463 research outputs found

    Still Wrong Use of Pairings in Cryptography

    Get PDF
    Several pairing-based cryptographic protocols are recently proposed with a wide variety of new novel applications including the ones in emerging technologies like cloud computing, internet of things (IoT), e-health systems and wearable technologies. There have been however a wide range of incorrect use of these primitives. The paper of Galbraith, Paterson, and Smart (2006) pointed out most of the issues related to the incorrect use of pairing-based cryptography. However, we noticed that some recently proposed applications still do not use these primitives correctly. This leads to unrealizable, insecure or too inefficient designs of pairing-based protocols. We observed that one reason is not being aware of the recent advancements on solving the discrete logarithm problems in some groups. The main purpose of this article is to give an understandable, informative, and the most up-to-date criteria for the correct use of pairing-based cryptography. We thereby deliberately avoid most of the technical details and rather give special emphasis on the importance of the correct use of bilinear maps by realizing secure cryptographic protocols. We list a collection of some recent papers having wrong security assumptions or realizability/efficiency issues. Finally, we give a compact and an up-to-date recipe of the correct use of pairings.Comment: 25 page

    Two-Party Threshold Key Agreement Protocol for MANETs using Pairings

    Get PDF
    In MANET environment, the nodes are mobile i.e., nodes move in and out dynamically. This causes difficulty in maintaining a central trusted authority say Certification Authority CA or Key Generation Centre KCG. In addition most of cryptographic techniques need a key to be shared between the two communicating entities. So to introduce security in MANET environment, there is a basic need of sharing a key between the two communicating entities without the use of central trusted authority. So we present a decentralized two-party key agreement protocol using pairings and threshold cryptography ideas. Our model is based on Joux2019;s three-party key agreement protocol which does not authenticate the users and hence is vulnerable to man-in-the-middle attack. This model protects from man-in-the-middle attack using threshold cryptography

    Two secure non-symmetric role Key-Agreement protocols

    Get PDF
    Recently, some two-party Authenticated Key Agreement protocols over elliptic curve based algebraic groups, in the context of Identity-Based cryptography have been proposed. The main contribution of this category of protocols is to reduce the complexity of performing algebraic operations through eliminating the need to using Bilinear Pairings. In this paper, we proposed two novel Identity-Based Authenticated Key Agreement protocols over non-symmetric role participants without using Bilinear Pairings. The results show that our proposed schemes beside of supporting security requirements of Key Agreement protocols, require a subset of operations with low complexity in compare with related protocols in this scientific area

    An anonymous authentication and key establish scheme for smart grid: FAuth

    Get PDF
    The smart meters in electricity grids enable fine-grained consumption monitoring. Thus, suppliers could adjust their tariffs. However, as smart meters are deployed within the smart grid field, authentication and key establishment between smart grid parties (smart meters, aggregators, and servers) become an urgency. Besides, as privacy is becoming a big concern for smart meters, smart grid parties are reluctant to leak their real identities during the authentication phase. In this paper, we analyze the recent authentication schemes in smart grids and other applied fields, and propose an anonymous authentication and key establishment scheme between smart grid parties: FAuth. The proposed scheme is based on bilinear maps and the computational Diffie–Hellman problem. We changed the way the smart meter parties registered at Key Generation Center, making the proposed scheme robust against various potential attacks that could be launched by the Key Generation Center, as the scheme could avoid the private key of the smart meter parties from leaking to the Key Generation Center. Besides, the proposed scheme reduced the computational load, both at the smart meter side and at the aggregator side, which make it perfectly suitable for computation-constrained devices. Security proof results show the proposed scheme is secure under the BAN logic and random oracle model

    Secure Authentication and Privacy-Preserving Techniques in Vehicular Ad-hoc NETworks (VANETs)

    Get PDF
    In the last decade, there has been growing interest in Vehicular Ad Hoc NETworks (VANETs). Today car manufacturers have already started to equip vehicles with sophisticated sensors that can provide many assistive features such as front collision avoidance, automatic lane tracking, partial autonomous driving, suggestive lane changing, and so on. Such technological advancements are enabling the adoption of VANETs not only to provide safer and more comfortable driving experience but also provide many other useful services to the driver as well as passengers of a vehicle. However, privacy, authentication and secure message dissemination are some of the main issues that need to be thoroughly addressed and solved for the widespread adoption/deployment of VANETs. Given the importance of these issues, researchers have spent a lot of effort in these areas over the last decade. We present an overview of the following issues that arise in VANETs: privacy, authentication, and secure message dissemination. Then we present a comprehensive review of various solutions proposed in the last 10 years which address these issues. Our survey sheds light on some open issues that need to be addressed in the future

    Identity-Based Blind Signature Scheme with Message Recovery

    Get PDF
    Blind signature allows a user to obtain a signature on a message without revealing anything about the message to the signer. Blind signatures play an important role in many real world applications such as e-voting, e-cash system where anonymity is of great concern. Due to the rapid growth in popularity of both wireless communications and mobile devices, the design of secure schemes with low-bandwidth capability is an important research issue. In this paper, we present a new blind signature scheme with message recovery in the ID-based setting using bilinear pairings over elliptic curves. The proposed scheme is unforgeable with the assumption that the Computational Diffie-Hellman problem is hard. We compare our scheme with the related schemes in terms of computational and communicational point of view
    corecore