201 research outputs found

    MLCAD: A Survey of Research in Machine Learning for CAD Keynote Paper

    Get PDF

    Security of Systems on Chip

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In recent years, technology has started to evolve to become more power efficient, powerful in terms of processors and smaller in size. This evolution of electronics has led microprocessors and other components to be merged to form a circuit called System-on-Chip. If we are to make a vast and cursory comparison between SoC and microcontrollers, microprocessors, and CPUs; we would come to the conclusion of SoCs being a single chip, doing all the things the other components can do yet without needing any external parts. So SoCs are computers just by themselves. Furthermore, SoCs have more memory than microcontrollers in general. Being a computer just by themselves allows them also to become servers. Nowadays, an SoC may be regarded also as a Server-on-Chi

    Analyzing multiple conflicts in SAT: an experimental evaluation

    Get PDF
    Unit propagation and conflict analysis are two essential ingredients of CDCL SAT Solving. The order in which unit propagation is computed does not matter when no conflict is found, because it is well known that there exists a unique unit-propagation fixpoint. However, when a conflict is found, current CDCL implementations stop and analyze that concrete conflict, even though other conflicts may exist in the unit-propagation closure. In this experimental evaluation, we report on our experience in modifying this concrete aspect in the CaDiCaL SAT Solver and try to answer the question of whether we can improve the performance of SAT Solvers by the analysis of multiple conflicts.All authors are supported by grant PID2021-122830OB-C43, funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF: A way of making Europe”Peer ReviewedPostprint (published version

    A compact butterfly-style silicon photonic-electronic neural chip for hardware-efficient deep learning

    Full text link
    The optical neural network (ONN) is a promising hardware platform for next-generation neurocomputing due to its high parallelism, low latency, and low energy consumption. Previous ONN architectures are mainly designed for general matrix multiplication (GEMM), leading to unnecessarily large area cost and high control complexity. Here, we move beyond classical GEMM-based ONNs and propose an optical subspace neural network (OSNN) architecture, which trades the universality of weight representation for lower optical component usage, area cost, and energy consumption. We devise a butterfly-style photonic-electronic neural chip to implement our OSNN with up to 7x fewer trainable optical components compared to GEMM-based ONNs. Additionally, a hardware-aware training framework is provided to minimize the required device programming precision, lessen the chip area, and boost the noise robustness. We experimentally demonstrate the utility of our neural chip in practical image recognition tasks, showing that a measured accuracy of 94.16% can be achieved in hand-written digit recognition tasks with 3-bit weight programming precision.Comment: 17 pages,5 figure
    corecore