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ABSTRACT 

Wireless communication systems in recent years have aimed at increasing data rates 

by ensuring flexible and efficient use of the radio spectrum. The dernier cri in this field 

has been in the area of carrier aggregation and cognitive radio. Carrier aggregation is a 

major component of LTE-Advanced. With carrier aggregation, a number of separate 

LTE carriers can be combined, by mobile network operators, to increase peak data rates 

and overall network capacity. Cognitive radios, on the other hand, allow efficient 

spectrum usage by locating and using spatially vacant spectral bands. High monolithic 

integration in these application fields can be achieved by employing receiver 

architectures such as the wideband direct conversion receiver topology. This is 

advantageous from the view point of cost, power consumption and size. However, many 

challenges exist, of particular importance is nonlinear distortion arising from analog 

front-end components such as low noise amplifiers (LNA). Nonlinear distortions 

especially become severe when several signals of varying amplitudes are received 

simultaneously. In such cases, nonlinear distortions stemming from strong signals may 

deteriorate the reception of the weaker signals, and also impair the receiver’s spectrum 

sensing capabilities. Nonlinearity, usually a consequence of dynamic range limitation, 

degrades performance in wideband multi-operator communications systems, and it will 

have a notable role in future wireless communication system design. 

This thesis presents a digital domain linearization technique that employs a very 

nonlinear auxiliary receiver path for nonlinear distortion cancellation. The proposed 
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linearization technique relies on one-time adaptively-determined linearization 

coefficients for cancelling nonlinear distortions. Specifically, we take a look at canceling 

the troublesome in-band third order intermodulation products using the proposed 

technique. The proposed technique can be extended to cancel out both even and higher 

order odd intermodulation products. Dynamic behavioral models are used to account for 

RF nonlinearities, including memory effects which cannot be ignored in the wideband 

scenario. Since the proposed linearization technique involves the use of two receiver 

paths, techniques for correcting phase delays between the two paths are also introduced. 

Simplicity is the hallmark of the proposed linearization technique. It can achieve up to 

+30 dBm in IIP3 performance with ADC resolution being a major performance 

bottleneck. It also shows strong tolerance to strong blocker nonlinearities.  
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1. INTRODUCTION

Wireless communication technology has become an integral part of our daily lives. 

This is evident from the everyday use of the cell phones, radios and other Wi-Fi-linked 

devices. This together with the growing trend towards cloud computing in recent years, 

and the push for internet of things has increased the need for high data rates. The 

demand for high data rates usually comes with the need for low cost, low-power-

dissipating receivers. The traditional way of increasing data rates by using more 

bandwidth won’t suffice as bandwidth is a resource that is rare. As such, we have turned 

to technique that allow flexible and efficient use of the available spectrum while 

increasing data rates. Some of these techniques include cognitive radio and carrier 

aggregation, to name but a few. 

Carrier aggregation (CA) enables increase in peak data rates and overall network 

capacity. This is done by allowing users to download and upload data using a number of 

separate network carriers simultaneously. The separate carriers can be continuous or 

non-continuous inside the same band (intra-band CA), or from different bands (inter-

band CA). CA allows exploitation of the current fragmented spectrum allocations. 

Cognitive radio (CR), however, allows efficient use of the available spectrum by 

automatically detecting and using temporarily vacant frequency channels [1], [2]. 

Software-defined radio, a transceiver that reconfigures its communication parameters to 

meet user and network demand, provide the necessary platform for CRs [3]. The current 
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trend towards these wideband techniques for increasing data rates is also driven by the 

high cost-efficiency and high integrability afforded by direct conversion receivers 

(DCRs). DCRs have been in the research domain since the 1980s and have become 

attractive in recent years. 

There are several reasons for the recent attractiveness of direct conversion receivers. 

To begin with, they are easy to integrate compared with heterodyne receivers. Secondly, 

they are resilient to mismatch effects even better than image-reject receivers, and finally 

some of their earlier drawback which were due to the use of discrete transistors are 

resolved by monolithic integration [4].  DCRs are also driving multicarrier or multi-

operator receivers in which signals from different operators and possibly different radio 

access networks are received at the same time using a single wideband receiver chain. 

The multicarrier scenario puts strict requirements on the receiver components’ 

linearity, especially the low noise amplifier (LNA), as the received multicarrier or multi-

operator signals usually have different amplitude levels. Strong blockers received very 

close to the base-station may cause nonlinear distortions on weak signals received far 

away from the base station. The nonlinearity problem becomes particularly interesting in 

the case of CA and CR. Getting better linearity by using analog linearization techniques 

is challenging considering the usual limitations on power consumption, implementation 

cost and component count and PVT variations. However, digital signal processing (DSP) 

algorithms can be used to enhance the linearity of the received signal with added 
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advantages such as high robustness to PVT variations. This helps to relax the strict 

linearity requirement on the analog hardware and push the receiver performance beyond 

the current state-of-the-art receivers. 

A lot of research work has been done on using DSP techniques in removing receiver 

nonidealities coming from the analog front-end. I/Q imbalance correction using DSP is a 

good example. A lot of research has been done on this issue [5]–[8].  While there has 

been some research done on suppressing distortion and interference due to nonlinearities 

in the receiver analog front-end, digital linearization of nonlinear distortions in the 

wideband multicarrier scenario has not receive much attention.  This thesis takes a look 

into modeling and linearization of third order nonlinearities in wideband radio receivers. 

A new auxiliary-path-assisted digital linearization method based on background 

adaptively-determined linearization coefficients is proposed. This linearization method 

falls in the class of dual-path linearization techniques. In general, by using the proposed 

linearization technique, the tight linearity requirement on the analog front-end are 

relaxed. Moreover, this approach is more robust to process, voltage and temperature 

(PVT) variations as the linearization in done in the digital domain. Digital domain 

processing also renders this technique power-competitive due to CMOS process scaling, 

which is largely benefiting digital domain signal processing. 
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1.1 Organization 

Since DCRs are driving cognitive radio and are preferable in carrier aggregated 

receiver, a detailed background of DCRs and the nonlinear distortions plaguing them is 

in order. This thesis is organized as follows; section 2 gives an overview of direct 

conversion receivers. LNA third order nonlinearity models are also looked at in this 

section. In section 3, existing auxiliary-path-assisted linearization techniques are also 

looked at. The proposed auxiliary-path-assisted linearization technique which uses DSP 

algorithms is presented in section 4. Simulation results are also presented in this section. 

Finally, in section 5, a summary and conclusion to this work is presented. 
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2 BACKGROUND 

Wideband direct conversion receivers (DCRs) are preferred in modern wireless 

communication networks and radar systems because of their high component 

integrability, cost-effectiveness and flexibility [4], [9]. The basic idea behind DCRs is to 

down-convert the received signal directly to baseband or zero frequency as illustrated in 

Figure 2.1. In this way, the image signal becomes part of the received signal and 

problems associated with the image signal are avoided. 

Figure 2.1: DCR scheme with respect to a single positive frequency 

A widely used DCR is shown conceptually in Figure 2.2 below. In this Figure 2.2, 

the received signal is filtered (usually by using SAW filters), and then amplified using a 

low noise amplifier (LNA). The LNA should add little noise, and ideally no nonlinear 

distortion to the system, while providing sufficient signal power amplification. It should 

also be able to handle high interference levels in the received signal. The I/Q mixers are 

then used to down-convert the amplified signal directly from high frequency to baseband 

(zero frequency). I/Q channels are necessary in avoiding irreversible corruption in 

0 ω 0 ω -ωRF ωRF 

ωLO ω 0 
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phase-modulated and frequency-modulated signals. The two sidebands in these 

modulation schemes contain different information and must be separated into two phases 

to avoid overlap, and hence data corruption. The local oscillator (LO) provide stable 

signal for the mixer down-conversion process. 

 After down-conversion, low-pass filtering is done to suppress nearby interferers and 

also prevent aliasing in the analog to digital conversion process. A variable gain 

amplifier is sometimes employed, after the filtering, to provide optimum signal power 

for the baseband ADC. Next, analog to digital converters (ADCs) are used to digitize the 

lowpass-filtered signal. Digital post-processing such as channel equalization, channel 

selection and linearization of nonlinearities can then be done on the received signal. In 

order to make DCRs’ integration easier, modern receiver chains totally remove the RF or 

SAW filter [10]–[14]. 

Figure 2.2: Direct Conversion Receiver 

ADC

LOLNA

ADC

Digital 

Post-

processing

0
0

90
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DCRs have several advantages over heterodyne receivers. First, the cancellation of 

the image frequency is no longer an issue because the intermediate frequency (IF) is 

zero. This eliminates the need for an image rejection filter which also means that the 

LNA does not have to drive a 50Ω load [4]. Also, CDRs do not require an IF filter. They 

only require low-pass filters which are easy to integrate monolithically. DCRs do come 

with some implementation issues which makes their system performance poor. But with 

the current advancement in DSP techniques for mitigating these issues, a lower 

performance can be accepted as a trade-off with high on-chip integration that DCRs 

offer. Some of the design implementation issues as well as dynamic range requirement 

are discussed here briefly with special focus on linearity which is the theme of this 

thesis. 

2.1 DCR Design Issues 

2.1.1 DC offset 

Since in DCRs the signal is down-converted to zero IF, unwanted DC offset can 

corrupt the signal and also saturate subsequent stages. Mixer mismatches and self-

mixing of the LO signal are usually the cause of DC offsets [4], [15], [16]. Mismatch 

between mixer components produce a constant DC offset while self-mixing generates a 

time-varying DC offset [17]. 



8 

Figure 2.3: Leakages in the local oscillator 

As illustrated in Figure 2.3, there exist some leakage in the mixer because of poor 

isolation between the RF and LO ports. The LO radiation can reach the LNA and 

propagate through the front-end. Likewise, the RF signal can also reach the LO input of 

the mixer. These signals cause self-mixing that generates high DC offset at the mixer 

output. Immediately following the mixer are a chain of directly coupled high-gain 

components that can boost any amount of DC offset and saturate subsequent blocks. 

AC coupling at the output of the mixer can be used as a possible solution to the 

problem of DC offset but they corrupt the down-converted signals. Therefore, offset 

cancellation techniques are needed to make DCRs useable. Modulation schemes that are 

“DC-free” like binary frequency shift keying (BPSK) can also be employed [4], [17]. 

But their spectral efficiency is poor compared with other digital modulation schemes; 

something that should also be considered. 

LO LEAKAGE
STRONG 

INTERFERER

(a) (b)
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2.1.2 Flicker noise 

Noise in the receiver can be evaluated in two distinctive ways, viz., the additive 

noise expressed by noise figure and the low-frequency flicker noise of the baseband 

components [18]. In DCR converters, the low-frequency flicker noise becomes a 

profound in-band phenomenon that needs to be considered as the received signal is 

directly down-converted to baseband. This is illustrated in Figure 2.4. 

Flicker noise effects can be minimized by combining different techniques. First of 

all, the number of baseband active devices can be reduced. This reduces the flicker noise 

contribution of each individual transistor. Secondly, the front-end circuitries can also be 

designed with sufficient gain to reduce the effects of flicker noise. Larger transistor 

devices can also be used to reduce flicker noise amplitude since the stages after the 

mixer operate at low frequency. Certain technology processes are also known to have 

low flicker noise. 

Figure 2.4: Down-converted signal and flicker noise 

Flicker noise

desired signal
IM3
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2.1.3 Intermodulation 

Wideband receivers, especially DCRs, which have little analog selectivity, tend to be 

susceptible to intermodulation effects – a consequence of the nonlinearities in the 

receiver components. Intermodulation leads to the creation of extra unwanted signal 

components which distort the received signal. It is mostly produced by nonidealities in 

the LNA and the mixer. Not only are DCRs susceptible to odd-order intermodulation but 

they are also susceptible to even-order intermodulation. It has been shown in [19] and 

[20] that balanced topologies are effective in minimizing DC offsets and even-order 

intermodulation. Even-harmonic mixing, introduced in these papers is also a promising 

alternative. Other methods with special focus on digital techniques for minimizing even-

order intermodulation have also been proposed in literature [21]–[24]. 

Traditionally, intermodulation products that fall outside the band of interest were 

simply be filtered out, and those falling in the band of interest, a well-known example 

being the third order intermodulation product, required a more sophisticated cancellation 

technique. However, in the case of carrier aggregation, especially in the case of 

continuous intra-band carrier aggregation, both types of intermodulation require 

sophisticated cancellation techniques as separate bands spanning a wide portion of the 

spectrum are being aggregated together. Intermodulation products that fall outside the 

“band of interest” may technically fall in another band that is part of the carrier 

components to be aggregated. 
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2.2 Dynamic Range Requirement 

Spectrum usage efficiency can be improved by using spectrum sensing and dynamic 

spectrum access. In simple terms, spectrum sensing involves measuring the energy in a 

particular frequency band and comparing it to a predetermined noise level in order to 

determine whether it is occupied or not, and dynamic spectrum access is the means of 

exploiting vacant frequency bands. Both techniques are essential to cognitive radios 

implementation. 

Dynamic range of a receiver is the span of signal amplitudes over which the receiver 

can operate. The lower boundary of this range is determined by the noise floor, and its 

upper boundary is governed by its strong-signal-handling capability. Limited receiver 

dynamic range impairs spectrum sensing algorithms and dynamic spectrum access in 

many ways as it puts a constraint on the linearity of the receiver. Figure 2.5 is used as an 

example to illustrate the impairment caused by limited dynamic range. A wideband 

multicarrier receiver simultaneously receives both weak and strong signals through a 

single receiver chain. As a result of limited receiver dynamic range, the strong signals in 

bands 2 and 4 cause nonlinear distortion on the weak signal in band 3 which deteriorates 

the weak signal. In reality, the amplitude range in the received signal can be tens of dBs, 

and as such requires large dynamic range from the receiver. UTMS for example requires 

at least 70dB SFDR [25]. 
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Figure 2.5: Illustration of dynamic range limitation 

 In the case of spectrum sensing, sensing bands 2,3 and 4 in the nonlinear receiver 

would give the information that these bands are occupied, which is true.  However, 

sensing bands 1 and 5 would give the information that these bands are also occupied due 

to the energies (from nonlinear components) present in these bands. This is a false alarm 

which would prevent a cognitive radio system from hopping into these band. The 

energies present in bands 1 and 5 are as a result of the nonlinear distortion resulting from 

limited dynamic range in the receiver. In the case of carrier aggregation, this might mean 

a harmonic distortion stemming from an uplink band falling into a downlink band. 

Although the noise floor (which determines the sensitivity of the receiver) is 

important, receiver’s ability to handle strong signals is also very important. If the 

dynamic range is limited, not by the noise floor, but by its ability to handle strong 

signals, strong signals would generate harmonics and intermodulation products in the 

receiver. The latter being a problem that needs looking into. We take a look at the third 

order intermodulation product (IM3) generated by the LNA and how it can be removed. 

fBand1 Band2 Band3 Band4 Band5 Band1 Band2 Band3 Band4 Band5

(a) Ideal linear receiver (b) Nonlinear  receiver

f
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2.3 RF Nonlinearities 

RF nonlinearities comprise mostly of nonlinearities originating from the low noise 

amplifier (LNA) in DCRs. Mixers also do contribute their quota to the RF nonlinearities. 

These nonlinearities include harmonics and intermodulation products. 

Ideally, one would expect a linear relationship between the low noise amplifier’s 

input and output but because of limited headroom or dynamic range, it gets saturated by 

strong signals. This rather creates a nonlinear relationship between its input and output. 

The nonlinear input-output relationship produces nonlinear distortion i.e. additional 

unwanted frequency components including the troublesome third order intermodulation 

product. Due to the wide variations in the amplitude of received signals in wideband 

multicarrier receivers it is impossible to curb distortions due to these nonlinearities 

without increasing power consumption [26], [27]. 

Nonlinear systems are usually characterized by using a single tone signal or a multi-

tone signal. If a single tone signal with frequency f is used, the output will have 

additional frequency components at nf, where n is a non-zero positive integer. The 

additional frequency components are the harmonics. 

A two-tone signal with frequencies f1 and f2 would produce frequency components at 

mf1 ± nf2 as well as harmonics of the individual fundamental frequencies (nf1 and nf2). m 

and n are positive non-zero integers. The new frequency components at mf1 ± nf2 are the 

intermodulation products. The most troublesome intermodulation product is the third 
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order intermodulation product (IM3). It most often than not falls into the frequency band 

of interest which makes it difficult to filter out. The order of the intermodulation 

products is defined by |m| + |n|. For the IM3, |m| + |n| = 3, which means that |m| and |n| ϵ 

{1,2} but |m| ≠ |n|. 

The third order intercept point (IIP3 or OIP3) is used to characterize the IM3 

product. The concept of IIP3 or OIP3 is depicted in Figure 2.6. IIP3 is the fictitious point 

on the Pi (x-axis) where the ideal linear and ideal third order gains intersect. OIP3 is the 

trace on the Po (y-axis) where this intersection point occurs. The higher these parameters 

are the more linear the system is. The linear gain has a slope of 1, and the third order 

gain has a slope of 3. Another important point on Figure 2.6 is the 1dB compression 

point. It is the point where the difference between the device’s actual output and the 

linear output is exactly 1dB. 

Figure 2.6: Third order intercept point 
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2.4 Modeling RF Nonlinearities 

Modeling refers to the act of using mathematical equations to represent real-world 

objects and phenomena. Modeling can be classified into two, namely, physical modeling 

and behavioral modeling. 

2.4.1 Physical modeling 

Physical models are models that rely on knowledge of the individual components 

that make up the real-world object. The knowledge required to do this modeling include 

the constitutive relations of the individual components and the theoretical rules 

describing their interactions [28]. These models are appropriate for circuit-level 

simulation and provide accurate results at the expense of high simulation time. 

2.4.2 Behavioral modeling 

Models that require no a priori knowledge of the constituents of the system to be 

modelled are referred to as behavioral models. They are also referred to as black-box 

models. They rely on carefully selected input-output observations, and parameters 

extracted from such observations. Their accuracy is sensitive to the parameter extraction 

procedure used and the quality of the set of inputs used for the parameter extraction [28]. 

These models are used to model the RF nonlinearities in this work. As was stated before, 
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RF nonlinearities are mostly due to LNA nonlinearities. Hence, we take a look at LNA 

behavioral modelling. The inherent limitations of behavioral models are also taken into 

consideration here. 

2.5 LNA Behavioral Modeling 

Electronic devices are inherently nonlinear, and the LNA is no exception. 

Nonlinearity is not desirable for an LNA. A nonlinear LNA can be modeled using a 

memoryless or static behavioral model shown in (1) where x(n) is the input, and y(n) is 

the output. With static models, the current output of the system to be modelled is 

assumed to be a nonlinear function of the current inputs only, and previous inputs have 

no effect on the current output. These models only consider amplitude-amplitude 

conversions, and assume that the amplifier has a constant gain within its pass-band. They 

are fairly accurate for narrow-band frequency spectrums. 

𝑦(𝑛) =  ∑ 𝑎𝑘𝑥(𝑛)𝑘 = 𝑎1𝑥(𝑛) + 𝑎2𝑥(𝑛)2 + 𝑎3𝑥(𝑛)3 + ⋯

𝐾

𝑘=1

(1) 

For a two-tone input, the “tones” being at frequencies w1 and w2, the output of the 

nonlinear system modelled by the first three terms in (1) will be given by: 
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𝑦(𝑡) =
𝑎2

2

 + (𝑎1 +
9𝑎3

4
) 𝑐𝑜𝑠(𝜔1𝑡) + (𝑎1 +

9𝑎3

4
) 𝑐𝑜𝑠(𝜔2𝑡) 

 +
𝑎2

2
𝑐𝑜𝑠(2𝜔1𝑡) +

𝑎2

2
𝑐𝑜𝑠(2𝜔2𝑡) 

 +𝑎2𝑐𝑜𝑠(𝜔1 − 𝜔2)𝑡+𝑎2𝑐𝑜𝑠(𝜔1 + 𝜔2)𝑡 

 +
𝑎3

4
𝑐𝑜𝑠(3𝜔1𝑡) +

𝑎3

4
𝑐𝑜𝑠(3𝜔2𝑡) 

 +
3𝑎3

4
𝑐𝑜𝑠(2𝜔1 + 𝜔2)𝑡 +

3𝑎3

4
𝑐𝑜𝑠(2𝜔2 + 𝜔1)𝑡 

 +
3𝑎3

4
𝑐𝑜𝑠(2𝜔1 − 𝜔2)𝑡 +

3𝑎3

4
𝑐𝑜𝑠(2𝜔2 − 𝜔1)𝑡

(2) 

The first line is a DC term, and the second line of terms is the fundamental frequency 

signals with third order gain compression. In the next line are the second order 

harmonics. The fourth line contains the second order intermodulation terms, and the fifth 

line contains the third order harmonics. The sixth and seventh lines contain the third 

order intermodulation distortion terms. The 3rd order intermodulation terms found in 

seventh line are the most troublesome as they mostly fall near the fundamental 

components. The newly generated spurious frequency components – harmonics and 

intermodulation products alike – are as a result nonlinearity. Same phenomenon happens 

in the nonlinear LNA. The model used in (1) is but a memoryless one, and is not enough 

to fully represent the nonlinearities in the LNA, especially in the wideband scenario. We 

now consider dynamic models for such nonlinear systems. 
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The reality is, most system are dynamic nature; their current output depends on their 

current inputs as well as their past inputs. This is known as memory or dynamic effect, 

and it is as a result of physical phenomena such as long time constants in DC bias 

circuits, bias modulation, trapping effects, and thermal effects due to self-heating [29]. 

Memory effects can be seen as the time-domain view of frequency dependence [30]. In 

simple terms, it accounts for the change in the gain and phase of a system as function of 

frequency. It can be seen as the asymmetries in the amplitudes of upper and lower 

sidebands, and frequency dependent asymmetries in the amplitude of intermodulation 

products. Figure 2.7 shows the frequency characteristics of the LNA, HD24089 [31], 

used in [32]. The frequency characteristic in this figure clearly shows the non-constant, 

frequency-dependent gain due to memory effects. Memory effects become severe in 

higher bandwidth applications such as WCDMA [33] and carrier aggregation, and as 

such models that consider memory effects are used this work. 

Figure 2.7: HD24089 Low noise amplifier frequency response. Reprinted from [31] 
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In general, a nonlinear system with memory effects can be modelled behaviorally 

using Volterra series which can be seen a Taylor series with memory [26],[27]. 

However, there is an exponential increase in the number of parameters as the memory 

length and the order of the nonlinearity increase. This renders the use of the Volterra 

series highly unrealistic. Special cases of the Volterra series such as the Hammerstein 

model and the Wiener model can be used to denote nonlinear systems with memory 

effects. The Wiener model is made up of a linear filter or linear time invariant system 

followed by a memoryless nonlinearity. The Hammerstein model has the reversed order 

of the two blocks i.e. it is made up of a static nonlinearity followed by a linear filter or a 

linear time invariant (LTI) system. The Hammerstein model is utilized in this thesis 

work. 

The Hammerstein model is illustrated in Figure 2.8. It consists of a memoryless 

nonlinearity and a linear dynamic system. 

Figure 2.8: Hammerstein model 

This model is expressed mathematically as shown in (2) [34], [35] where Q is the 

memory depth, K is the order of the nonlinearity polynomial, 𝑎𝑘 are the polynomial 

Nonlinear

static system

Linear

dynamic 
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x(n)
f(.)

y(n)
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coefficients of the nonlinearity and H(q) is the filter transfer function for the Kth 

polynomial contribution. 

𝑦(𝑛) = ∑ ∑ 𝑎𝑘ℎ(𝑞)𝑥𝑘(𝑛 − 𝑞)

𝑄

𝑞=0

𝐾

𝑘=1

(3) 

The model in (3) can be simplified by using a variation of the Hammerstein model 

known as the parallel Hammerstein model. This variation of the Hammerstein model 

considers only the odd-order terms of the nonlinearity polynomial. The use of this model 

is fairly justified as the even-order nonlinearities most often than not fall outside the 

band of interest and can easily be filtered out. Furthermore, using differential circuits 

minimizes the effects of even-order nonlinearities. The parallel-Hammerstein model is 

expressed mathematically as in (4) where 𝑎2𝑘−1,𝑞 corresponds to the impulse responses 

that model memory effect for each nonlinear coefficient. 

𝑦(𝑛) = ∑ ∑ 𝑎2𝑘−1,𝑞𝑥2𝑘−1(𝑛 − 𝑞)

𝐾

𝑘=1

𝑄

𝑞=0

(4) 

Amongst the odd-order nonlinearities present in (4), the third order nonlinearity is 

the strongest in typical RF front-ends. The higher odd-order nonlinearities tend to fall 

below the noise floor of the receiver [3]. Hence, K in (4) is limited to 2. Equation (4), 

now becomes 
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𝑦(𝑛) = ∑ ∑ 𝑎2𝑘−1,𝑞𝑥2𝑘−1(𝑛 − 𝑞)

2

𝑘=1

𝑄

𝑞=0

(5) 

𝑦(𝑛) = ∑ 𝑎1,𝑞𝑥(𝑛 − 𝑞)

𝑄

𝑞=0

+ ∑ 𝑎3,𝑞𝑥3(𝑛 − 𝑞)

𝑄

𝑞=0

(6) 

𝑦(𝑛) = 𝑎1,0𝑥(𝑛) + 𝑎3,0𝑥3(𝑛)

+ 𝑎1,1𝑥(𝑛 − 1) + 𝑎3,1𝑥3(𝑛 − 1)

+ 𝑎1,2𝑥(𝑛 − 2) + 𝑎3,2𝑥3(𝑛 − 2)

+ 𝑎1,3𝑥(𝑛 − 3) + 𝑎3,3𝑥3(𝑛 − 3) + ⋯

(7) 

The first line in (7) is for the case of static/memoryless nonlinearity it can be seen as 

(1) without the even-order nonlinearity, and of course, the odd-order nonlinearity limited 

to the first and third orders only. For simplicity and ease of analysis and understanding, 

the nonlinear model will be limited to the first line in (7), and it is repeated in (8) as a 

separate equation for convenience. The reader must know that the full parallel-

Hammerstein model is used in modeling the LNA for testing the proposed linearization 

technique. 

𝑦(𝑛) = 𝑎1,0𝑥(𝑛) + 𝑎3,0𝑥3(𝑛) (8) 

Equation (8) represents memoryless nonlinearity, and henceforth, the subscript “0” 

will be omitted. It is used for ease of analysis, and analysis will be extended to include 

memory effects wherever necessary. Coefficients a1 and a3 represent the linear gain and 
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third order distortion level respectively. These coefficients are related to the amplitude of 

IIP3 by the following expression: 

𝐴𝐼𝐼𝑃3 = √
4|𝑎1|

3|𝑎3|
(9) 
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3 AUXILIARY-PATH-ASSISTED LINEARIZATION SOLUTIONS 

The performance of a receiver system is determined largely by the quality of its 

front-end circuits such as the LNA which processes all the interference and noise from 

the wireless channel. The challenge in LNA design is meeting its gain, noise, linearity 

and power consumption requirements simultaneously. Poor linearity leads to nonlinear 

distortions. In the case of wideband receivers, multiple channels are received 

simultaneously without filtering and they act as in-band interferers. As such, LNAs used 

in wideband receivers must have high linearity across very wide frequency ranges. 

A good way to avoid nonlinear distortion, is to avoid the generation of the distortion 

in the first place. But due to the aforementioned trade-offs such as the gain-linearity 

trade-off, it is practically impossible to avoid nonlinear distortion, and as such 

techniques for cancelling it have to be developed. The nature of the problem is such that 

it yields a plausible solution, and these solutions have to be exploited. We take a look at 

linearization techniques that employ auxiliary receiver paths in mitigating nonlinearity 

especially odd-order nonlinearity. We categorize these linearization techniques into 

analog techniques, and digital techniques. Digital linearization techniques are preferred 

to analog techniques because of their robustness to PVT variations. 
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3.1 Analog Auxiliary-Path-Assisted Linearization Techniques 

Many analog design techniques aimed at improving the IIP3 of the LNA and hence 

that of the receiver have been proposed in literature. Generally, LNA linearization is a 

challenging problem that calls for innovative techniques as solution. Traditional LNA 

linearization techniques such resistive source degeneration, on one hand, cannot suffice 

as they lead to gain degradation. Inductive source degeneration, on the other hand, 

suffers IIP3 degradation due to second-order interactions. CMOS transistors, which are 

intrinsically linear compared with bipolar transistor, can offer some linearity 

improvement but they require high DC current to give the needed linearity. These are 

some indicators of the need for sophisticated techniques such as dual receiver/LNA path 

techniques in dealing with nonlinearity. 

Generally, LNA nonlinearities stem from two primary sources [36]: 

1. Nonlinear transconductance gm: translates input voltages to nonlinear output

currents 

2. Nonlinear output conductance gds: prominent when output voltage swings are

high, and also when operating in the triode region (small Vds); also known as 

output limited. 
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Figure 3.1: LNA with inductive source degeneration 

For the simple inductively source degenerated LNA shown in Figure 3.1, the 

nonlinear output current can be expressed, in line with (1), as: 

𝑖𝑑 = 𝑔1(𝑣𝑖𝑛 − 𝑣𝑠) + 𝑔2(𝑣𝑖𝑛 − 𝑣𝑠)2 + 𝑔3(𝑣𝑖𝑛 − 𝑣𝑠)3 (10) 

The ith order nonlinear coefficient can be obtained by differentiating Ids with respect 

to Vgs at the bias point. 

𝑔1 =
𝜕𝐼𝑑𝑠

𝜕𝑉𝑔𝑠
,  𝑔2 =

1

2!

𝜕2𝐼𝑑𝑠

𝜕𝑉𝑔𝑠
2

,  𝑔1 =
1

3!

𝜕3𝐼𝑑𝑠

𝜕𝑉𝑔𝑠
3 (11) 

A negative feedback system with linear feedback factor can be used to improve the 

linearity of the nonlinear amplifier. However, linearity enhancement using feedback isn’t 

effective in LNAs due to low open loop gain and second-order interactions. The latter 

can be mitigated by using harmonic termination [36]–[38]. Next, we discuss some 

analog auxiliary-path-assisted linearization techniques. 

In [39], an auxiliary signal path with signal scaling factors, b and 1/bn, and an 

amplifier well-matching the main path amplifier is used in linearizing the main LNA as 
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shown in Figure 3.2. The auxiliary path is used to reproduce the nonlinearities in the 

main path. The value of n determined by the order of the intermodulation product to be 

cancelled; n = 2 for second order and n = 3 for third order. 

Figure 3.2: The feedforward linearization technique. Reprinted from [36] 

The auxiliary path’s output is subtracted from the main path’s output for distortion 

cancellation. The concept is demonstrated mathematically in (12) in which case the third 

order nonlinearity is being cancelled. 

𝑌𝑚𝑎𝑖𝑛(𝑥) = 𝐴𝑥 + 𝑎2𝐴𝑥3

𝑌𝑎𝑢𝑥(𝑏𝑥) =  𝐴𝑏𝑥 + 𝑎2𝑏3𝐴𝑥3

𝑌 = 𝑌𝑚𝑎𝑖𝑛(𝑥) −
1

𝑏3
𝑌𝑎𝑢𝑥(𝑏𝑥) 

𝑌 = 𝐴 (1 −
1

𝑏2
) 𝑥 

(12) 

In general, the output is given by (13): 
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𝑌 = 𝐴 (1 −
1

𝑏𝑛−1
) 𝑥 (13) 

A major drawback of this approach is that it heavily relies on the auxiliary amplifier 

being a precise replica of the main amplifier, and would suffer in the presence of 

mismatches. Also, as seen from (13), the linear suffers attenuation by a factor of 

(1 − 1/𝑏𝑛−1). [36] talks about gain boosting techniques by rearranging the scaling

factors. It also introduces a way to cancel both second order and third order 

intermodulation terms concurrently. 

In [40]–[45], the “conventional” derivative superposition (DS) method is introduced. 

This technique is so called because it sums the third derivative (g3) of the auxiliary and 

main path transistors’ drain currents in order to cancel out IM3. One implementation of 

this method is shown in Figure 3.3a. The IM3 cancellation for this implementation is 

shown in Figure 3.3b. This implementation relies on the fact that the sign of g3 changes 

at the transition between weak and moderate inversion. Consequently, with appropriate 

biasing, the leftover g3 becomes zero, and linearity is increased but only within a limited 

bias voltage range. In comparison with the optimum biasing [46] approach, this 

approach is much less susceptible to PVT variations. It also consumes less power as the 

auxiliary transistor operates in the weak-inversion region. A major drawback of this 

approach is that g3 is only cancelled within a narrow bias voltage range, and would 

require extra auxiliary transistors to widen the bias voltage range. 
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Figure 3.3: a) Dual-NMOS DS method   b) Linearization mechanism. Reprinted from 

[36] 

Several variations of the derivative superposition method also exist in literature; each 

aimed at improving the performance of the conventional DS scheme. Some of these 

variations are discussed in [36] and [47]. In [48], the complementary DS is introduced. It 

uses the complementary nature of PMOS and NMOS to help mitigate IM3 as well as 

IM2 since IM2 cancellation is not addressed by the conventional DS method. But there 

is tradeoff between IM3 cancellation and IM2 cancellation. [49] and [50] also looks at 

solving the IM3 problem along with IM2 cancellation. [51]–[53] introduce the modified 

DS which aims at total IM3 cancellation by tackling IM3 produced by second order 

interactions (not considered by the conventional DS) in the LNA. [54] aims at increasing 

the bias voltage range for a PVT-variation-robust g3 cancellation. [55] tackles the low 

input impedance which leads to gain degradation in the conventional DS. 
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In [56], the second order intermodulation (IM2) injection technique is introduced. 

This technique eliminates the need for an explicit auxiliary path and it is particularly 

useful for differential transconductances. It exploits the second order nonlinearity of the 

device to be linearized. 

Figure 3.4: Concept of the IM2 injection method. Reprinted from [56] 

A block diagram depicting this technique is shown in Figure 3.4. In this method, an 

IM2 product with low frequency is injected into the circuit to be linearized. The injected 

IM2 product is phase inverted and mixed with the input signal to produce the IM3 

products for cancellation. This method relies on second-order interactions to cancel out 

IM3 products. Optimum results are obtained by injecting low-frequency IM2 signals. 

Some of the drawbacks of this technique include the fact that other injected IM2 

products that are not low-frequency deteriorates performance. Also, the spacing of the 

two tones used in generating the IM2 products significantly affects performance. 
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3.2 Digital Auxiliary-Path-Assisted Linearization Techniques 

Advanced DSP techniques have many important applications in receiver signal 

processing. One of the most interesting uses of DSP techniques is the possibility of 

improving the receiver’s linearity performance by mitigating nonlinear effects caused by 

the receiver front-end components. A well-known example is in the area of I/Q 

mismatches and their correction using DSP techniques. It also well known that while the 

downscaling of CMOS processes and the constant reduction in supply power worsen 

noise and linearity in analog circuits, they largely benefit DSP systems from the view 

point of robustness, power consumption and processing speed. This trend is making DSP 

based linearization techniques more and more attractive in comparison with analog 

based techniques. Both single receiver path and dual receiver path DSP-based 

linearization techniques have been proposed in literature. We take a look at some of the 

auxiliary receiver path assisted DSP-based linearization techniques proposed in 

literature. These methods fall into the category of dual receiver path linearization 

techniques. 

In [10] and [57], a digital domain linearization technique is introduced which is 

shown conceptually in Figure 3.5. In this work, a cubic term generator is used in an 

alternate path to generate reference IM3 products at RF. With the alternate path’s LO 

frequency tuned to be the same as main path’s LO frequency, the right group of third 

order intermodulation products are down-converted. Filtering of the baseband signal is 
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also done to attenuate unwanted IM products. The down-converted alternate-path IM3 

products are equalized in the digital domain by means of adaptive filters to be the same 

as the IM3 products distorting the main path signal, and simple subtraction is done in the 

digital domain to cancel out IM3 products from the main path. The implemented 

receiver architecture is also shown in Figure 3.6. 

Figure 3.5: Feedforward error cancellation concept. Reprinted from [10] 

Figure 3.6: Experimental receiver architecture. Reprinted from [10] 
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A similar approach is proposed in [58] and [59] in which case an analog square term 

generator is also incorporated in addition to the cubic term generator, to produce even-

order and higher odd-order intermodulation terms for further linearity improvement. A 

major disadvantage of these approaches is that they require specific analog receiver 

hardware, and analog squaring and cubing functions which are mostly inaccurate 

introduce extra nonlinear components. If the extra nonlinear terms as well as the linear 

feedthrough term are not properly attenuated, the digital adaptive filters may never 

converge, and if they do, they would incur high convergence time and their final values 

would be inaccurate. 

In [32], two digital linearization techniques are introduced, namely, the reference-

receiver-enhanced adaptive interference cancellation (RR-AIC) and the reference-

receiver-aided nonlinearity inversion (RR-INV). The reference-receiver-enhanced 

adaptive interference cancellation (RR-AIC) is shown in Figure 3.7. In the RR-AIC 

approach, a reference receiver chain in which the RF LNA is removed is used. The LNA 

is removed so that a more linear signal without any RF nonlinear distortion would be 

obtained. Furthermore, I/Q correction is done in the digital domain with the aim of 

making the signal on the reference path distortion-free thereby improving the quality of 

the reference signal. Nonlinear models based on the parallel Hammerstein model are 

used, in the digital domain, to generate nonlinear components from the linear auxiliary 

reference signal. Next, parallel adaptive filters are used to equalize the generated 
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nonlinear components which yield an overall estimate of the nonlinearities present in the 

main receiver path. In this way, simple subtraction of the combined equalized auxiliary 

path nonlinear components from the main path signal yields a linear received signal. A 

disadvantage of this technique is that the models used to generate the nonlinear 

components are hardware specific and the calibration performance is limited by the 

models used. Also, the number of adaptive filters grow as the number of nonlinear 

components increase. 

Figure 3.7: Principle of the RR-AIC technique. Reprinted from [32] 

The reference-receiver-aided nonlinearity inversion (RR-INV) is implemented much 

the same way as the RR-AIC and it is shown in Figure 3.8. In the RR-INV approach, the 

linear reference signal is used as calibration signal. The goal here is to let the main path 

signal mimic the more linear behavior of the reference signal. The nonlinear models and 

the adaptive filters are used to find the reference nonlinearities that are capable of 

inverting the nonlinearities in the main path signal. Again, a major disadvantage of this 
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technique is that the accuracy of the hardware-specific nonlinear models used in 

modeling the nonlinear behavior of the front-end components immensely affects the 

calibration performance. Also, nonlinearities present in the reference signal will 

inadvertently end up appearing the calibrated signal. The number of required adaptive 

filters increase as the nonlinear components increase. 

Figure 3.8: Principle of the RR-INV. Reprinted from [32] 

In [60]–[62], a method that uses band-split filtering is introduced for multicarrier 

direct conversion receiver. It is shown in Figure 3.9. In this method, the received 

multicarrier signal is band-split into “channel of interest” and “other signals” or “other 

channels”. The lower branch in Figure 3.9 which contains the “other signals” is 

subjected to models of the nonlinearities prevailing in the upper branch signal. The idea 

is to regenerate the distorting intermodulation and harmonic components by means of 

nonlinear models. The output of the nonlinear models is filtered using an adaptive filter 

to scale the amplitude and phase of the generated nonlinear components and finally 
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subtracted from the upper branch signal to remove any nonlinearity. One disadvantage of 

this method is that it is channel specific and cannot band-select a wider range of 

frequency channels if the band-splitting filter is implemented in the analog domain since 

tunable yet highly selective analog filter design is difficult. Implementing the band-split 

filter in the digital domain would also put a stringent dynamic range and speed 

requirement on the ADC 

Figure 3.9: Band-split filtering method. Reprinted from [61] 

In [63] and [64], a dual-path approach in which one path is used to catch the desired 

signal band and the other path is used to capture the blocker signal is proposed. It is 

illustrated diagrammatically in Figure 3.10. The LOs in both paths are tuned to different 

frequencies to appropriately down-convert the right signals to baseband, and the signals 

are then digitized using separate ADCs. The two signals are used together to remove 

nonlinear effects in two stages. In the first stage, an estimate of the nonlinearity 

parameters and the channel response are made. These estimates are then used in the 

second stage to recover the received data.  A disadvantage of this method is that it 
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requires that the pilot sequence used in making channel estimates be correctly sampled. 

A consequence of this is that in adverse conditions a longer-than-normal sequence would 

be required for normal operation. 

Figure 3.10: Digital Compensation technique. Reprinted from [63] 
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4 PROPOSED AUXILIARY-PATH-ASSISTED LINEARIZATION SOLUTION 

This section provides details of the proposed auxiliary-path-assisted digital 

linearization technique. An auxiliary receiver path is employed in order to generate 

reference IM3 products in the digital domain for canceling third order nonlinear 

distortion. A very distinctive feature of this technique is that it is very simple to 

implement, and it works effectively in removing nonlinear distortions. The nonlinear 

suppression performance is verified via computer simulations and compared with state-

of-the-art digital linearization techniques reported in literature. 

4.1 Concept of the Proposed Solution 

The system level structure of the proposed calibration technique is shown 

conceptually in Figure 4.1. It employs an auxiliary receiver path with a highly nonlinear 

low noise amplifier. The auxiliary path signal is essentially used in the digital domain for 

regenerating the nonlinear distortion components corrupting the main path signal. For 

this reason, a very nonlinear LNA, and hence a cheap off-the-self LNA, is  used in the 

auxiliary path. This is a major advantage of the proposed scheme. 

 The proposed auxiliary-path-assisted linearization technique is a signal-amplitude-

based technique, and has no inherent phase mismatch correction capability as in the case 

of adaptive interference cancellation used in previously described digital linearization 



38 

schemes. As a result, a separate phase mismatch correction scheme is added to cater for 

any delay between the main and the auxiliary path signals. This provides optimum 

calibration with the proposed technique. Two phase correction schemes are proposed; 

their known advantages and disadvantages are also well examined. 

In the proposed linearization scheme, the digitized signals from the two paths are 

first phase corrected to remove time delays between the two paths. The phase-corrected 

data is then passed on to the core of the calibration scheme. As was stated earlier, the 

auxiliary path is used mainly in generating the distortion producing components. These 

nonlinear distortion components, specifically the third order distortion component, are 

generated with the right magnitude from the phase-corrected signals by means of two 

linearization coefficients K1 and K2, and other mathematical operations. In this way 

simple subtraction can be used to cancel out the nonlinear distortions in the main path 

signal. The linearization coefficients K1 and K2 are obtained by means of background 

adaptive filtering. Although the technique is developed to cancel out third order 

nonlinear distortion, it can be extended to cancel out higher order distortion components 

as well as even order distortion components. 
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Figure 4.1: Block diagram of the proposed calibration technique 

For simplicity and ease of understanding, the main and auxiliary LNAs are assumed 

to be modelled by the simplified equation in (8) repeated here for convenience. 

𝑦1(𝑡) = 𝑎1𝑥(𝑡) + 𝑎3𝑥3(𝑡)

𝑦2(𝑡) = 𝑏1𝑥(𝑡) + 𝑏3𝑥3(𝑡)
(14) 

where y1(t) and y2(t) are the outputs of the main and auxiliary paths, respectively. For 

such an LNA, the output for a two-tone signal will be given by (15). The third and fourth 

lines in (15) are the IM3 products. The fourth line IM3 products are the troublesome in-

band IM3 products, and they are shown together with the fundamental two tones in the 

spectral example in Figure 4.1. The spectral example in Figure 4.1 demonstrates the 

effectiveness of the proposed scheme in cancelling out the fourth line IM3 products from 

the output signal. Later, simulation results will be used to show the effectiveness of the 

proposed linearization scheme in cancelling nonlinear distortions. The slanted spectral 
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lines in the spectral example II and III in Figure 4.1 simply demonstrate phase distortion 

difference between the main and auxiliary paths. 

𝑦(𝑡) = (𝑎1 +
9𝑎3

4
) 𝑐𝑜𝑠(𝜔1𝑡) + (𝑎1 +

9𝑎3

4
) 𝑐𝑜𝑠(𝜔2𝑡) 

 +
𝑎3

4
𝑐𝑜𝑠(3𝜔1𝑡) +

𝑎3

4
𝑐𝑜𝑠(3𝜔2𝑡) 

 +
3𝑎3

4
𝑐𝑜𝑠(2𝜔1 + 𝜔2)𝑡 +

3𝑎3

4
𝑐𝑜𝑠(2𝜔2 + 𝜔1)𝑡 

 +
3𝑎3

4
𝑐𝑜𝑠(2𝜔1 − 𝜔2)𝑡 +

3𝑎3

4
𝑐𝑜𝑠(2𝜔2 − 𝜔1)𝑡

(15) 

4.2 Algorithm Development 

In this section, the methodology and ideology of the proposed linearization technique 

is discussed. We take a look at how the calibration is done using digital blocks in Figure 

4.1 i.e. the phase mismatch equalizer and the nonlinearity calibration blocks. 

4.2.1 Calibration algorithm 

Figure 4.2 shows the dual-path receiver chain with the core of the proposed 

linearization technique. The main and auxiliary LNAs have different characteristics; the 

auxiliary LNA is more nonlinear in comparison with the main path LNA. This is one 

advantage of the proposed scheme. The main purpose of the auxiliary path is to 
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regenerate the third order nonlinear distortion components corrupting the main path 

signal. 

Figure 4.2: Core of the proposed calibration scheme 

With the assumption that the RF signal structure is maintained in baseband, we have (16) 

from (14). 

𝑦1[𝑛] = 𝑎1𝑥[𝑛] + 𝑎3𝑥3[𝑛]

𝑦2[𝑛] = 𝑏1𝑥[𝑛] + 𝑏3𝑥3[𝑛]
(16) 

In order to generate the IM3 product – required for linearization – from the auxiliary 

path signal, the linear component (fundamental components) in the auxiliary path is 

eliminated. This is done by first multiplying the auxiliary path signal by the linearization 

coefficient K1 such that its linear gain is the same as the linear components in the main 

path. K1, then, is given by: 
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𝐾1 =
𝑎1

𝑏1
(17) 

For the parallel Hammerstein in (4), K1 is given by (18). This expression is also valid in 

the case where the parameters are complex in nature. 

𝐾1 =
𝑎1,0 + 𝑎1,1 + 𝑎1,2 + ⋯

𝑏1,0 + 𝑏1,1 + 𝑏1,2 + ⋯
=

∑ 𝑎1,𝑞
𝑄
𝑞=0

∑ 𝑏1,𝑞
𝑄
𝑞=0

(18) 

The auxiliary path signal after the multiplication becomes 

𝐾1𝑦2 = 𝑎1𝑥[𝑛] + 𝐾1𝑏3𝑥3[𝑛] (19) 

This new signal in (18) is then subtracted from the main path signal, theoretically 

leaving behind only IM3 products. 

𝑦𝑇 = 𝑦1 − 𝐾1𝑦2 = (𝑎3 − 𝐾1𝑏3)𝑥3[𝑛] (20) 

The resulting IM3 product does not have the proper amplitude for canceling the IM3 

products in the main path. Hence it is multiplied by another linearization coefficient, K2. 

The linearization coefficient, K2, boosts the amplitude of the resulting IM3 product such 

that its amplitude is the same as that of the main path’s third order distortion term. K2 is 

given by the following expression: 

𝐾2 =
𝑎3

𝑎3 − 𝐾1𝑏3
(21) 

For the parallel Hammerstein in (4), K2 is given by (22),. 
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𝐾2 =
𝑎3,0 + 𝑎3,1 + 𝑎3,2 + ⋯

(𝑎3,0 + 𝑎3,1 + 𝑎3,2 + ⋯ ) − 𝐾1(𝑎3,0 + 𝑎3,1 + 𝑎3,2 + ⋯ )

𝐾2 =
∑ 𝑎3,𝑞

𝑄
𝑞=0

∑ 𝑎3,𝑞
𝑄
𝑞=0 − 𝐾1(∑ 𝑏3,𝑞

𝑄
𝑞=0 )

(22) 

After the multiplication by K2, the resultant IM3 signal, yT, now becomes: 

𝐾2𝑦𝑇 = 𝑎3𝑥3[𝑛] (23) 

This IM3 product generated from the auxiliary path signal is of the right amplitude to 

cancel out the third order distortion in the main path signal. This is demonstrated in 

Figure 4.2. The cancellation is done by means of simple subtraction between the main 

path signal and the resulting IM3 product, K2yT, leaving behind a linearly amplified 

signal. 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑦1 − 𝐾2𝑦𝑇 = 𝑎1𝑥[𝑛] (24) 

The question that begs for an answer is, how are K1 and K2 determined? We answer 

this question in the next subsection. 

4.2.2 K1 and K2 algorithm 

The linearization coefficients, K1 and K2 are determined by means of adaptive filters. 

Adaptive filters in recent years have increasingly become an important tool in the fields 
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of communications, control, seismology, etc. Their uses include but not limited to, 

system identification, noise and echo cancellation, channel equalization and inverse 

system modeling. These filters are often referred to as the “self-designing” filters. They 

have a set of adjustable parameters with values that change automatically based on 

estimated statistics of the signals they process. The parameters change with the aim of 

minimizing an error function. The error function is the difference between a 

desired/reference signal and the filter output. The desired signal acts as a guide or frame 

of reference for adjusting the parameters in the adaptation process.  The basic adaptive 

filter structure is shown in Figure 4.3, where x(n) is filter input, y(n) is the filter output, 

d(n) is the desired/reference signal, and e(n) is the error to be minimized. This basic 

structure is modified to suit the particular adaptive filtering application. 

Figure 4.3: The basic adaptive filter 

Adaptive algorithms are responsible for adjusting the filter parameters. These 

algorithms do not require a prior knowledge of the input signal, and hence their 

convergence to an optimum filter requires a sufficiently large number of iterations [65]. 

There are several optimization techniques for adjusting the filter parameters, examples 

y(n)

d(n)

e(n)

x(n)
W(n)
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being, the recursive least-squares (RLS), the least mean-square (LMS) and its variants, 

etc. 

In simple terms, the LMS algorithm uses the coefficient estimates at time n to 

estimate the coefficients at time n+1 while the RLS algorithm uses the estimates at time 

n-1 to estimate the coefficients at time n. the RLS algorithm has a high convergence 

speed. However, this high convergence speed is at cost of high computational 

complexity. The proposed technique has been implemented with both algorithms as well 

as the normalized LMS, and they all achieve high convergence accuracy.  The LMS 

algorithm is described here and used in developing the basic algorithm for determining 

K1 and K2. The LMS algorithm is described by the equations given in (25) and (26), 

where 𝜇 is the step size. Full derivation of the algorithms can be found in [65]–[67]. 

𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛) = 𝑑(𝑛) − 𝒘𝑇(𝑛)𝒙(𝑛) (25) 

𝒘(𝑛 + 1) = 𝒘(𝑛) + 2𝜇𝑒(𝑛)𝒙(𝑛) (26) 

The linearization coefficients, K1 and K2, are determined at the start-up of the 

receiver. They are determined individually as single adaptive filter coefficients by using 

two separate LMS algorithms. That is, the adaptive filters used in determining K1 and K2 

have single coefficients that are adjusted using the LMS algorithm, and these filter 

coefficients are K1 and K2, the linearization coefficients. The LMS algorithms are 

employed one time, at the start-up of the receiver, in determining these coefficients. 
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With the coefficients stored, the LMS algorithms can be shut off, thereby saving power 

consumption. 

The scheme for determining K1 is shown in Figure 4.4. In this case the main path 

signal is used as the reference signal. The error function is used to adjust the single filter 

coefficient, which is K1, to obtain an optimum filter solution. A quite linear signal is 

needed in determining K1. Hence, a small amplitude signal is used. The processes 

involved in determining K1 are described below. 

Figure 4.4: Adaptive algorithm for determining K1 

At the start of the receiver, a small amplitude single-tone signal at frequency f1 is 

applied to the receiver. The output of the LNAs using (14) will be given by: 

𝑦1(𝑡) = (𝑎1𝐴 +
3

4
𝑎3𝐴3) cos(𝑤1𝑡) +

1

4
𝑎3𝐴3 cos(3𝑤1𝑡)

𝑦2(𝑡) = (𝑏1𝐴 +
3

4
𝑏3𝐴3) cos(𝑤1𝑡) +

1

4
𝑏3𝐴3 cos(3𝑤1𝑡)

(27) 

But since the amplitude, A, is very small, the outputs can be approximated to the linear 

signal in (28). 
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𝑦1(𝑡) ≈ 𝑎1𝐴 cos(𝑤1𝑡) 

𝑦2(𝑡) ≈ 𝑏1𝐴 cos(𝑤1𝑡)
(28) 

The LO frequency is then changed to f1, and the signal is down-converted and digitized. 

In the digital domain, an LMS adaptive algorithm is used to calculate K1 as the optimum 

filter coefficient from the digitized signal as shown in Figure 4.4. The determined K1 is 

stored. In the LMS algorithm, K1 is updated as: 

𝐾1(𝑛 + 1) = 𝐾1(𝑛) + 2𝜇𝑒(𝑛)𝒚𝟐(𝑛) (29) 

The final value of K1 is stored. The LMS error to be minimized is given by: 

𝑒[𝑛] = 𝐴(𝑎1 − 𝐾1[𝑛]𝑏1)cos (𝑤1𝑛𝑇) (30) 

K2 is also calculated in a similar way. In this case a much less linear signal is needed 

at the output of the LNA, and hence a large amplitude signal is used. Specifically, we are 

interested in the products resulting from the cubic term in (14). The methodology for 

determining K2 is shown in Figure 4.5. 
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Figure 4.5: Adaptive algorithm for determining K2 

As the next step after determining and storing K1, a large amplitude single-tone 

signal at frequency f2 is passed through the receiver. In this case, the products of the 

cubic gain in (14)  (𝑖. 𝑒.
3

4
𝑎3𝐴3 𝑎𝑛𝑑 

1

4
𝑎3𝐴3) become significant. In the digital domain,

the auxiliary path signal is multiplied by the already-determined K1, and then subtracted 

from the main path signal so as to eliminate the fundamental component resulting from 

the linear gain. Again, using an LMS adaptive filter, K2 is determined as the optimum 

filter solution. K2 is also stored. K2 is updated as follows: 

𝐾2(𝑛 + 1) = 𝐾2(𝑛) + 2𝜇𝑒(𝑛)(𝒚𝟏[𝑛] − 𝐾1𝒚𝟐[𝑛]) (31) 

The LMS error to be minimized is given by: 

𝑒[𝑛] = 𝐴3 ∗ {𝑎3 − (𝑎3 − 𝐾1𝑏3)𝐾2[𝑛]} ∗ cos3(𝑤1𝑛) (32) 

The closer the error functions in (31) and ((32) are to zero, the closer K1 and K2 in (29) 

and (31) would be to their ideal values in (17) and (21), respectively. Same situation 

applies to case of the parallel Hammerstein models. 

ADC

ADC

LMS

y1[n]

y2[n]
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Figure 4.6 and Figure 4.7 show the RLS convergence speed for the LNA and general 

receiver specifications used in [32]. More light will be thrown on this receiver 

characteristics and the corresponding auxiliary path characteristics in the results section. 

K1 converges with high accuracy after roughly 700 iterations. With the already 

determined K1, K2 is also determined. It is seen to have high convergence speed and 

accuracy. 

Figure 4.6: RLS convergence rate for K1 
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Figure 4.7: RLS convergence rate for K2 

Figure 4.8 and Figure 4.9 show the determined K1 and K2 accuracy as a function of 

the initial signal amplitude used in calculating these coefficients for the LNA in [32]. 

The accuracy of K1 deteriorates as the initial signal amplitude increases. In the case of 

K2, accuracy is poor for lower signal amplitudes; it gets better for input signal powers 

above -5 dBm. With such plots for a particular LNA, the right signal amplitudes can be 

determined to give high accuracy in determining K1 and K2. 

Figure 4.8: K1 accuracy as a function of training signal amplitude 
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Figure 4.9: K1 accuracy as a function of training signal amplitude 

4.2.3 Phase correction algorithm 

From the discussions about the proposed linearization technique, it can be seen that 

the proposed technique is a purely signal-amplitude-based technique. As such, its 

performance suffers in the event of phase mismatch (or time delay) between the two 

paths. Figure 4.10 shows the proposed technique’s sensitivity to phase mismatch 

between the two receiver paths. The proposed technique can achieve up to 30 dBm in 

IIP3 performance but this performance degrades with increasing phase delays between 

the two paths. The phase/time delays are due to the fact that no two circuit components 

are the same, a major consequence of the ever-present PVT variations. Moreover, it is 

per design that the auxiliary path LNA be different from the main path LNA; the 
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proposed technique banks on a more nonlinear auxiliary path, and hence phase mismatch 

is an unavoidable consequence. 

Figure 4.10: Linearization scheme sensitivity to phase mismatch 

Assuming that the phase mismatch between the two paths only occurs on the 

auxiliary path, the LNAs in (14) will have the following outputs for a single tone signal: 

𝑦1(𝑡) = 𝑎1𝑠𝑖𝑛(𝜔0𝑡) + 𝑎3𝑠𝑖𝑛3(𝜔0𝑡)

𝑦2(𝑡) = 𝑏1𝑠𝑖𝑛(𝜔0𝑡 + 𝜑) + 𝑏3𝑠𝑖𝑛3(𝜔0𝑡 + 𝜑)
(33) 

where φ is the phase difference between the two paths. If the phase mismatch, φ, is 

small, then the output of the auxiliary path can be written as: 

𝑦2(𝑡) = 𝑏1[𝑠𝑖𝑛(𝜔0𝑡) + 𝜑cos (𝜔0𝑡)] 

+𝑏3[𝑠𝑖𝑛3(𝜔0𝑡) + 3 sin2(𝜔0𝑡)𝑐𝑜 𝑠(𝜔0𝑡)]
(34) 
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Now, if the proposed calibration technique described in (17)-(24) is used to cancel 

out the harmonic components without any form of phase correction, the following 

uncancelled error will result at the end of the calibration process: 

𝑒𝑟𝑟𝑜𝑟 = 𝜑𝑎1𝐾2𝑐𝑜𝑠(𝜔0𝑡) + 𝜑
3𝑎1𝑏3

𝑏1
𝐾2 sin2(𝜔0𝑡)𝑐𝑜 𝑠(𝜔0𝑡) (35) 

These uncancelled terms cause performance degradation in the calibration scheme as 

show in Figure 4.10. The performance degradation worsens for higher phase mismatches 

and higher K2 values. 

In this work, two simple phase correction techniques are proposed along with the 

calibration scheme for optimum linearization performance. These are the fast Fourier 

transform (FFT) based phase compensation and the zero-phase filtering phase 

compensation. The FFT based phase delay compensation is shown in Figure 4.11. In this 

phase calibration scheme, the phase mismatch correction is done by first taking the FFT 

of the main and auxiliary path signals. For a periodic signal x(t) with period T0 = 1/f0, the 

Fourier series expansion is given by (36), where n = 0, 1, 2, 3, … 

𝑥(𝑡) = ∑ 𝑐𝑛𝑒𝑗2𝜋𝑛𝑓0𝑡

∞

𝑛=−∞

(36) 

The coefficients, cn, are related to x(t) by 
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𝑐𝑛 =
1

𝑇0
∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑛𝑓0𝑡𝑑𝑡

𝑡+𝑇0

𝑡

(37) 

The coefficients, which are complex in general, can be expressed as 

𝑐𝑛 = |𝑐𝑛|𝑒𝑗 arg (𝑐𝑛) (38) 

where arg(cn) is the angle of cn. It defines the phase spectrum. The phase extractor (PE) 

in the FFT-based phase correction scheme is used to estimate the sample-by-sample 

phase difference between the two paths from the phase spectrum. With the main path 

signal considered as a reference and the auxiliary path signal as the signal whose phase 

is to be corrected, the estimated phase difference is used to adjust the phase of the 

auxiliary path signal in the phase controller (PC). This is also done sample-by-sample 

wise using the estimated sample-by-sample phase difference. At this point, the phase of 

the auxiliary path signal should be almost the same as that of the main path signal. 

Inverse Fourier transform is then taken and the signal is passed on to the calibration 

scheme. This phase correction scheme matches the phases of the two paths. It does not 

consider phase mismatch with respect to the originally received signal. 
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Figure 4.11: FFT based phase delay compensation 

Now, we take a look at the zero-phase filtering approach. The nonlinear phase effects 

can be cancelled by following the process shown in Figure 4.12. It performs zero-phase 

filtering by using the same filter twice. In the following discussion, the filters are 

assumed to add a phase shift of φ, and the time reversal processes induce a phase shift of 

β. For an input data with an arbitrary phase of θ, the first filter will add a phase shift φ, 

and the total phase at point K will be θ – φ. The first time-reversal will induce a phase of 

β, and the total phase at point L will be θ – φ – β. The second filter will also induce a 

phase shift of φ but since it filters the time reversed data, it nullifies the phase of the first 

filter. Hence the total phase shift at point M is θ – β. The second time-reversal process 

also nullifies the phase shift of the first time-reversal process and the phase of the output 

signal will be θ, just as was with the original signal. 
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Figure 4.12: Zero phase filtering technique 

 Mathematically, the operation of the zero-phase filtering is expressed below. When 

an input signal x[n] is passed through a filter with real coefficient H(ejω), the output 

signal, K(ejω), is given by: 

𝐾(𝑒𝑗𝜔) = 𝑋(𝑒𝑗𝜔)𝐻(𝑒𝑗𝜔) (39) 

If this data is saved and time reversed, the new reversed output will be the conjugate of 

the original data. Hence, we will have: 

𝐿∗(𝑒𝑗𝜔) = 𝑋∗(𝑒𝑗𝜔)𝐻∗(𝑒𝑗𝜔) = 𝑋(𝑒−𝑗𝜔)𝐻(𝑒−𝑗𝜔) (40) 

Now, if this output is subjected to the same filter H(ejω) again, the new output, 

denoted as M(n), will be given by; 

𝑀(𝑛) = 𝑋(𝑒−𝑗𝜔)𝐻(𝑒−𝑗𝜔)𝐻(𝑒𝑗𝜔) = 𝑋(𝑒−𝑗𝜔)|𝐻(𝑒𝑗𝜔)|
2

(41) 

Time reversing the new data, M(n) would remove the phase shift introduced by the first 

time-reversal. The final output would be given by: 

𝑌(𝑒𝑗𝜔) = 𝑋(𝑒𝑗𝜔)|𝐻(𝑒𝑗𝜔)|
2

(42) 

This output is purely real-valued and therefore has zero phase or phase distortions. 
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Figure 4.13 shows the zero-phase filtering technique being used as a phase mismatch 

correction technique in the proposed linearization scheme. This phase mismatch 

correction technique involves correcting the phase of the individual paths with respect to 

the received data. That is, phase distortions introduced by the main and auxiliary 

receiver paths are cancelled out individually, and the resulting signals would have the 

same phase as the received signal. This results in zero phase delay between the main and 

the auxiliary path signals. 

Figure 4.13: Zero-phase filtering based phase delay calibration 

With this phase correction technique, the individual RF and baseband front-ends of 

the two receiver paths (main and auxiliary receiver paths) form the first filter of the zero-

phase filter in Figure 4.12. That is, each receiver front-end is considered as a separate 

filter. The “filter” transfer functions of these front-ends are replicated in the digital 

domain to form the second filter of the zero-phase filter in Figure 4.12. Thus, any 

received data is first “filtered” by the receiver front ends, time reversed in the digital 

domain and passed through a digitally matched filter (DMF), which is a digital replica of 
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the front-end frequency characteristics. The output of the DMF is time reversed again, 

thus, completing the cycle of zero-phase filtering in Figure 4.12. The resulting signals in 

the main and auxiliary paths have the same phase as the received signal, signifying the 

removal of phase distortions introduced by the individual paths. 

 The DMF filter coefficients are also determined at the start of the receiver. To do 

this, a known ideal waveform is stored in the digital domain. An analog version of this 

waveform is passed through the receiver and collected at the output of the ADC. An 

adaptive algorithm is used to fit the received data unto the known data, and the optimum 

adaptive filter solution is the equivalent DMF. An adequate number of filter coefficients 

should be chosen to fully represent all the analog domain effects especially phase 

mismatches. 

4.2.4 Practical aspects of phase correction 

The previous subsection described techniques for mitigating phase mismatches 

between the main and the auxiliary paths. We now consider some practical limitations of 

these techniques. 

Regarding the FFT based, it is important to make sure that the number of samples is 

high enough during the FFT processing. This is necessary in order to clearly distinguish 

between any two individual tones that are close together. The number of samples may be 
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temporarily increased by interpolation. It should be noted that this is only required in the 

FFT processing and does not affect the actual ADC sampling rate. It should also be 

noted that FFT processing can be computationally intensive. This fact should be taken 

into consideration as a cost in implementing the FFT-based phase correction. 

Concerning the zero-phase filtering technique, it is important to understand its 

practicalities as far as real-time systems are concerned. Since zero-phase filtering 

involves time reversal of the data, it is not practical in real-time systems as it would 

mean the system has be non-causal (that is, capable of predicting future samples). In this 

case, the proposed zero-phase technique becomes much useful in offline signal systems. 

However, this limitation makes it very suitable for some digital modulation schemes 

such as OFDM, where data is processed in chunks/blocks. Simulation results on an 

OFDM system will be used to demonstrate this point. 

Yet another practical aspect to be consider concerning the phase mismatch correction 

using the zero-phase filtering technique is in determining the number of DMF 

coefficients to fully capture the behavior of the receiver front-end components. As a rule 

of thumps, the largest possible number of coefficients should always be used. It is worth 

noting that the training of the DMF coefficients using adaptive algorithm needs to be 

done once. Once the coefficients are determined, they can always be used without 

further tuning with the adaptive filter. 
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4.3 Results 

In this subsection, simulation results showing the performance of the proposed 

linearization technique are presented. First, specific tests are performed on the proposed 

technique to ascertain its performance, and then other tests are performed to compare the 

proposed technique to other state-of-the-art techniques. The receiver parameters used for 

these tests are listed in Table 1. Changes to these parameters will be stated accordingly. 

Table 1: Receiver Parameters 

Parameter Value 

Baseband bandwidth 100 MHz 

ADC resolution 12 bits 

GLNA,main 30 dB 

IIP3LNA,main 1 dBm 

GLNA,aux 26 dB 

IIP3LNA,aux -12 dBm 

Phase mismatch 40 

Memory depth Third order memory depth 

using three-tap adaptive 

filters per LNA coefficient 

In order to test and quantify the IIP3 performance of the proposed linearization 

technique, a two-tone test was performed. A two-tone signal with frequencies 

components at 17 MHz and 20 MHz is passed through the main and auxiliary receiver 

chains. Figure 4.14 (a) shows the two-tone signal with the troublesome in-band third 

order intermodulation terms at 14 MHz and 23 MHz. The other spectral components are 

the high frequency third harmonics (51 MHz and 60 MHz), and the high frequency third 

order intermodulation products (54 MHz and 57 MHz). Figure 4.13(b) shows the 
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linearized or calibrated signal. As seen from the figure, the proposed technique removes 

all products of the cubic term in (14) including the third harmonic, a useful feature to 

have in the area of intra-band carrier aggregation. The proposed linearization technique 

can achieve up to 30 dBm in IIP3. 

Figure 4.14: (a) Uncalibrated two-tone spectrum  (b) Calibrated two-tone spectrum  

Next, the necessity of having a nonlinear auxiliary path is examined. In this test 

scenario, both LNAs are assumed to have the same linear gains of 30 dB, and the IIP3 of 

the auxiliary path is varied. The results are shown in Figure 4.15. It can be seen from the 

results that as the auxiliary LNA becomes more nonlinear, the IIP3 performance 

increases. This behavior is expected because one of the main purposes of the auxiliary 

LNA is to reproduce the nonlinear term corrupting the main path. It is also expected that 
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the linearization performance degrades as the characteristics of the two LNAs become 

the same. This is an indication that a less expensive nonlinear LNA can be used in the 

auxiliary path for optimum results. From the results shown in Figure 4.15, it can also be 

seen that another bottle to the linearization performance is the resolution of the ADC 

used; the higher the resolution, the higher the measured IIP3. 

Figure 4.15: Measured IIP3 vs auxiliary path LNA nonlinearity, and ADC resolution 

Experiments were also done to test the performance of the zero-filtering based phase 

calibration system using orthogonal frequency division multiplexing (OFDM) systems. 

OFDM systems allows high data rates in wireless systems, and provides high resilience 

to interference and multipath fading. However, a major pitfall of OFDM systems is that 

their multicarrier signals a high peak-to-average power ratios (PAPR) which may lead to 

severe nonlinear distortions. 
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In this experiment, we use OFDM signal with QPSK modulated subcarriers. 128 

subcarriers were used. The symbol rate was 600 kHz. Similar QPSK modulated signal 

were used at the start-up of the receiver to obtain the DMF coefficients. MATLAB’s 

LMS filter function was used to obtain a 24-coefficient DMF. 

Figure 4.16: OFDM constellation diagram 

Figure 4.16 shows the constellation diagram obtained from this experiment. The 

figure to the left is the received signal without any linearization technique applied. The 

measured RMS error vector magnitude (EVMrms) is 29.33%. The figure in the middle 

shows the linearized OFDM signal without any phase correction. It gives an EVMrms of 

11.54%. The results on the right is obtained by first using the zero-phase filtering phase 

correction technique before calibration. The measured (EVMrms) is 3.84% - a close to 

perfect QPSK constellation. 
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Tests in which the test scenarios and LNA parameters used in [10] and [32] are used 

were also performed to compare the proposed technique to the-state-of-art techniques. 

The test as well as the results are discussed here. 

In [10] the modified two-tone IIP3 test is used to assess IM3 calibration. This test is 

a reflection of the reality that the UMTS blocking test is a two-tone test with a 

modulated TX leakage from the antenna duplexer being one of the tones. In this case, the 

other tone is a CW blocker. The main path LNA characteristics are chosen to conform to 

that used in [10] i.e. GLNA = 17 dB and IIP3LNA = +16 dBm. Based on this, the gain and 

IIP3 of the auxiliary path LNA are chosen to be 14 dB and +4 dBm, respectively. The 

results for the modified two-tone test using the proposed linearization technique and that 

proposed in [10] are shown in Figure 4.17.  The lumped input-referred error, which 

accounts for gain loss and residual IM products, is measured for different blocker 

powers.  The plots include performance under worst-case blocker conditions for the 

duplexer used in [10]. As can be seen from the results, the proposed technique is up to 

par with the technique proposed in [10]  even without phase mismatch correction. When 

phase mismatch correction is introduced in the proposed technique, we see a much 

greater suppression in the input-referred error. 
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Figure 4.17: Measured modified two-tone performance of receiver 

Next, we also perform the test use in [32]. In this test scenario, a weak LTE uplink 

carrier with a 10 MHz bandwidth is received together with two strong blocking carriers 

(each also having a 10 MHz bandwidth) such that the weak LTE signal suffers from 

nonlinear distortion produced by the strong blocker signals. As in  [32], the weak LTE 

carrier, after down-conversion, is located at the IF center frequency of 20MHz, and the 

strong blocker carriers are located at 10 and 40MHz. In this way, the third order 

distortion component around -20 MHz, with its characteristic triple bandwidth, falls atop 

the weak carrier signal. Again, for fairness of comparison, the main path LNA gain and 

IIP3 are chosen to be 22 dB and -7 dBm, respectively, as in [32]. The reception 

bandwidth is 100MHz. The measured SNDRs for the weak LTE signal as a function of 

the blocker power with our linearization technique and the two techniques proposed in 

[32] are shown in Figure 4.18. It can be seen from this figure that the SNDR suffers with 
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increasing blocker power as is usually the case for profiles dominated by nonlinear 

distortion. 

Figure 4.18: Measured SNDR as a function of RF blocker power 

As was stated in [32], the RR-INV slightly outperforms the RR-AIC, and both 

techniques generally give 1-to-2 dB more SNDR at low blocker powers in comparison to 

the proposed technique. However, the proposed technique is more tolerant and robust to 

higher blocker power compared to the no-linearization case and both techniques in [32]. 

From the weak LTE signal point of view, the blocker tolerance compared with no 

linearization at all is improved by 7.0 dBm with RR-AIC and 7.5 dBm with RR-INV at 

14 dB SNDR. However, the blocker tolerance is improved by 14.9 dBm with the 

proposed technique at 14 dB SNDR. Concurrently, at -15 dBm of blocker power which 

is a test scenario specified by 3GPP [68], the SNDR measured for no linearization is -
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32.5 dB, and -2.5 dB and -9 dB for RR-AIC and RR-INV, respectively. However, the 

proposed technique achieves up to +14.3 dB SNDR at this high blocker power, roughly 

3 dB less than its SNDR at lower blocker power. In general, all the said linearization 

techniques achieve similar SNDR at lower blocker powers but the proposed technique 

has a higher tolerance to increasing blocker power. 

4.4 Comparison of Results 

Table 2 compares the performance of the proposed linearization technique to some 

existing techniques in literature. The proposed calibration technique can achieve better 

IIP3 performance in comparison to other works in literature. 

Table 2: Table of comparison 

Parameter This work [10] [32] [46] [39] 

IIP3 (dBm) Up to +30 +5.3 - +10.5 +18 

SNDR at -15 

dBm blocker 

power (dBm) 

+14.3 - -9 - - 

ADC 

Resolution 
12 bits 8 bits 12 bits - - 

Bandwidth 

(MHz) 
100 23 100 - - 
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5 CONCLUSION 

In this thesis work, an auxiliary-path-assisted digital linearization technique was 

presented. The presented linearization technique was specifically developed with the aim 

of cancelling out third order intermodulation products as well as third order harmonics. 

The presented technique can be extended to cancel out second order, as well as higher 

order intermodulation and harmonic terms. Two phase equalization techniques for 

handling the inadvertent phase mismatches between the two signal paths were also 

introduced. Computer-based simulation results were also presented. To ensure that the 

presented technique is capable of handling real-life intermodulation and harmonic 

distortions, in-depth LNA models which included memory effects were employed in all 

the tests. 

The presented linearization technique can achieve IIP3 performance up to +30 dBm 

with a major performance bottleneck being the resolution of the ADC used. Another 

parameter that affects the performance of the presented linearization scheme is the 

linearity of the auxiliary LNA path used. It is preferred that the auxiliary path LNA be 

more nonlinear in comparison with the main path LNA. 

The presented technique shows strong blocker tolerance with little performance 

degradation, compared with some state-of-the-art techniques. The presented linearization 

technique can be used in many applications; a particularly useful one being in the area of 

carrier aggregation and cognitive radios. 
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