166 research outputs found

    Mid-Air Gestural Interaction with a Large Fogscreen

    Get PDF
    Projected walk-through fogscreens have been created, but there is little research on the evaluation of the interaction performance with fogscreens. The present study investigated mid-air hand gestures for interaction with a large fogscreen. Participants (N = 20) selected objects from a fogscreen using tapping and dwell-based gestural techniques, with and without vibrotactile/haptic feedback. In terms of Fitts’ law, the throughput was about 1.4 bps to 2.6 bps, suggesting that gestural interaction with a large fogscreen is a suitable and effective input method. Our results also suggest that tapping without haptic feedback has good performance and potential for interaction with a fogscreen, and that tactile feedback is not necessary for effective mid-air interaction. These findings have implications for the design of gestural interfaces suitable for interaction with fogscreens.Peer reviewe

    Supporting Eyes-Free Human–Computer Interaction with Vibrotactile Haptification

    Get PDF
    The sense of touch is a crucial sense when using our hands in complex tasks. Some tasks we learn to do even without sight by just using the sense of touch in our fingers and hands. Modern touchscreen devices, however, have lost some of that tactile feeling while removing physical controls from the interaction. Touch is also a sense that is underutilized in interactions with technology and could provide new ways of interaction to support users. While users are using information technology in certain situations, they cannot visually and mentally focus completely during the interaction. Humans can utilize their sense of touch more comprehensively in interactions and learn to understand tactile information while interacting with information technology. This thesis introduces a set of experiments that evaluate human capabilities to understand and notice tactile information provided by current actuator technology and further introduces a couple of examples of haptic user interfaces (HUIs) to use under eyes-free use scenarios. These experiments evaluate the benefits of such interfaces for users and concludes with some guidelines and methods for how to create this kind of user interfaces. The experiments in this thesis can be divided into three groups. In the first group, with the first two experiments, the detection of vibrotactile stimuli and interpretation of the abstract meaning of vibrotactile feedback was evaluated. Experiments in the second group evaluated how to design rhythmic vibrotactile tactons to be basic vibrotactile primitives for HUIs. The last group of two experiments evaluated how these HUIs benefit the users in the distracted and eyes-free interaction scenarios. The primary aim for this series of experiments was to evaluate if utilizing the current level of actuation technology could be used more comprehensively than in current-day solutions with simple haptic alerts and notifications. Thus, to find out if the comprehensive use of vibrotactile feedback in interactions would provide additional benefits for the users, compared to the current level of haptic interaction methods and nonhaptic interaction methods. The main finding of this research is that while using more comprehensive HUIs in eyes-free distracted-use scenarios, such as while driving a car, the user’s main task, driving, is performed better. Furthermore, users liked the comprehensively haptified user interfaces

    Virtual reality interfaces for seamless interaction with the physical reality

    Get PDF
    In recent years head-mounted displays (HMDs) for virtual reality (VR) have made the transition from research to consumer product, and are increasingly used for productive purposes such as 3D modeling in the automotive industry and teleconferencing. VR allows users to create and experience real-world like models of products; and enables users to have an immersive social interaction with distant colleagues. These solutions are a promising alternative to physical prototypes and meetings, as they require less investment in time and material. VR uses our visual dominance to deliver these experiences, making users believe that they are in another reality. However, while their mind is present in VR their body is in the physical reality. From the user’s perspective, this brings considerable uncertainty to the interaction. Currently, they are forced to take off their HMD in order to, for example, see who is observing them and to understand whether their physical integrity is at risk. This disrupts their interaction in VR, leading to a loss of presence – a main quality measure for the success of VR experiences. In this thesis, I address this uncertainty by developing interfaces that enable users to stay in VR while supporting their awareness of the physical reality. They maintain this awareness without having to take off the headset – which I refer to as seamless interaction with the physical reality. The overarching research vision that guides this thesis is, therefore, to reduce this disconnect between the virtual and physical reality. My research is motivated by a preliminary exploration of user uncertainty towards using VR in co-located, public places. This exploration revealed three main foci: (a) security and privacy, (b) communication with physical collaborators, and (c) managing presence in both the physical and virtual reality. Each theme represents a section in my dissertation, in which I identify central challenges and give directions towards overcoming them as have emerged from the work presented here. First, I investigate security and privacy in co-located situations by revealing to what extent bystanders are able to observe general tasks. In this context, I explicitly investigate the security considerations of authentication mechanisms. I review how existing authentication mechanisms can be transferred to VR and present novel approaches that are more usable and secure than existing solutions from prior work. Second, to support communication between VR users and physical collaborators, I add to the field design implications for VR interactions that enable observers to choose opportune moments to interrupt HMD users. Moreover, I contribute methods for displaying interruptions in VR and discuss their effect on presence and performance. I also found that different virtual presentations of co-located collaborators have an effect on social presence, performance and trust. Third, I close my thesis by investigating methods to manage presence in both the physical and virtual realities. I propose systems and interfaces for transitioning between them that empower users to decide how much they want to be aware of the other reality. Finally, I discuss the opportunity to systematically allocate senses to these two realities: the visual one for VR and the auditory and haptic one for the physical reality. Moreover, I provide specific design guidelines on how to use these findings to alert VR users about physical borders and obstacles.In den letzten Jahren haben Head-Mounted-Displays (HMDs) fĂŒr virtuelle RealitĂ€t (VR) den Übergang von der Forschung zum Konsumprodukt vollzogen und werden zunehmend fĂŒr produktive Zwecke, wie 3D-Modellierung in der Automobilindustrie oder Telekonferenzen, eingesetzt. VR ermöglicht es den Benutzern, schnell und kostengĂŒnstig, Prototypen zu erstellen und erlaubt eine immersive soziale Interaktion mit entfernten Kollegen. VR nutzt unsere visuelle Dominanz, um diese Erfahrungen zu vermitteln und gibt Benutzern das GefĂŒhl sich in einer anderen RealitĂ€t zu befinden. WĂ€hrend der Nutzer jedoch in der virtuellen RealitĂ€t mental prĂ€sent ist, befindet sich der Körper weiterhin in der physischen RealitĂ€t. Aus der Perspektive des Benutzers bringt dies erhebliche Unsicherheit in die Nutzung von HMDs. Aktuell sind Nutzer gezwungen, ihr HMD abzunehmen, um zu sehen, wer sie beobachtet und zu verstehen, ob ihr körperliches Wohlbefinden gefĂ€hrdet ist. Dadurch wird ihre Interaktion in der VR gestört, was zu einem Verlust der PrĂ€senz fĂŒhrt - ein HauptqualitĂ€tsmaß fĂŒr den Erfolg von VR-Erfahrungen. In dieser Arbeit befasse ich mich mit dieser Unsicherheit, indem ich Schnittstellen entwickle, die es den Nutzern ermöglichen, in VR zu bleiben und gleichzeitig unterstĂŒtzen sie die Wahrnehmung fĂŒr die physische RealitĂ€t. Sie behalten diese Wahrnehmung fĂŒr die physische RealitĂ€t bei, ohne das Headset abnehmen zu mĂŒssen - was ich als nahtlose Interaktion mit der physischen RealitĂ€t bezeichne. Daher ist eine ĂŒbergeordenete Vision von meiner Forschung diese Trennung von virtueller und physicher RealitĂ€t zu reduzieren. Meine Forschung basiert auf einer einleitenden Untersuchung, die sich mit der Unsicherheit der Nutzer gegenĂŒber der Verwendung von VR an öffentlichen, geteilten Orten befasst. Im Kontext meiner Arbeit werden RĂ€ume oder FlĂ€chen, die mit anderen ortsgleichen Menschen geteilt werden, als geteilte Orte bezeichnet. Diese Untersuchung ergab drei Hauptschwerpunkte: (1) Sicherheit und PrivatsphĂ€re, (2) Kommunikation mit physischen Kollaborateuren, und (3) Umgang mit der PrĂ€senz, sowohl in der physischen als auch in der virtuellen RealitĂ€t. Jedes Thema stellt einen Fokus in meiner Dissertation dar, in dem ich zentrale Herausforderungen identifiziere und LösungsansĂ€tze vorstelle. Erstens, untersuche ich Sicherheit und PrivatsphĂ€re an öffentlichen, geteilten Orten, indem ich aufdecke, inwieweit Umstehende in der Lage sind, allgemeine Aufgaben zu beobachten. In diesem Zusammenhang untersuche ich explizit die Gestaltung von Authentifizierungsmechanismen. Ich untersuche, wie bestehende Authentifizierungsmechanismen auf VR ĂŒbertragen werden können, und stelle neue AnsĂ€tze vor, die nutzbar und sicher sind. Zweitens, um die Kommunikation zwischen HMD-Nutzern und Umstehenden zu unterstĂŒtzen, erweitere ich das Forschungsfeld um VR-Interaktionen, die es Beobachtern ermöglichen, gĂŒnstige Momente fĂŒr die Unterbrechung von HMD-Nutzern zu wĂ€hlen. DarĂŒber hinaus steuere ich Methoden zur Darstellung von Unterbrechungen in VR bei und diskutiere ihre Auswirkungen auf PrĂ€senz und Leistung von Nutzern. Meine Arbeit brachte auch hervor, dass verschiedene virtuelle PrĂ€sentationen von ortsgleichen Kollaborateuren einen Effekt auf die soziale PrĂ€senz, Leistung und Vertrauen haben. Drittens, schließe ich meine Dissertation mit der Untersuchung von Methoden zur Verwaltung der PrĂ€senz, sowohl in der physischen als auch in der virtuellen RealitĂ€t ab. Ich schlage Systeme und Schnittstellen fĂŒr den Übergang zwischen den RealitĂ€ten vor, die die Benutzer in die Lage versetzen zu entscheiden, inwieweit sie sich der anderen RealitĂ€t bewusst sein wollen. Schließlich diskutiere ich die Möglichkeit, diesen beiden RealitĂ€ten systematisch Sinne zuzuordnen: die visuelle fĂŒr VR und die auditive und haptische fĂŒr die physische RealitĂ€t. DarĂŒber hinaus stelle ich spezifische Design-Richtlinien zur VerfĂŒgung, wie diese Erkenntnisse genutzt werden können, um VR-Anwender auf physische Grenzen und Hindernisse aufmerksam zu machen

    Enhancing the E-Commerce Experience through Haptic Feedback Interaction

    Get PDF
    The sense of touch is important in our everyday lives and its absence makes it difficult to explore and manipulate everyday objects. Existing online shopping practice lacks the opportunity for physical evaluation, that people often use and value when making product choices. However, with recent advances in haptic research and technology, it is possible to simulate various physical properties such as heaviness, softness, deformation, and temperature. The research described here investigates the use of haptic feedback interaction to enhance e-commerce product evaluation, particularly haptic weight and texture evaluation. While other properties are equally important, besides being fundamental to the shopping experience of many online products, weight and texture can be simulated using cost-effective devices. Two initial psychophysical experiments were conducted using free motion haptic exploration in order to more closely resemble conventional shopping. One experiment was to measure weight force thresholds and another to measure texture force thresholds. The measurements can provide better understanding of haptic device limitation for online shopping in terms of the availability of different stimuli to represent physical products. The outcomes of the initial psychophysical experimental studies were then used to produce various absolute stimuli that were used in a comparative experimental study to evaluate user experience of haptic product evaluation. Although free haptic exploration was exercised on both psychophysical experiments, results were relatively consistent with previous work on haptic discrimination. The threshold for weight force discrimination represented as downward forces was 10 percent. The threshold for texture force discrimination represented as friction forces was 14.1 percent, when using dynamic coefficient of friction at any level of static coefficient of friction. On the other hand, the comparative experimental study to evaluate user experience of haptic product information indicated that haptic product evaluation does not change user performance significantly. However, although there was an increase in the time taken to complete the task, the number of button click actions tended to decrease. The results showed that haptic product evaluation could significantly increase the confidence of shopping decision. Nevertheless, the availability of haptic product evaluation does not necessarily impose different product choices but it complements other selection criteria such as price and appearance. The research findings from this work are a first step towards exploring haptic-based environments in e-commerce environments. The findings not only lay the foundation for designing online haptic shopping but also provide empirical support to research in this direction

    Northern Sparks

    Get PDF
    An “episode of light” in Canada sparked by Expo 67 when new art forms, innovative technologies, and novel institutional and policy frameworks emerged together. Understanding how experimental art catalyzes technological innovation is often prized yet typically reduced to the magic formula of “creativity.” In Northern Sparks, Michael Century emphasizes the role of policy and institutions by showing how novel art forms and media technologies in Canada emerged during a period of political and social reinvention, starting in the 1960s with the energies unleashed by Expo 67. Debunking conventional wisdom, Century reclaims innovation from both its present-day devotees and detractors by revealing how experimental artists critically challenge as well as discover and extend the capacities of new technologies. Century offers a series of detailed cross-media case studies that illustrate the cross-fertilization of art, technology, and policy. These cases span animation, music, sound art and acoustic ecology, cybernetic cinema, interactive installation art, virtual reality, telecommunications art, software applications, and the emergent metadiscipline of human-computer interaction. They include Norman McLaren's “proto-computational” film animations; projects in which the computer itself became an agent, as in computer-aided musical composition and choreography; an ill-fated government foray into interactive networking, the videotext system Telidon; and the beginnings of virtual reality at the Banff Centre. Century shows how Canadian artists approached new media technologies as malleable creative materials, while Canada undertook a political reinvention alongside its centennial celebrations. Northern Sparks offers a uniquely nuanced account of innovation in art and technology illuminated by critical policy analysis

    An Overview of Serious Games

    Get PDF
    Serious games are growing rapidly as a gaming industry as well as a field of academic research. There are many surveys in the field of digital serious games; however, most surveys are specific to a particular area such as education or health. So far, there has been little work done to survey digital serious games in general, which is the main goal of this paper. Hence, we discuss relevant work on serious games in different application areas including education, well-being, advertisement, cultural heritage, interpersonal communication, and health care. We also propose a taxonomy for digital serious games, and we suggest a classification of reviewed serious games applications from the literature against the defined taxonomy. Finally, the paper provides guidelines, drawn from the literature, for the design and development of successful serious games, as well as discussing research perspectives in this domain

    Smartphone-Based Escalator Recognition for the Visually Impaired

    Get PDF
    It is difficult for visually impaired individuals to recognize escalators in everyday environments. If the individuals ride on escalators in the wrong direction, they will stumble on the steps. This paper proposes a novel method to assist visually impaired individuals in finding available escalators by the use of smartphone cameras. Escalators are recognized by analyzing optical flows in video frames captured by the cameras, and auditory feedback is provided to the individuals. The proposed method was implemented on an Android smartphone and applied to actual escalator scenes. The experimental results demonstrate that the proposed method is promising for helping visually impaired individuals use escalators

    Design of Cognitive Interfaces for Personal Informatics Feedback

    Get PDF

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility
    • 

    corecore