73 research outputs found

    An Adaptive Protection for Radial AC Microgrid Using IEC 61850 Communication Standard : Algorithm Proposal Using Offline Simulations

    Get PDF
    The IEC 61850 communication standard is getting popular for application in electric power substation automation. This paper focuses on the potential application of the IEC 61850 generic object-oriented substation event (GOOSE) protocol in the AC microgrid for adaptive protection. The focus of the paper is to utilize the existing low-voltage ride through characteristic of distributed generators (DGs) with a reactive power supply during faults and communication between intelligent electronic devices (IEDs) at different locations for adaptive overcurrent protection. The adaptive overcurrent IEDs detect the faults with two different preplanned settings groups: lower settings for the islanded mode and higher settings for the grid-connected mode considering limited fault contributions from the converter-based DGs. Setting groups are changed to lower values quickly using the circuit breaker status signal (XCBR) after loss-of-mains, loss-of-DG or islanding is detected. The methods of fault detection and isolation for two different kinds of communication-based IEDs (adaptive/nonadaptive) are explained for three-phase faults at two different locations. The communication-based IEDs take decisions in a decentralized manner, using information about the circuit breaker status, fault detection and current magnitude comparison signals obtained from other IEDs. However, the developed algorithm can also be implemented with the centralized system. An adaptive overcurrent protection algorithm was evaluated with PSCAD (Power Systems Computer Aided Design) simulations, and results were found to be effective for the considered fault cases.© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    A review of networked microgrid protection: Architectures, challenges, solutions, and future trends

    Get PDF
    The design and selection of advanced protection schemes have become essential for the reliable and secure operation of networked microgrids. Various protection schemes that allow the correct operation of microgrids have been proposed for individual systems in different topologies and connections. Nevertheless, the protection schemes for networked microgrids are still in development, and further research is required to design and operate advanced protection in interconnected systems. The interconnection of these microgrids in different nodes with various interconnection technologies increases the fault occurrence and complicates the protection operation. This paper aims to point out the challenges in developing protection for networked microgrids, potential solutions, and research areas that need to be addressed for their development. First, this article presents a systematic analysis of the different microgrid clusters proposed since 2016, including several architectures of networked microgrids, operation modes, components, and utilization of renewable sources, which have not been widely explored in previous review papers. Second, the paper presents a discussion on the protection systems currently available for microgrid clusters, current challenges, and solutions that have been proposed for these systems. Finally, it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation

    Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review

    Get PDF
    The protection of AC microgrids (MGs) is an issue of paramount importance to ensure their reliable and safe operation. Designing reliable protection mechanism, however, is not a trivial task, as many practical issues need to be considered. The operation mode of MGs, which can be grid-connected or islanded, employed control strategy and practical limitations of the power electronic converters that are utilized to interface renewable energy sources and the grid, are some of the practical constraints that make fault detection, classification, and coordination in MGs different from legacy grid protection. This article aims to present the state-of-the-art of the latest research and developments, including the challenges and issues in the field of AC MG protection. A broad overview of the available fault detection, fault classification, and fault location techniques for AC MG protection and coordination are presented. Moreover, the available methods are classified, and their advantages and disadvantages are discussed

    Real-Time Hardware-In-the-Loop Testing of IEC 61850 GOOSE based Logically Selective Adaptive Protection of AC Microgrid

    Get PDF
    The real-time (RT) hardware-in-the-loop (HIL) simulation-based testing is getting popular for power systems and power electronics applications. The HIL testing provides the interactive environment between the actual power system components like control and protection devices and simulated power system networks including different communication protocols. Therefore, the results of the RT simulation and HIL testing before the actual implementation in the field are generally more acceptable than offline simulations. This paper reviews the HIL testing methods and applications in the recent literature and presents a step-by-step documentation of a new HIL testing setup for a specific case study. The case study evaluates improved version of previously proposed communication-dependent logically selective adaptive protection algorithm of AC microgrids using the real-time HIL testing of IEC 61850 generic object-oriented substation event (GOOSE) protocol. The RT model of AC microgrid including the converter-based distributed energy resources and battery storage along with IEC 61850 GOOSE protocol implementation is created in MATLAB/Simulink and RT-LAB software using OPAL-RT simulator platform. The Ethernet switch acts as IEC 61850 station bus for exchanging GOOSE Boolean signals between the RT target and the actual digital relay. The evaluation of the round-trip delay using the RT simulation has been performed. It is found that the whole process of fault detection, isolation and adaptive setting using Ethernet communication is possible within the standard low voltage ride through curve maintaining the seamless transition to the islanded mode. The signal monitoring inside the relay is suggested to avoid false tripping of the relay.©2021 Institute of Electrical and Electronics Engineers. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/This work was mainly carried out in the SolarX research project funded by the Business Finland under Grant No. 6844/31/2018. Some part of this work was carried out during the VINPOWER research project funded by the European Regional Development Fund (ERDF), Project No. A73094. The financial support provided through these projects is greatly acknowledged.fi=vertaisarvioitu|en=peerReviewed

    Mikroverkkojen ja hajautettujen energiaratkaisujen suojaus IEC 61850 -standardiin perustuen

    Get PDF
    Microgrids are a potential part of the future smart distribution grid with capability of island operation, envisioned to support the goals of increased use of renewable and distributed energy resources, active consumer participation and improved quality of electricity supply in the future power systems. This thesis examines the implementation of protection systems for microgrids and distributed energy resources using the IEC 61850 standard series. IEC 61850 is one of the core smart grid standards originally developed for substation automation, but extended in its usage to many areas including distributed energy resources. The main objectives of this thesis are analysing the implementation of microgrid protection, usage of IEC 61850 in distribution applications, and applicability of Multipower test environment of VTT Technical Research Centre of Finland in researching these subjects. A literature review of microgrid protection issues and proposed protection schemes as well as an overview of the IEC 61850 standard series and its extensions are presented. An adaptive protection scheme is implemented in an example microgrid configuration of the Multipower environment using IEC 61850, and its correct operation verified during islanding and in the case of a communication network failure. Finally, recommendations are given on the future development and research topics of the Multipower environment, including integration of different distributed energy resource units from other VTT research areas such as fuel cells and electrical vehicles to the system, studying the usage of different networks for communication inside the environment and testing of harmonization between IEC 61850 and other smart grid standards

    Protection concepts in distribution networks with decentralised energy resources

    Get PDF
    Die stetig steigende Anbindung von dezentralen Energieerzeugern (DER) an Mittel- (MS) und Niederspannungsnetze (NS) fordert eine Analyse der bestehenden Netzschutzkonzepte. Die Beeinflussung der Netzschutzkonzepte ist abhängig davon, wie die DER an das Mittelspannungsnetz angebunden sind. Die vorliegende Arbeit konzentriert sich auf die Analyse von Beeinflussungen durch kleine DER, die an das Mittelspannungsnetz über einen Umrichter angebunden sind. Das erste Problem, das in dieser Arbeit untersucht ist, ist die Beeinflussung der unterschiedlichen Schutzalgorithmen durch hohe Anteile von Harmonischen. Diese werden verursacht durch die steigende Zahl elektrischer Geräte, sowohl auf der Verbraucherseite als auch auf der Seite der Energieerzeuger. Die Beeinflussung, entsprechend der Norm IEC 61000-3–2, wurde an unterschiedlichen Typen von Netzschutzsystemen untersucht. Die getesteten Distanzschutzalgorithmen basierten auf konventionellen Methoden zu Berechnung der Impedanz wie: SinusAlgorithmen, Algorithmen basierend auf der Leitungs-Differentialgleichung erster oder zweiter Ordnung, Filteralgorithmen für Berechnung komplexer Zeiger, und Algorithmen, die auf künstliche Intelligenz basieren, wie harmonisch aktivierte neuronale Netze. Die unterschiedlichen Typen von Netzschutzprinzipien, die untersucht wurden sind: Überstrom, Distanz und Differenzial. Einige Untersuchungen wurden auch im Netzschutzlabor der Universität durchgeführt. Bei beiden Tests konnte nachgewiesen werden, dass die heutigen state-of-the-art Netzschutzsysteme durch Harmonische entsprechend IEC 61000-3–2, praktisch nicht beeinflusst werden. Der zweite Problemkreis der in dieser Arbeit diskutiert wird sind die Anforderungen, welche die Anbindung von DER an das Netz, an moderne Netzschutzsysteme stellen. Einige Beispiele illustrieren die Lage der Energieversorgung der Zukunft und zeigen Selektivitätsprobleme auf, sollten nur konventionelle Netzschutzsysteme benutzt werden. In dieser Arbeit wird ein neues Schutzkonzept für Mittelspannungsnetze mit hohem Anteil an DER vorgestellt und analysiert. Das Konzept beruht auf der neuen Norm für „Substation Automatisation System - IEC 61850“ und einem Netzschutz-Managementsystem. Die Methode der zusätzlichen Signal-Einspeisung wurde ebenfalls vorgestellt. Die Basis eines effizienten Netzschutz-Managementsystems ist das Wissen vom Verhalten des Systems in normalen Betrieb und unter Fehlerbedingungen. Die Computer- und Internettechnologie, die moderne Kommunikation, der interdisziplinäre Datenaustausch stellen ganz neue Anforderungen an die Wissensbasis energietechnischer Ingenieure. Mit dem Ziel neue Medien in der Ingenieurausbildung einzusetzen ist, im Rahmen dieser Arbeit ein E-learning Kurs entwickelt worden. Dabei ermöglicht das Internet neue Methoden zur Wissensvermittlung zu entwickeln. Die Unabhängigkeit von Zeit und Ort, die große Anzahl von Lehrmöglichkeiten und die Online-Diskussionen sind nur einige zu nennende Vorteile. In dieser Arbeit ist die Idee zur Realisierung sowie Ergebnisse des E-learning Kurses im Bereich digitaler Netzschutztechnik, als Erweiterung der konventionellen Lehrveranstaltung präsentiert worden. Dieser Kurs wird den Studenten der Universität in einem speziell gestalteten Multimedialabor angeboten. Es besteht via Internet die Möglichkeit den Kurses z.B. zu Hause zur Wiederholung und Prüfungsvorbereitung nochmals zu bearbeiten.    The continuously rising implementation of DER in the distribution network requests analyses of the present network protection concepts. Depending on the type of connection to the network, the influences of the DER on the network protection systems vary. This dissertation concentrates on the analyses of the influence of implementation of small DER, which are connected to the network via an inverter. The first problem discussed in this dissertation is the influence of high level of harmonics on the protection devices. The rising implementation of power electronic devices into the network, both on the side of the energy generation and energy consumption, leads to a high level of injected harmonics into the network. The influence of a high amount of harmonics, according to the Standard IEC 61000-3–2, on different types of algorithms implemented in different types of protection devices was investigated using a test network. The tested algorithms implemented in the distance protection devices were based on conventional methods such as steady state algorithms, algorithms using the differential equation of first or second order written for the protected line, algorithms based on the filter approach, and on the “new” methods using artificial intelligence i.e.: parametrical estimation and harmonic activated neuronal networks. The different types of protection devices that were investigated were based on the principle of over-current (definite-current and inverse time), distance and differential. Some of the tests were conducted in the protection technique laboratory at the university. From both tests (simulation and practical) it is concluded that the state-of-the-art protection devices are insensitive to harmonics according to the allowed level by the standard IEC 61000-3–2. The tendency of today’s protection technology engineers lies in searching for ways to shorten of the calculation time of the algorithms. The second problem discussed is the challenge set to the network protection systems in the distribution networks with implemented DER. A few examples illustrate the situation of the energy supply of the future illustrate the problems of lack of protection with the present protection concepts. In this sense, this work presents and analyses a protectionconcept in distribution networks with DER, using the substation automation system and the protection management system based on the new standard IEC 61850 for communication networks in substations. The method of using an additional signal injection as additional criteria for the presented network protection concept is also discussed. The basis for efficient protection system management is the knowledge of power system performance under fault and normal operation (service) conditions as well as the switchgear interfaces. This requires a proper knowledge of power system engineering. With a changeable power system infrastructure, the protection system management becomes a real challenge to the network protection experts. Computer- and internet technology, modern serial communications, sharing of data with other disciplines and a trend towards system engineering require a broader knowledge and close co-operation with others, beside the protection system engineers. With the goal of spreading the knowledge of network protection systems, in the frames of this work a special e-learning course was realised. The internet provides new possibilities for gaining and spreading knowledge. The time and place independence, the high amount of possibilities for knowledge sources and on line discussions are just a few of the possibilities. In this work, the idea, the realisation and the implementation of this new way of teaching and studying digital network protection alongside the conventional way are presented as well. An importance is also given to the feed back of the user of the e-learning course. This course is offered to the students at the university in a specially realised multimedia laboratory and used for gaining knowledge in the area of network protection technique. The possibility of using the course at home for re-capitulation of the taught material and for self-test is also possible, by simply logging on to the e-learning course. This course could also be used by engineers who want to refresh their knowledge in the form of a fast (self) training.   &nbsp

    Cyber-Security Solutions for Ensuring Smart Grid Distribution Automation Functions

    Get PDF
    The future generation of the electrical network is known as the smart grid. The distribution domain of the smart grid intelligently supplies electricity to the end-users with the aid of the decentralized Distribution Automation (DA) in which intelligent control functions are distributed and accomplished via real-time communication between the DA components. Internet-based communication via the open protocols is the latest trend for decentralized DA communication. Internet communication has many benefits, but it exposes the critical infrastructure’s data to cyber-security threats. Security attacks may not only make DA services unreachable but may also result in undesirable physical consequences and serious damage to the distribution network environment. Therefore, it is compulsory to protect DA communication against such attacks. There is no single model for securing DA communication. In fact, the security level depends on several factors such as application requirements, communication media, and, of course, the cost.There are several smart grid security frameworks and standards, which are under development by different organizations. However, smart grid cyber-security field has not yet reached full maturity and, it is still in the early phase of its progress. Security protocols in IT and computer networks can be utilized to secure DA communication because industrial ICT standards have been designed in accordance with Open Systems Interconnection model. Furthermore, state-of-the-art DA concepts such as Active distribution network tend to integrate processing data into IT systems.This dissertation addresses cyber-security issues in the following DA functions: substation automation, feeder automation, Logic Selectivity, customer automation and Smart Metering. Real-time simulation of the distribution network along with actual automation and data networking devices are used to create hardware-in-the-loop simulation, and experiment the mentioned DA functions with the Internet communication. This communication is secured by proposing the following cyber-security solutions.This dissertation proposes security solutions for substation automation by developing IEC61850-TLS proxy and adding OPen Connectivity Unified Architecture (OPC UA) Wrapper to Station Gateway. Secured messages by Transport Layer Security (TLS) and OPC UA security are created for protecting substation local and remote communications. Data availability is main concern that is solved by designing redundant networks.The dissertation also proposes cyber-security solutions for feeder automation and Logic Selectivity. In feeder automation, Centralized Protection System (CPS) is proposed as the place for making Decentralized feeder automation decisions. In addition, applying IP security (IPsec) in Tunnel mode is proposed to establish a secure communication path for feeder automation messages. In Logic Selectivity, Generic Object Oriented Substation Events (GOOSE) are exchanged between the substations. First, Logic Selectivity functional characteristics are analyzed. Then, Layer 2 Tunneling over IPsec in Transport mode is proposed to create a secure communication path for exchanging GOOSE over the Internet. Next, communication impact on Logic Selectivity performance is investigated by measuring the jitter and latency in the GOOSE communication. Lastly, reliability improvement by Logic Selectivity is evaluated by calculating reliability indices.Customer automation is the additional extension to the smart grid DA. This dissertation proposes an integration solution for the heterogeneous communication parties (TCP/IP and Controller Area Network) in Home Area Network. The developed solution applies Secure Socket Layer in order to create secured messages.The dissertation also proposes Secondary Substation Automation Unit (SSAU) for realtime communication of low voltage data to metering database. Point-to-Point Tunneling Protocol is proposed to create a secure communication path for Smart Metering data.The security analysis shows that the proposed security solutions provide the security requirements (Confidentiality, Integrity and Availability) for DA communication. Thus, communication is protected against security attacks and DA functions are ensured. In addition, CPS and SSAU are proposed to distribute intelligence over the substations level

    Automatic fault location in electrical distribution networks with distributed generation

    Get PDF
    Nowadays the electrical network is continuously evolving due to the increasing deployment of Information Technologies and the Distribution Energy Resources. This scenario affects directly to the quality of service in the electrical distribution networks. For this reason, the Power Quality is a key important concern to make the electrical network evolve towards a Smart Grid. Power quality is defined through three important focal points: availability, wave quality and commercial quality. The presence of the Distribution Energy Resources in the current electrical distribution network is showing a new scenario where the fault detection is more complex due to the flow current is in both directions. This thesis is focused in the analysis of several methods to locate a fault in electrical distribution network and also how the current communication standards can improve considerably this fault location. It is important to remark that the main contribution of this thesis is in the analysis of several propositions and algorithms to enhance the fault location in a distribution network using the current Intelligent Electronic Device with international standards such as IEC 61850. All of these algorithms have been focused to work in a mesh distribution networks. Another important contribution of this thesis is in the adaptive protection system in order to isolate correctly the fault in a ring system distribution. Although this proposition could be extended to a mesh network where the elements of the network can operate under a fault. Finally, the thesis concludes that the use of communication standards and Internet of Things with current developed Intelligent Electronic Devices technology can contribute significantly to enhance the current and future electrical network distribution.La xarxa elèctrica evoluciona contínuament a causa del creixent desplegament de les Tecnologies de la Informació i dels Recursos Energètics Distribuïts. Aquest escenari afecta directament a la qualitat de servei de les xarxes de distribució elèctrica. Per aquest motiu, el mantenir i millorar el nivell de qualitat d'energia és un punt clau per fer evolucionar la xarxa elèctrica cap a una xarxa Smart Grid. Aquesta qualitat de l'energia es defineix per medi de de tres punts importants: disponibilitat, qualitat d'ona i qualitat comercial. La presència dels Recursos Energètics Distribuïts mostra un nou escenari en què la detecció de defectes es complica afectant a la disponibilitat del servei. Aquesta tesi es centra principalment en l'anàlisi de diversos mètodes per localitzar un defecte a la xarxa de distribució elèctrica i també en com l'ús dels estàndards de comunicació actuals poden contribuir considerablement a la localització del defecte. És important remarcar que la principal contribució d'aquest document ha estat en l'anàlisi de diverses proposicions i algoritmes per millorar la localització de faltes en una xarxa de distribució utilitzant Dispositius Electrònics Intel·ligents amb estàndards internacionals com l'IEC 61850. Tots aquests algoritmes han estat definits per treballar en xarxes de distribució mallades. Una altra contribució important d'aquesta tesi es troba en el sistema de protecció adaptatiu per tal d'aïllar correctament el defecte en una distribució del sistema d'anell amb interruptors automàtics. Aquesta proposta es podria ampliar a una xarxa mallada. Finalment, la tesi conclou amb que l'ús d'estàndards de comunicació i l'Internet of Things en combinació amb Dispositius Electrònics Intel·ligents, desenvolupats actualment, poden contribuir significativament a millorar la distribució de la xarxa elèctrica actual i futura.Postprint (published version

    Protection of Future Electricity Systems

    Get PDF
    The electrical energy industry is undergoing dramatic changes: massive deployment of renewables, increasing share of DC networks at transmission and distribution levels, and at the same time, a continuing reduction in conventional synchronous generation, all contribute to a situation where a variety of technical and economic challenges emerge. As the society’s reliance on electrical power continues to increase as a result of international decarbonisation commitments, the need for secure and uninterrupted delivery of electrical energy to all customers has never been greater. Power system protection plays an important enabling role in future decarbonized energy systems. This book includes ten papers covering a wide range of topics related to protection system problems and solutions, such as adaptive protection, protection of HVDC and LVDC systems, unconventional or enhanced protection methods, protection of superconducting transmission cables, and high voltage lightning protection. This volume has been edited by Adam Dyśko, Senior Lecturer at the University of Strathclyde, UK, and Dimitrios Tzelepis, Research Fellow at the University of Strathclyde
    corecore