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Abstract

Unit propagation and conflict analysis are two essential ingredients of CDCL SAT
Solving. The order in which unit propagation is computed does not matter when no conflict
is found, because it is well known that there exists a unique unit-propagation fixpoint.
However, when a conflict is found, current CDCL implementations stop and analyze that
concrete conflict, even though other conflicts may exist in the unit-propagation closure. In
this experimental evaluation, we report on our experience in modifying this concrete aspect
in the CaDiCaL SAT Solver and try to answer the question of whether we can improve the
performance of SAT Solvers by the analysis of multiple conflicts.

1 Introduction

Propositional satisfiability (SAT) is probably one of the most well-studied problems in Com-
puter Science. From the theoretical point of view, it was the first problem to be proved NP-
complete [12], establishing a landmark result. Proof complexity researchers have also found
in SAT an excellent problem where studying the power and limitations of several proof sys-
tems [10]. But what is so particular about SAT is that, apart from the deep theoretical study
of the problem, and probably thanks to it, algorithms that work very well in practice have
also been developed. Because of that, it is now common to see SAT solvers being essential
tools in areas such as Electronic Design Automation [28], Hardware Verification [25], Model
Checking [9] and even Mathematics [18].

The most successful approach to SAT Solving is the Clause-Driven Conflict Learning
(CDCL) procedure [21]. The seminal works of [27, 26] in the GRASP solver were later ra-
tionalized and extended further in the Chaff solver [23], starting what is sometimes known as
“the SAT Revolution”. The key ideas of CDCL have been extended with pre/inprocessing tech-
niques [8], proof production [17], and new ideas for lemma removal [2], restarting mechanisms [7]
and decision heuristics [5], among others.
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All this knowledge has allowed the implementation of extremely competitive and sophisti-
cated solvers that incorporate a wide range of techniques, which are scheduled to be applied
at different moments during the search process. Because of this, it is becoming increasingly
difficult to find breakthrough ideas that lead to remarkable performance improvements. But
finding these ideas is probably as important as performing critical analysis of new techniques
and understand the reasons for their success, and also for their failure.

In this paper, we explore the simple idea of allowing unit propagation to collect a set of
conflicting clauses, instead of only one, analyzing all of them and learning the best one(s)
according to some criterion. This is not a new idea, as it has been presented in [20, 15, 11]
and was implemented in the zChaff2004 system [19]. However, none of these papers provide
a thorough experimental evaluation and, when some experimental results are presented, the
conclusion is that this technique does not have a significant impact on runtime. In addition,
SAT solvers at the time of some of these works have little to do with current ones, and hence,
their findings might not be applicable anymore.

This paper is organized as follows. In Section 2 we give some basic preliminaries about
SAT Solving. In Section 3 we study the potential of this technique without taking runtime into
consideration. That is, we focus on the potential of this technique in terms of reducing the
exploration of the search space. After that, in Section 4 we report on our experience trying
to implement an efficient version of this technique that only learns one lemma per conflict.
In Section 5, we make use of the chronological backtracking [24, 22] technique to learn and
propagate multiple lemmas at a time. We conclude in Section 6.

2 Preliminaries

We will assume that the reader is familiar with the basic notions of propositional logic.

Unit Propagation. Given a formula F and an assignment α, unit propagation looks for a clause
C ∈ F where all literals are false in α except one, that is undefined, and adds this literal to
α with reason C. This process is repeated until fixpoint or until a conflicting clause is found:
one with all its literals being false in α. Efficient implementations of this procedure use the
two-watched literal scheme [23]. In a nutshell, two non-false literals are watched in every clause.
If these two non-false literals exist, the clause cannot unit propagate. Hence, when a literal l
is added to the assignment, all clauses where ¬l is watched are visited, since these are the only
candidates for unit propagation. During this visit, we check whether the clause is conflicting,
whether it unit propagates a literal, or else we can select another non-false literal to be watched.

CDCL. The Conflict-Driven Clause Learning (CDCL) algorithm [21] for determining whether
a formula is satisfiable starts with an empty assignment α, which is extended and reduced by
applying the following steps until the satisfiability of the formula is determined. First, unit
propagation is applied. If no conflicting clause is found, either α is a total assignment (and
hence satisfies the formula), or an unassigned literal (decision literal) is chosen and added to
α. This choice is determined by dedicated decision heuristics [6]. If unit propagation finds
a conflicting clause, this is analyzed by a conflict analysis procedure [30], which constructs a
clause C (lemma) that can be safely conjuncted with the formula. It is guaranteed that, by
removing enough literals from α (backjumping), this lemma will unit propagate a new literal.

Conflict Analysis. If we see an assignment as a sequence, any literal appearing in the sequence
between the k-th decision literal and the (k+1)-one is said to belong to decision level k.
In order to generate a proper lemma L, conflict analysis relies on this definition and on the
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resolution rule, which, given clauses l ∨ C and ¬l ∨D derives clause C ∨D. Initially, L is the
conflicting clause and, while L contains more than one variable at the current decision level, the
procedure takes the literal l appearing later in α (which will be of the current decision level)
and sets L := resolution(L, reason(l)). When this process finishes, the only literal in L at the
current decision level is called the Unique Implication Point (UIP), and is the one that will be
unit propagated after backjumping. Finally, a lemma minimization procedure [29, 13, 14] is
executed, removing some literals from L and hence allowing the solver to learn a shorter lemma.

LBD. Adding too many lemmas will slow down unit propagation. This is why, periodically,
CDCL solvers remove some learned lemmas. Currently, the most popular measure to determine
the quality of a lemma is the Literal Block Distance (LBD): the number of distinct decision
levels of its literals. Low-LBD lemmas are preferred over those with large LBD. Although there
exist lemma minimization procedures that allow one to reduce the LBD [1, 16], techniques
implemented in state-of-the-art SAT solvers like CaDiCaL do not reduce this measure.

3 Potential of Analyzing Multiple Conflicts

In this section we will present some data that will allow us to assess to which extent we can
improve the performance of SAT solvers by collecting several conflicting clauses during unit
propagation, instead of stopping as soon as we find the first one. All experiments in this paper
will be done by modifying the state-of-the-art SAT Solver CaDiCaL [4].

In this first experiment, we modified CaDiCaL as follows. During unit propagation, every
time a conflicting clause is found, we store it in a set and continue propagating. Using a set
is useful in order to avoid duplicates since the same conflicting clause might be visited, and
found conflicting, several times. As usual, unit propagation finishes when all watch lists of all
literals in the assignment have been visited. After that, we apply conflict analysis and lemma
minimization to all conflicting clauses in order to derive a set of lemmas. Finally, we have to
decide which lemma to learn. Since currently it is accepted that LBD is the best criterion to
judge the quality of a lemma, we learn the one with lowest LBD. In case of a tie, we choose the
one with the smallest size and, if the tie persists, the first lemma we have found is selected.

This corresponds to the ideal situation in which we can afford to apply unit propagation
until fixpoint, and then analyze and minimize all conflicting lemmas. For the moment, we will
forget about the overhead this causes to the SAT solver and present some interesting data we
have extracted from the experiments. All experiments in this paper have been performed over
the set of 400 benchmarks that were used in the Main Track of the 2022 SAT Competition [3].
We have run the systems on two sets of machines, with 10 and 8 units each, both 3.3Ghz
16GB Intel Xeon E-2124, but one set slightly faster than the other. For fairness, when doing
comparisons about runtime, all systems are run on the same set of machines.

The first experiment we performed was to run the modified version of CaDiCaL explained
above with a time limit of 900 seconds per benchmark. Despite this may seem a rather low time
limit, it is enough to analyze the behavior of the system. The first question we wanted to answer
is how often it happens that unit propagation finds more than one conflicting clause. The top-
left histogram in Figure 1 summarizes the percentage of conflicts where multiple conflicting
clauses were found. That is, how often it happens that unit propagation finds more than one
conflicting clause. The bar over label 90 indicates that in 38 benchmarks, between 90 and 95%
of the conflicts found multiple conflicting clauses. All histograms should be understood in the
same way. It was surprising for us to see that in about 80% of the benchmarks more than 70% of
the conflicts were multiple. Thus, very often several conflicting clauses are found. The average
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number of different conflicting clauses can be seen in the histogram below. We can observe that
there is a significant number of benchmarks for which, in case of a multiple conflict, the set of
conflicting clauses to be analyzed is quite large. In about 80% of the benchmarks the average
number is greater than 10, hence allowing the technique to analyze a large set of conflicts.

Figure 1: Multiple conflicts, multiple lemmas and multiple UIPs. All average histograms only
consider the average over the conflicts with multiple lemmas, UIPs or conflicting clauses.

Second, we suspected that different conflicting clauses might lead to the same lemma. This
would be harmful for our technique since it would mean that, although being syntactically
different, they essentially correspond to the same conflicting situation. Concrete data can be
seen again in Figure 1, where we plot the percentage of conflicts where more than one different
lemma is generated. Results indicate that different clauses giving the same lemma is not
uncommon, but still, in about 35% of the benchmarks more than 70% of conflicts gave different
lemmas. Data about how many different lemmas are generated can be found in the histogram
below, which shows, for example, that in about 60% of the benchmarks, when more than one
lemma is found, we have on average more than 10 lemmas.

Yet another situation that could indicate that different lemmas are essentially trying to
solve the same conflicting situation is when all lemmas have the same UIP. We analyzed how
often this happens and we found that, in turn, the number of times when different UIPs are
found is substantially lower than the number of times when different lemmas are found. Hence,
finding multiple lemmas with the same UIP is not rare. The histograms on the right show that
in almost no benchmark more than 70% of the lemmas contained different UIPs. In addition,
when multiple UIPs are found, there are usually between 2 and 3 different UIPs on average.
This result suggests that the diversity one can obtain by unit propagation up to fixpoint might
not be as large as the initial experiments seemed to indicate.

However, one could still argue that obtaining a lemma that has the same UIP as the lemma
found by standard CDCL, but a much lower LBD can have a very positive impact on perfor-
mance. We computed how often the modified version of CaDiCaL found a lemma with LBD at
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most 3, while the LBD of the lemma derived by analyzing the first found conflicting clause was
larger than 10. These are somehow arbitrary values, but they will help in getting an idea of
which type of LBD improvement we can obtain. The results can be seen in the histogram in
Figure 2, where we clearly observe that this type of large LBD improvements are sporadic.

Figure 2: Big improvements in LBD and solved instances within a given number of conflicts.

Despite these somehow negative data, it turns out that the resulting system needs fewer
conflicts to solve the problems, which indicates that the search behavior is better. We considered
all benchmarks that CaDiCaL and the modified version could solve within 5000 seconds and
compared the number of conflicts needed to solve them. Results are displayed on the cactus
plot in Figure 2, where we can see that, given a certain number of conflicts, the modified version
usually solves more instances. However, the benefit is quite limited and hence, even if all the
extra work we are doing were free, the improvement would probably not be dramatic.

4 Implementation of a Limited but Efficient Version

The naive version we presented in the previous section is too costly with respect to unit propa-
gation, conflict analysis and lemma minimization as we can see from the histograms in Figure 3.
The histograms plot the percentage of the total runtime spent in these three procedures.

Figure 3: Percentages of extra propagation, conflict analysis and lemma minimization.

In order to improve the cost of these three operations we did the following improvements.
With respect to unit propagation, once the first conflicting clause is found, we start a new
procedure for unit propagation where neither the watches nor the model are modified. That is,
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we only traverse the pending watch lists looking for conflicting clauses, without changing the
assignment. That strongly reduces the amount of write operations of the procedure.

During the execution of conflict analysis, the number of lower-decision-levels already present
in the lemma is a lower bound on the final lemma LBD. Hence, for each conflicting clause, we
can stop its conflict analysis as soon as the LBD lower bound is larger than or equal to the
lowest LBD found so far. Recall that lemma minimization will not change the LBD and hence,
we will only minimize the lemma finally chosen to be learned.

However, as we learned from the data in Section 3, there are lots of conflicts to be analyzed
and hence it is unlikely that only these improvements make it feasible to compute unit propa-
gation up to fixpoint and analyze all conflicts within a reasonable amount of time. Fortunately,
experimental results indicate us that there is no need to do so much work to get similar bene-
fits. More concretely, in the experiments presented in the previous section, we also computed
how often the best lemma was not the first one, and how often it was not within the first five
conflicting clauses. Results in Figure 4 indicate that it is uncommon that the best lemma is
not found within the first five conflicting clauses. As an example, in 75% of the benchmarks
this happens in less than 15% of the conflicts on average. This empirically supports collecting
only at most 5 conflicting clauses, because not too many good lemmas will be lost if we do so.

Figure 4: Position among all conflicting clauses of the best lemma.

Experiments revealed that limiting this was still not enough. The reason is that there are
situations where we cannot find five conflicting clauses. In this case, unit propagation will be
computed up to fixpoint. In order to avoid this, we count the number of clause dereferences
performed after the first conflicting clause and stop propagation whenever this number exceeds
a certain limit. We do this as an estimation of the amount of extra work being done. Finally,
we added a third limit constraining the maximum number of watch lists with conflicting clauses
that we visit. The rationale is that, since in CaDiCaL unit propagation is done in a breadth-first
fashion, we do not want to consider conflicts found in the watch list of a literal that is very far
away in the assignment. Most likely, such conflicts will be at a large distance from the decision
literal in the implication graph, and hence the likelihood of a large-LBD lemma is high.

With these limitations on the amount of extra work done, the percentage of benchmarks
where the extra propagation time is at least 5% has reduced from 70% to 25%. Regarding
conflict analysis, this percentage has decreased from 90% to 10% of the benchmarks. Lemma
minimization does not incur in any overhead because we are only minimizing one lemma, as
in the standard setting. Even with this reduction on the extra work done, the percentage of
cases with multiple conflicts, lemmas or UIPs is still large enough to provide some potential
advantage.
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For simplicity, we implemented these ideas on CaDiCaL with chronological backtracking
disabled. We ran the original CaDiCaL and the modified one on the 400 benchmarks with
5 random seeds and a time limit of 5000 seconds per benchmark. The results in Section 3
seemed to indicate that there could be some gain but not a massive one and this is exactly
what happens. The following table shows the number of solved instances per seed and system:

System Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Median
Cadical-no-chronoBT 289 289 290 295 290 290

Multiple-conflicts-one-lemma 291 292 291 289 291 291

As we can see, the two systems are quite comparable, although the median of the modified
version is slightly better. In Figure 5, we present two cactus plots with the number of solved
instances with respect to time and number of conflicts. For each system, we only include the
benchmarks for which it did not time out in any of the 5 seeds (276 for CaDiCaL and 278 for
the version analyzing multiple conflicts). The time and conflicts displayed are the average over
all seeds. Our modified version is a little bit more stable, in that it solves more benchmarks in
all seeds, hence being less affected by randomness, but by a narrow margin (276 vs. 278).

The average number of conflicts is also a bit better, but it seems that even if all the extra
work were free, the improvement in search would not pay off.

Figure 5: Solved instances within a given time or number of conflicts.

5 Learning Multiple Lemmas

Analyzing several conflicting clauses and only learning the best lemma according to some cri-
terion wastes a lot of the work that has been done. Since we have computed several lemmas,
a possibility is to use all of them to the maximum possible extent. On the one hand, lemmas
are learned so that they will propagate in the future preventing similar conflicts, but they also
have the property that, after backjump is performed, they immediately propagate.

Example. Let us assume that the current decision level is 7, and that we learn two lemmas,
L1 := p (7) ∨ ¬q (3) ∨ r (2) and L2 := ¬s (7) ∨ t (6) ∨ ¬q (3), where the numbers between
parentheses are the decision levels of the literals. If we learn L1 we would backjump to level
3 and propagate p; for L2 we would backjump to level 6 and propagate ¬s. However, we are
in trouble if we want to learn and propagate both. If we learn L1 and backjump to 3 lemma
L2 no longer propagates. Otherwise, if we learn L2 and backjump to 6, lemma L1 also unit
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propagates but we cannot add p to the assignment because that assignment should happen at
decision level 3 but we are at decision level 6. This would break several invariants of CDCL.

Fortunately, CaDiCaL implements chronological backtracking [24, 22] which, among other
things, allows the assignment of the solver (sometimes known as the trail) to be not in order.
That is, we might find a literal set at decision level 3 later in the assignment than a literal set at
decision level 5. This flexibility allows us to fix the problem mentioned in the example above,
and hence paves the way to use both lemmas to propagate right after conflict analysis.

The procedure we implemented is the following. We first collect a certain set of conflicting
clauses. Then, since in chronological backtracking we might find clauses that were already
conflicting at some previous decision level, we compute the lowest decision level at which some
conflict occurred, select all conflicting clauses of that level, and choose among them the best
lemma (i.e. lowest LBD) for each different UIP. Finally, we learn all such lemmas (as many as
different UIPs), backjump and propagate all the different UIPs, which might be set at different
decision levels. Experiments revealed that in more than 50% of the benchmarks more than 5%
of the conflicts had more than one UIP, the most common case being two UIPs. Hence the
number of times where this technique can be applied is not massive but not negligible either.

Again, we ran the 400 benchmarks with 5 random seeds and a time limit of 5000 seconds,
and the comparison between the solved instances of the unmodified CaDiCaL with chronological
backtracking and the version described in this section is the following:

System Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Median
Cadical-chronoBT 296 287 293 289 291 291

Multiple-conflicts-multiple-lemmas 295 294 292 291 290 292

The comparison between the two systems is again very similar, being the modified version
slightly better. Perhaps the most surprising fact can be seen in Figure 6, where cactus plots
similar to the ones in the previous section are presented. In this case, CaDiCaL solves 275
benchmarks in all 5 seeds, whereas the version learning multiple lemmas solves 285. This is a
remarkable difference and suggests that the modification results in a more stable system. One
likely reason is that by analyzing multiple conflicts, we can select several UIPs and the best
lemma for each one of them. On the other hand, in the original version this choice is determined
by the order in which clauses appear in the watch lists, which is totally arbitrary.

Figure 6: Solved instances within a given time or number of conflicts.
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6 Conclusions and Future Work

We have presented a thorough analysis of the possible impact of analyzing multiple conflicts in
SAT solvers. By performing a large number of controlled experiments, we have (i) learned that
collecting and analyzing all conflicts only slightly improves the search space and (ii) understood
the reasons for this limitation. Later we proved that these improvements can be translated to a
more stable system by limiting the amount of extra work to be done and exploiting the benefits
from chronological backtracking.

As future work, we might want to measure how often it happens that different lemmas are
found, but they are equivalent modulo the binary implication graph, or subsumption relation-
ships among them exist. This would shed more light on why the gain obtained by learning them
is limited. Also, we might study other measures of quality to decide which lemmas are learned.
In order to speed up performance, a parallel approach might be used to reduce the overhead
of the additional computations. Also, trying to predict, using machine learning techniques,
which conflicting clause will provide the best lemma would reduce the runtime. All these ideas
should probably come together with mechanisms that allow one to detect on which instances
the presented technique is useful, and enable or disable it accordingly.
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[7] Armin Biere and Andreas Fröhlich. Evaluating CDCL restart schemes. In Daniel Le Berre and
Matti Järvisalo, editors, Proceedings of Pragmatics of SAT 2015, Austin, Texas, USA, September
23, 2015 / Pragmatics of SAT 2018, Oxford, UK, July 7, 2018, volume 59 of EPiC Series in
Computing, pages 1–17. EasyChair, 2018.

[8] Armin Biere, Matti Järvisalo, and Benjamin Kiesl. Preprocessing in SAT solving. In Armin Biere,
Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second

314



Analyzing Multiple Conflicts in SAT Oliveras, Rodŕıguez-Carbonell and Zhao

Edition, volume 336 of Frontiers in Artificial Intelligence and Applications, pages 391–435. IOS
Press, 2021.

[9] Armin Biere and Daniel Kröning. Sat-based model checking. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages 277–
303. Springer, 2018.

[10] Sam Buss and Jakob Nordström. Proof complexity and SAT solving. In Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability - Second Edition,
volume 336 of Frontiers in Artificial Intelligence and Applications, pages 233–350. IOS Press, 2021.

[11] Henrik Cao. Concurrent Multi-conflict Analysis in SAT Solvers, November 2022.

[12] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third
annual ACM symposium on Theory of computing, STOC ’71, pages 151–158, New York, NY,
USA, 1971. ACM.

[13] Nick Feng and Fahiem Bacchus. Clause size reduction with all-uip learning. In Luca Pulina
and Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd
International Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture
Notes in Computer Science, pages 28–45. Springer, 2020.

[14] Mathias Fleury and Armin Biere. Efficient all-uip learned clause minimization. In Chu-Min Li
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