51 research outputs found

    Increased compression efficiency of AVC and HEVC CABAC by precise statistics estimation

    Get PDF
    The paper presents Improved Adaptive Arithmetic Coding algorithm for application in future video compression technology. The proposed solution is based on the Context-based Adaptive Binary Arithmetic Coding (CABAC) technique and uses the authors’ mechanism of symbols probability estimation that exploits Context-Tree Weighting (CTW) technique. This paper proposes the version of the algorithm, that allows an arbitrary selection of depth of context trees, when activating the algorithm in the framework of the AVC or HEVC video encoders. The algorithm has been tested in terms of coding efficiency of data and its computational complexity. Results showed, that depending of depth of context trees from 0.1% to 0.86% reduction of bitrate is achieved, when using the algorithm in the HEVC video encoder and 0.4% to 2.3% compression gain in the case of the AVC. The new solution increases complexity of entropy encoder itself, however, this does not translate into increase the complexity of the whole video encoder

    Robust Eye Gaze Estimation

    Get PDF
    Eye gaze detection under challenging lighting conditions is a non-trivial task. Pixel intensity and the shades around the eye region may change depending on the time of day, location, or due to artificial lighting. This paper introduces a lighting-adaptive solution for robust eye gaze detection. First, we propose a binarization and cropping technique to limit our region of interest. Then we develop a gradient-based method for eye-pupil detection; and finally, we introduce an adaptive eye-corner detection technique that altogether lead to robust eye gaze estimation. Experimental results show the outperformance of the proposed method compared with related techniques

    Eye Status Based on Eyelid Detection: A Driver Assistance System

    Get PDF
    Fatigue and driver drowsiness monitoring is an important subject for designing driver assistance systems. The measurement of eye closure is a fundamental step for driver awareness detection. We propose a method which is based on eyelid detection and the measurement of the distance between the eyelids. First, the face and the eyes of the driver are localized. After extracting the eye region, the proposed algorithm detects eyelids and computes the percentage of eye closure. Experimental results are performed on the BioID database. Our comparisons show that the proposed method outperforms state-of-the-art methods

    An Iterative and Toolchain-Based Approach to Automate Scanning and Mapping Computer Networks

    Full text link
    As today's organizational computer networks are ever evolving and becoming more and more complex, finding potential vulnerabilities and conducting security audits has become a crucial element in securing these networks. The first step in auditing a network is reconnaissance by mapping it to get a comprehensive overview over its structure. The growing complexity, however, makes this task increasingly effortful, even more as mapping (instead of plain scanning), presently, still involves a lot of manual work. Therefore, the concept proposed in this paper automates the scanning and mapping of unknown and non-cooperative computer networks in order to find security weaknesses or verify access controls. It further helps to conduct audits by allowing comparing documented with actual networks and finding unauthorized network devices, as well as evaluating access control methods by conducting delta scans. It uses a novel approach of augmenting data from iteratively chained existing scanning tools with context, using genuine analytics modules to allow assessing a network's topology instead of just generating a list of scanned devices. It further contains a visualization model that provides a clear, lucid topology map and a special graph for comparative analysis. The goal is to provide maximum insight with a minimum of a priori knowledge.Comment: 7 pages, 6 figure

    Indoor Outdoor Scene Classification in Digital Images

    Get PDF
    In this paper, we present a method to classify real-world digital images into indoor and outdoor scenes. Indoor class consists of four groups: bedroom, kitchen, laboratory and library. Outdoor class consists of four groups: landscape, roads, buildings and garden. Application considers real-time system and has a dedicated data-set. Input images are pre-processed and converted into gray-scale and is re-sized to “128x128” dimensions. Pre-processed images are sent to “Gabor filters”, which pre-computes filter transfer functions, which are performed on Fourier domain. The processed signal is finally sent to GIST feature extraction and the images are classified using “kNN classifier”. Most of the techniques have been based on the use of texture and color space features. As of date, we have been able to achieve 80% accuracy with respect to image classification

    QUANTUM ROAD TRAFFIC MODEL FOR AMBULANCE TRAVEL TIME ESTIMATION

    Get PDF
    Efficient management of ambulance utilisation is a vital issue for life saving. Knowledge of the amount of time needed for an ambulance to get to the hospital and when it will be available for a new task, can be estimated using modern Intelligent Transport Systems. Their main feature is an ability to simulate the state of traffic not only in long term, but also the real time events like accidents or high congestion, using microscopic models. The paper introduces usage of Quantum Computing paradigm to propose a quantum model of road traffic, which can track the state of traffic and estimate the travel time of vehicles. Model, if run on quantum computer can simulate the traffic in vast areas in real time. Proposed model was verified against the cellular automata model. Finally, application of quantum microscopic traffic models for ambulance vehicles was taken into consideration

    NUMERICAL DIFFERENTIATION VIA THE INTERPOLATION METHOD OF HURWITZ-RADON MATRICES

    Get PDF
    Mathematics and computer science need suitable method for numerical calculation of derivative. Classical methods, based on polynomial interpolation, have some negative features: they are useless to interpolate the function that fails to be differentiable at one point or differs from the shape of polynomial considerably, also the Runge’s phenomenon cannot be forgotten. To deal with numerical interpolation and differentiation dedicated methods should be constructed. One of them, called by author the method of Hurwitz-Radon Matrices (MHR), can be used in reconstruction and interpolation of curves in the plane. This novel method is based on a family of Hurwitz-Radon (HR) matrices. The matrices are skew-symmetric and possess columns composed of orthogonal vectors. The operator of Hurwitz-Radon (OHR), built from that matrices, is described. It is shown how to create the orthogonal and discrete OHR and how to use it in a process of function interpolation and numerical differentiation. Created from the family of N-1 HR matrices and completed with the identical matrix, system of matrices is orthogonal only for dimensions N = 2, 4 or 8. Orthogonality of columns and rows is very significant for stability and high precision of calculations. MHR method is interpolating the function point by point without using any formula of function. Main features of MHR method are: accuracy of curve reconstruction depending on number of nodes and method of choosing nodes, interpolation of L points of the curve is connected with the computational cost of rank O(L), MHR interpolation is not a linear interpolation

    A Novel Technique of Error Concealment Method Selection in Texture Images Using ALBP Classifier

    Get PDF
    There are many error concealment techniques for image processing. In the paper, the focus is on restoration of image with missing blocks or macroblocks. Different methods can be optimal for different kinds of images. In recent years, great attention was dedicated to textures, and specific methods were developed for their processing. Many of them use classification of textures as an integral part. It is also of an advantage to know the texture classification to select the best restoration technique. In the paper, selection based on texture classification with advanced local binary patterns and spatial distribution of dominant patterns is proposed. It is shown, that for classified textures, optimal error concealment method can be selected from predefined ones, resulting then in better restoration. For testing, three methods of extrapolation and texture synthesis were used
    corecore