7 research outputs found

    Three-Dimensional Imaging Method Incorporating Range Points Migration and Doppler Velocity Estimation for UWB Millimeter-Wave Radar

    Get PDF
    High-resolution, short-range sensors that can be applied in optically challenging environments (e.g., in the presence of clouds, fog, and/or dark smog) are in high demand. Ultrawideband (UWB) millimeter-wave radars are one of the most promising devices for the above-mentioned applications. For target recognition using sensors, it is necessary to convert observational data into full 3-D images with both time efficiency and high accuracy. For such conversion algorithm, we have already proposed the range points migration (RPM) method. However, in the existence of multiple separated objects, this method suffers from inaccuracy and high computational cost due to dealing with many observed RPs. To address this issue, this letter introduces Doppler-based RPs clustering into the RPM method. The results from numerical simulations, assuming 140-GHz band millimeter radars, show that the addition of Doppler velocity into the RPM method results in more accurate 3-D images with reducing computational costs

    Change Detection in Multi-temporal Images Using Multistage Clustering for Disaster Recovery Planning

    Get PDF
    Change detection analysis on multi-temporal images using various methods have been developed by many researchers in the field of spatial data analysis and image processing. Change detection analysis has many benefit for real world applications such as medical image analysis, valuable material detector, satellite image analysis, disaster recovery planning, and many others. Indonesia is one of the most country that encounter natural disaster. The most memorable disaster was happened in December 26, 2004. Change detection is one of the important part management planning for natural disaster recovery. This article present the fast and accurate result of change detection on multi-temporal images using multistage clustering. There are three main step for change detection in this article, the first step is to find the image difference of two multi-temporal images between the time before disaster and after disaster using operation log ratio between those images. The second step is clustering the difference image using Fuzzy C means divided into three classes. Change, unchanged, and intermediate change region. Afterword the last step is cluster the change map from fuzzy C means clustering using k means clustering, divided into two classes. Change and unchanged region. Both clustering\u27s based on Euclidian distance

    CHANGE DETECTION IN MULTI-TEMPORAL IMAGES USING MULTISTAGE CLUSTERING FOR DISASTER RECOVERY PLANNING

    Get PDF
    Change detection analysis on multi-temporal images using various methods have been developed by many researchers in the field of spatial data analysis and image processing. Change detection analysis has many benefit for real world applications such as medical image analysis, valuable material detector, satellite image analysis, disaster recovery planning, and many others. Indonesia is one of the most country that encounter natural disaster. The most memorable disaster was happened in December 26, 2004. Change detection is one of the important part management planning for natural disaster recovery. This article present the fast and accurate result of change detection on multi-temporal images using multistage clustering. There are three main step for change detection in this article, the first step is to find the image difference of two multi-temporal images between the time before disaster and after disaster using operation log ratio between those images. The second step is clustering the difference image using Fuzzy C means divided into three classes. Change, unchanged, and intermediate change region. Afterword the last step is cluster the change map from fuzzy C means clustering using k means clustering, divided into two classes. Change and unchanged region. Both clustering’s based on Euclidian distance

    Crop Diseases Severity Identification by Deep Learning Approach

    Get PDF
    Improving yield and maintaining crop strength with optimization in use of resources are the major requirements in smart farming. To build a smart decision support system for improving production with flexibility, it requires   Remote Sensing Systems. Now days with effective use of machine learning and deep learning techniques, it is possible to make the system flexible and cost effective. The deep learning based system has enormous potential, so that it can process a large number of input data and it can also control nonlinear functions. Here it should be discussed that from continuous monitoring of crop leaves images shall ensures the diseases identification.The research concludes that the quick advances in deep learning methodology will provide gainful and complete classification of crop with 98.7% to 99.9% accuracy. In this research, different cropdiseases are classified based on image processing and Convolutional neural network method. For classification of maize crop diseases, different models have been developed, compared, and finally best one is found out.Also the finest model has been tested for different crop diseases to check its consistency

    Ilmalaserkeilausaineistojen vertailu perustuen kattojen ominaisuuksiin

    Get PDF
    Laser scanning is nowadays one of the most important technology in geospatial data collection. The technique has developed together with the other technologies and sciences, and the systems can be used with many different platforms on land, in the ocean and in the air. Airborne laser scanning (ALS) started right after the invention of the laser in 1960’s and the usage grew in 1990’s, when the first commercial system was released. The development has augmented the ways of surveying and the systems have new features and more options to collect as accurate data as possible. Several wavelengths and higher frequencies able thousands or even millions of measurements per second. The multispectral systems enable the characterization of the targets from the spectral information which helps for example in the data classification. Single photon technique provides higher imaging capability with lower costs and is used in the extensive topographic measurements. The processing of the point clouds are more important when the densities grow and the amount of noise points is higher. The processing usually includes preprocessing, data management, classification, segmentation and modeling to enable the analyzing of the data. The goal of the thesis is to compare and analyze the datasets of five different airborne laser scanners. The conventional LiDAR datasets are collected from low altitude helicopter with the Riegl’s VUX-1HA and miniVUX-1UAV systems. The state-of-the-art sensors, Titan multispectral LiDAR (Teledyne Optech) and SPL100 single photon LiDAR (Leica), are used in the data collection from the aircraft. The data is collected from the urban area of Espoonlahti, Finland, and the comparison is based on the roof features. Other land cover classes are left out from the investigation. From the roof features are investigated the differences, accuracies and qualities between the datasets. The urban environment was selected because the lack of ALS research done for the built environment, especially in Finland. The thesis introduces the background of the airborne laser scanning, theories and literature review, materials and methods used in the project. The laser scanners used in the work produce dense point clouds, where the most dense is up to 80 pts/m2. Based on the results the accuracies vary mainly between 0 and 10 cm. The scanners with infrared wavelengths produce better than 10 cm accuracies for the outlines of the roofs, unlike the green wavelength scanners. The differences in the corner coordinates are between 1 and 8 cm with a few exceptions. SPL100 system has the best height accuracy of 4.2 cm and otherwise the accuracies vary between 5 and 10 cm. The largest deviation compared to the roof planes occurs in the miniVUX-1UAV data (over 5 cm). For the surface areas the infrared frequencies produce differences of 0 to 2 percent from the reference data, whereas the differences of the green wavelength are mainly 1 to 7 percent. For the inclinations no significant differences were observed.Laserkeilaus on nykyään yksi tärkeimmistä tekniikoista geospatiaalisen tiedon keräämisessä. Tekniikka on kehittynyt yhdessä muiden teknologioiden ja tieteiden kanssa, ja järjestelmiä voidaan käyttää monilla eri alustoilla maassa, meressä ja ilmassa. Ilmalaserkeilaus (ALS) alkoi heti laserin keksimisen jälkeen 1960-luvulla ja käyttö kasvoi 1990-luvulla ensimmäisen kaupallisen järjestelmän julkaisun jälkeen. Kehitys on lisännyt mittaustapoja ja järjestelmien ominaisuuksien parantuessa on enemmän vaihtoehtoja kerätä tarkkaa aineistoa. Useilla aallonpituuksilla ja korkeammilla taajuuksilla pystytään tekemään tuhansia tai jopa miljoonia mittauksia sekunnissa. Monispektriset järjestelmät mahdollista-vat kohteiden tunnistamisen spektritietojen (aallonpituuksien jakauman) mukaan, jota voidaan hyödyntää esimerkiksi aineistojen luokittelussa. Yksifotoni–tekniikka mahdollistaa suuremman mittauskyvyn pienemmällä kustannuksella (energiankulutus) ja sitä käytetään laajojen alueiden mittauksissa. Pistepilvien käsittely on entistä tärkeämpää kun tiheydet kasvavat ja virhepisteiden määrä on suurempi. Prosessointiin kuuluu yleensä esikäsittely, tiedonhallinta, luokittelu, segmentointi ja mallinnus, ennen aineiston analysointia. Tämän opinnäytetyön tavoitteena on vertailla ja analysoida viiden eri ilmalaserkeilaimen tuottamia aineistoja. Ns. tavanomaiset LiDAR–aineistot on kerätty matalalla lentävästä helikopterista Rieglin VUX-1HA ja miniVUX-1UAV –keilaimilla. Viimeisintä tekniikkaa edustavat Titan monispektri LiDAR (Teledyne Optech) ja SPL100 single photon LiDAR (Leica) -aineistot on kerätty lentokoneesta. Aineistot on kerätty Espoonlahden alueelta ja vertailu perustuu kattojen ominaisuuksiin. Muut maanpinnan kohteet jätetään tarkastelun ulkopuolelle. Pistepilvien perusteella tutkitaan aineistojen välisiä eroja, tarkkuuksia ja muita ominaisuuksia. Kaupunkiympäristö valittiin kohteeksi vähäisen rakennetun ympäristön ALS–tutkimuksen takia etenkin Suomessa. Opinnäytetyössä esitellään ilmalaserkeilauksen taustaa, teoriaa ja tehdään kirjallisuuskatsaus aiheeseen liittyen, sekä käydään läpi projektissa käytetyt aineistot ja menetelmät. Työssä käytetyt keilaimet tuottavat tiheitä pistepilviä, joista tihein on jopa 80 pistettä/m2. Tulosten perusteella tarkkuudet vaihtelevat pääosin 0 – 10 cm välillä. Kattolinjojen kohdalla infrapuna-aallonpituutta käyttävät keilaimet pääsevät alle 10 cm, toisin kuin vihreän aallonpituuden keilaimet. Kattojen kulmakoordinaattien erot ovat 1 – 8 cm välillä muutamaa poikkeusta lukuun ottamatta. Korkeuksissa paras tarkkuus on SPL100 laserkeilaimella 4.2 cm, ja muuten ollaan 5 – 10 cm tarkkuuksissa. Suurimmat hajaumat tasoon verrattaessa syntyy miniVUX-1UAV aineistoon (yli 5 cm). Pinta-aloissa infrapunataajuudet tuottavat 0 – 2 prosentin eroja vertailuaineistoon, kun taas vihreällä aallonpituudella erot ovat pääosin 1 – 7 prosenttia. Kaltevuuskulmissa ei havaittu merkittäviä eroja
    corecore