6 research outputs found

    Improving Inter-service bandwidth fairness in Wireless Mesh Networks

    Get PDF
    Includes bibliographical references.We are currently experiencing many technological advances and as a result, a lot of applications and services are developed for use in homes, offices and out in the field. In order to attract users and customers, most applications and / or services are loaded with graphics, pictures and movie clips. This unfortunately means most of these next generation services put a lot of strain on networking resources, namely bandwidth. Efficient management of bandwidth in next generation wireless network is therefore important for ensuring fairness in bandwidth allocation amongst multiple services with diverse quality of service needs. A number of algorithms have been proposed for fairness in bandwidth allocation in wireless networks, and some researchers have used game theory to model the different aspects of fairness. However, most of the existing algorithms only ensure fairness for individual requests and disregard fairness among the classes of services while some other algorithms ensure fairness for the classes of services and disregard fairness among individual requests

    Resource-aware Video Multicasting via Access Gateways in Wireless Mesh Networks

    Get PDF
    This paper studies video multicasting in large-scale areas using wireless mesh networks. The focus is on the use of Internet access gateways that allow a choice of alternative routes to avoid potentially lengthy and low-capacity multihop wireless paths. A set of heuristic-based algorithms is described that together aim to maximize reliable network capacity: the two-tier integrated architecture algorithm, the weighted gateway uploading algorithm, the link-controlled routing tree algorithm, and the dynamic group management algorithm. These algorithms use different approaches to arrange nodes involved in video multicasting into a clustered and two-tier integrated architecture in which network protocols can make use of multiple gateways to improve system throughput. Simulation results are presented, showing that our multicasting algorithms can achieve up to 40 percent more throughput than other related published approaches

    Conception et évaluation de nouvelles méthodes pour améliorer les performances des réseaux de nano-communication

    Get PDF
    Abstract : The field of nanotechnology has undergone very rapid and fascinating development in recent years. This rapid and impressive advance has led to new applications of nanotechnology in the biomedical and military industries, making it a key area of research in multidisciplinary fields. However, the individual processing capacity of nanodevices is very limited, hence the need to design nanonetworks that allow the nanodevices to share information and to cooperate with each other. There are two solutions to establish a nanocommunication system: either by adapting the classical electromagnetic communication to the requirements of nano scale, or by using biological nanosystems inspired by nature such as the molecular communication proposed in the literature. In this thesis, we are interested in the second solution, which is exploiting the potential of biological nanosystems used by nature since billions of years to design biocompatible nanonetworks that can be used inside the human body for medical applications. Nevertheless, the use of this new paradigm is not without challenges. The very low achievable throughput and the Inter-Symbol Interference (ISI) are the most influential problems on the quality of molecular communication. The main objective of this thesis is to design and evaluate new methods inspired by nature in order to enhance the performance of nano-communication systems. To do this, the work is divided into three main parts. In the first part, we enhance the performance of molecular communication by proposing a new method that uses a photolysis-reaction instead of using enzyme to better attenuate ISI. We also propose an optimization of the receiver used in MIMO systems by judiciously choosing the parameters used in its design to reduce the influence of path loss on the quality of the system. The second part proposes a new wired nano-communication system based on self-assembled polymers that build an electrically conductive nanowire to connect the nanodevices to each other. The use of electrons as information carriers drastically increases the achievable throughput and reduces the delay. We study the dynamic process of self-assembly of the nanowire and we propose a bio-inspired receiver that detects the electrons sent through the conductive nanowire and converts them into a blue light. The third part applies the proposed wired nano-communication system to design an architecture ofWired Ad hoc NanoNETworks (WANNET) with a physical layer, Medium Acess Control (MAC) layer and application layer. We also calculate the maximum throughput and we evaluate the performance of the system.Le domaine des nanotechnologies a connu un développement très rapide et fascinant ces dernières années. Cette avancée rapide et impressionnante a conduit à de nouvelles applications dans les industries biomédicale et militaire, ce qui en fait un champ clé de recherche dans des domaines multidisciplinaires. Cependant, la capacité de traitement individuelle des nanodispositifs est très limitée, d'où la nécessité de concevoir des nanoréseaux qui permettent aux nanodispositifs de partager des informations et de coopérer entre eux. Il existe deux solutions pour mettre en place un système de nano-communication: soit en adaptant la communication électromagnétique classiques aux exigences de la nano échelle, soit en utilisant des nanosystèmes inspirés de la nature comme la communication moléculaire. Dans cette thèse, nous nous intéressons à la deuxième solution, qui exploite le potentiel des nanosystèmes biologiques utilisés par la nature depuis des milliards d'années pour concevoir des nanoréseaux biocompatibles pouvant être utilisés à l'intérieur du corps humain pour des applications médicales. Néanmoins, l'utilisation de ce nouveau paradigme n'est pas sans défis. Le très faible débit réalisable et l'Interférence Entre Symboles (IES) sont les problèmes les plus influents sur la qualité de la communication moléculaire. L'objectif principal de cette thèse est de concevoir et d'évaluer de nouvelles méthodes inspirées de la nature afin d'améliorer les performances des systèmes de nano-communication. Pour ce faire, le travail est divisé en trois parties principales. Dans la première partie, nous améliorons les performances de la communication moléculaire en proposant une nouvelle méthode qui utilise une réaction de photolyse pour mieux atténuer l'IES. Nous proposons également une optimisation du receveur utilisé dans les systèmes MIMO en choisissant judicieusement les paramètres utilisés dans sa conception pour réduire l'influence de l'atténuation de trajet sur la qualité du système. La deuxième partie propose un nouveau système de nano-communication filaire basé sur des polymères auto-assemblés qui construisent un nanofil électriquement conducteur pour connecter les nanodispositifs les uns aux autres. L'utilisation d'électrons comme supports d'informations augmente considérablement le débit réalisable et réduit le délai. Nous étudions le processus dynamique d'auto-assemblage du nanofil et nous proposons un receveur bio-inspiré qui détecte les électrons envoyés et les convertit en une lumière bleue. La troisième partie applique le système de nano-communication filaire proposé pour concevoir une architecture d'un nanoréseau ad hoc filaire (Wired Ad hoc NanoNETworks) WANNET avec une couche physique, une couche de contrôle d'accès moyen (Medium Access Control) MAC et une couche d'application. Nous calculons également le débit maximum et nous évaluons les performances du système

    Reliable Multicast transport of the video over the WiFi network

    Get PDF
    Le transport multicast est une solution efficace pour envoyer le même contenu à plusieurs récepteurs en même temps. Ce mode est principalement utilisé pour fournir des flux multimédia en temps réel. Cependant, le multicast classique de l IEEE 802.11 n'utilise aucun mécanisme d acquittement. Ainsi, l échec de réception implique la perte définitive du paquet. Cela limite la fiabilité du transport multicast et impact la qualité des applications vidéo. Pour résoudre ce problème, 802.11v et 802.11aa sont définis récemment. Le premier amendement propose Direct Multicast Service (DMS). D'autre part, le 802.11aa introduit GroupCast with Retries (GCR). GCR définit deux nouvelles politiques de retransmission : Block Ack (BACK) et Unsolicited Retry (UR).Dans cette thèse, nous évaluons et comparons les performances de 802.11v/aa. Nos résultats montrent que tous les nouveaux protocoles multicast génèrent un overhead de transmission important. En outre, DMS a une scalabilité très limitée, et GCR-BACK n'est pas approprié pour des grands groupes multicast. D autre part, nous montrons que DMS et GCR-BACK génèrent des latences de transmission importantes lorsque le nombre de récepteurs augmente. Par ailleurs, nous étudions les facteurs de pertes dans les réseaux sans fil. Nous montrons que l'indisponibilité du récepteur peut être la cause principale des pertes importantes et de leur nature en rafales. En particulier, nos résultats montrent que la surcharge du processeur peut provoquer un taux de perte de 100%, et que le pourcentage de livraison peut être limité à 35% lorsque la carte 802.11 est en mode d économie d'énergie.Pour éviter les collisions et améliorer la fiabilité du transport multicast, nous définissons le mécanisme Busy Symbol (BS). Nos résultats montrent que BS évite les collisions et assure un taux de succès de transmission très important. Afin d'améliorer davantage la fiabilité du trafic multicast, nous définissons un nouveau protocole multicast, appelé Block Negative Acknowledgement (BNAK). Ce protocole opère comme suit. L AP envoi un bloc de paquets suivi par un Block NAK Request (BNR). Le BNR permet aux membres de détecter les données manquantes et d envoyer une demande de retransmission, c.à.d. un Block NAK Response (BNAK). Un BNAK est transmis en utilisant la procédure classique d accès au canal afin d'éviter toute collision avec d'autres paquets. En plus, cette demande est acquittée. Sous l'hypothèse que 1) le récepteur est situé dans la zone de couverture du débit de transmission utilisé, 2) les collisions sont évitées et 3) le terminal a la bonne configuration, très peu de demandes de retransmission sont envoyées, et la bande passante est préservée. Nos résultats montrent que BNAK a une très grande scalabilité et génère des délais très limités. En outre, nous définissons un algorithme d'adaptation de débit pour BNAK. Nous montrons que le bon débit de transmission est sélectionné moyennant un overhead très réduit de moins de 1%. En plus, la conception de notre protocole supporte la diffusion scalable de lavvidéo. Cette caractéristique vise à résoudre la problématique de la fluctuation de la bande passante, et à prendre en considération l'hétérogénéité des récepteurs dans un réseau sans fil.The multicast transport is an efficient solution to deliver the same content to many receivers at the same time. This mode is mainly used to deliver real-time video streams. However, the conventional multicast transmissions of IEEE 802.11 do not use any feedback policy. Therefore missing packets are definitely lost. This limits the reliability of the multicast transport and impacts the quality of the video applications. To resolve this issue, the IEEE 802.11v/aa amendments have been defined recently. The former proposes the Direct Multicast Service (DMS). On the other hand, 802.11aa introduces Groupcast with Retries (GCR) service. GCR defines two retry policies: Block Ack (BACK) and Unsolicited Retry (UR).In this thesis we evaluate and compare the performance of 802.11v/aa. Our simulation results show that all the defined policies incur an important overhead. Besides, DMS has a very limited scalability, and GCR-BACK is not appropriate for large multicast groups. We show that both DMS and GCR-BACK incur important transmission latencies when the number of the multicast receivers increases. Furthermore, we investigate the loss factors in wireless networks. We show that the device unavailability may be the principal cause of the important packet losses and their bursty nature. Particularly, our results show that the CPU overload may incur a loss rate of 100%, and that the delivery ratio may be limited to 35% when the device is in the power save mode.To avoid the collisions and to enhance the reliability of the multicast transmissions, we define the Busy Symbol (BS) mechanism. Our results show that BS prevents all the collisions and ensures a very high delivery ratio for the multicast packets. To further enhance the reliability of this traffic, we define the Block Negative Acknowledgement (BNAK) retry policy. Using our protocol, the AP transmits a block of multicast packets followed by a Block NAK Request (BNR). Upon reception of a BNR, a multicast member generates a Block NAK Response (BNAK) only if it missed some packets. A BNAK is transmitted after channel contention in order to avoid any eventual collision with other feedbacks, and is acknowledged. Under the assumption that 1) the receiver is located within the coverage area of the used data rate, 2) the collisions are avoided and 3) the terminal has the required configuration, few feedbacks are generated and the bandwidth is saved. Our results show that BNAK has a very high scalability and incurs very low delays. Furthermore, we define a rate adaptation scheme for BNAK. We show that the appropriate rate is selected on the expense of a very limited overhead of less than 1%. Besides, the conception of our protocol is defined to support the scalable video streaming. This capability intends to resolve the bandwidth fluctuation issue and to consider the device heterogeneity of the group members.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF
    corecore