6 research outputs found

    Positioning Improvement for Spaceborne Laser Footprint Based on Precisely Terrain Data

    Get PDF
    Spaceborne laser altimetry represents a novel active remote sensing technology applicable to earth observation, which together with imaging spectroscopy and synthetic aperture radar as a core technology for data acquisition in the earth observation systems. However, the accuracy of horizontal positioning for laser footprints from spaceborne laser altimeters declines due to various factors such as the changes in the orbital environment and the deterioration of performance. Moreover, the limited frequency of in-orbit calibration of the spaceborne laser altimeters and the non-disclosure of calibration parameters mean that users are heavily reliant on positioning accuracy of the altimetry data provided. To address this issue, a new algorithm is proposed in this study for enhancing the accuracy of horizontal positioning for laser footprints in the absence of satellite altimeter pointing and ranging parameters. In this algorithm, high-resolution DSM is taken as the reference terrain data to take advantage of the higher precision in elevation over horizontal positioning of the laser footprints. By adjusting the horizontal position of the laser footprint within a small area, the algorithm achieves the optimal alignment of laser elevation data with the reference terrain. Then, the resulting shift in the horizontal position of the laser footprints is referenced to correct their horizontal positioning during that period. Based on the high-accuracy DSM data collected from the Xinjiang autonomous region in China and the data collected by the GF-7 satellite, simulation experiments are performed in this study to analyze and validate the proposed algorithm. According to the experimental results, the horizontal accuracy of the laser footprints improves significantly from 12.56 m to 3.11 m after optimization by the proposed method. With the elimination of 9.45 m horizontal error, accuracy is improved by 75.23%. This method is demonstrated as effective in further optimizing the horizontal position of laser altimetry data products in the absence of altimeter parameters and original data, which promotes the application of spaceborne laser data

    Positioning Improvement for Spaceborne Laser Footprint Based on Precisely Terrain Data

    Get PDF
    Spaceborne laser altimetry represents a novel active remote sensing technology applicable to earth observation, which together with imaging spectroscopy and synthetic aperture radar as a core technology for data acquisition in the earth observation systems. However, the accuracy of horizontal positioning for laser footprints from spaceborne laser altimeters declines due to various factors such as the changes in the orbital environment and the deterioration of performance. Moreover, the limited frequency of in-orbit calibration of the spaceborne laser altimeters and the non-disclosure of calibration parameters mean that users are heavily reliant on positioning accuracy of the altimetry data provided. To address this issue, a new algorithm is proposed in this study for enhancing the accuracy of horizontal positioning for laser footprints in the absence of satellite altimeter pointing and ranging parameters. In this algorithm, high-resolution DSM is taken as the reference terrain data to take advantage of the higher precision in elevation over horizontal positioning of the laser footprints. By adjusting the horizontal position of the laser footprint within a small area, the algorithm achieves the optimal alignment of laser elevation data with the reference terrain. Then, the resulting shift in the horizontal position of the laser footprints is referenced to correct their horizontal positioning during that period. Based on the high-accuracy DSM data collected from the Xinjiang autonomous region in China and the data collected by the GF-7 satellite, simulation experiments are performed in this study to analyze and validate the proposed algorithm. According to the experimental results, the horizontal accuracy of the laser footprints improves significantly from 12.56 m to 3.11 m after optimization by the proposed method. With the elimination of 9.45 m horizontal error, accuracy is improved by 75.23%. This method is demonstrated as effective in further optimizing the horizontal position of laser altimetry data products in the absence of altimeter parameters and original data, which promotes the application of spaceborne laser data

    A Range Correction for Icesat and Its Potential Impact on Ice-sheet Mass Balance Studies

    Get PDF
    We report on a previously undocumented range error in NASA's Ice, Cloud and land Elevation Satellite (ICESat) that degrades elevation precision and introduces a small but significant elevation trend over the ICESat mission period. This range error (the Gaussian-Centroid or 'G-C'offset) varies on a shot-to-shot basis and exhibits increasing scatter when laser transmit energies fall below 20 mJ. Although the G-C offset is uncorrelated over periods less than1 day, it evolves over the life of each of ICESat's three lasers in a series of ramps and jumps that give rise to spurious elevation trends of 0.92 to 1.90 cm yr(exp 1), depending on the time period considered. Using ICESat data over the Ross and Filchner-Ronne ice shelves we show that (1) the G-C offset introduces significant biases in ice-shelf mass balance estimates, and (2) the mass balance bias can vary between regions because of different temporal samplings of ICESat.We can reproduce the effect of the G-C offset over these two ice shelves by fitting trends to sample-weighted mean G-C offsets for each campaign, suggesting that it may not be necessary to fully repeat earlier ICESat studies to determine the impact of the G-C offset on ice-sheet mass balance estimates

    Lidar for Biomass Estimation

    Get PDF

    Surface velocity and mass balance of Livingston Island ice cap, Antarctica

    Get PDF
    The mass budget of the ice caps surrounding the Antarctica Peninsula and, in particular, the partitioning of its main components are poorly known. Here we approximate frontal ablation (i.e. the sum of mass losses by calving and submarine melt) and surface mass balance of the ice cap of Livingston Island, the second largest island in the South Shetland Islands archipelago, and analyse variations in surface velocity for the period 2007–2011. Velocities are obtained from feature tracking using 25 PALSAR-1 images, and used in conjunction with estimates of glacier ice thicknesses inferred from principles of glacier dynamics and ground-penetrating radar observations to estimate frontal ablation rates by a flux-gate approach. Glacier-wide surface mass-balance rates are approximated from in situ observations on two glaciers of the ice cap. Within the limitations of the large uncertainties mostly due to unknown ice thicknesses at the flux gates, we find that frontal ablation (−509 ± 263 Mt yr−1, equivalent to −0.73 ± 0.38 m w.e. yr−1 over the ice cap area of 697 km2) and surface ablation (−0.73 ± 0.10 m w.e. yr−1) contribute similar shares to total ablation (−1.46 ± 0.39 m w.e. yr−1). Total mass change (δM = −0.67 ± 0.40 m w.e. yr−1) is negative despite a slightly positive surface mass balance (0.06 ± 0.14 m w.e. yr−1). We find large interannual and, for some basins, pronounced seasonal variations in surface velocities at the flux gates, with higher velocities in summer than in winter. Associated variations in frontal ablation (of ~237 Mt yr−1; −0.34 m w.e. yr−1) highlight the importance of taking into account the seasonality in ice velocities when computing frontal ablation with a flux-gate approach
    corecore