integration in these application fields can be achieved by employing receiver architectures such as the wideband direct conversion receiver topology. This is advantageous from the view point of cost, power consumption and size. However, many challenges exist, of particular importance is nonlinear distortion arising from analog front-end components such as low noise amplifiers (LNA). Nonlinear distortions especially become severe when several signals of varying amplitudes are received simultaneously. In such cases, nonlinear distortions stemming from strong signals may deteriorate the reception of the weaker signals, and also impair the receiverโ€™s spectrum sensing capabilities. Nonlinearity, usually a consequence of dynamic range limitation, degrades performance in wideband multi-operator communications systems, and it will have a notable role in future wireless communication system design. This thesis presents a digital domain linearization technique that employs a very nonlinear auxiliary receiver path for nonlinear distortion cancellation. The proposed linearization technique relies on one-time adaptively-determined linearization coefficients for cancelling nonlinear distortions. Specifically, we take a look at canceling the troublesome in-band third order intermodulation products using the proposed technique. The proposed technique can be extended to cancel out both even and higher order odd intermodulation products. Dynamic behavioral models are used to account for RF nonlinearities, including memory effects which cannot be ignored in the wideband scenario. Since the proposed linearization technique involves the use of two receiver paths, techniques for correcting phase delays between the two paths are also introduced. Simplicity is the hallmark of the proposed linearization technique. It can achieve up to +30 dBm in IIP3 performance with ADC resolution being a major performance bottleneck. It also shows strong tolerance to strong blocker nonlinearities
    • โ€ฆ
    corecore