55 research outputs found

    Controlling Complex Systems Dynamics without Prior Model

    Get PDF
    International audienceControlling complex systems imposes to deal with high dynamics, non-linearity and multiple interdependencies. To handle these difÂżculties we can either build analytic models of the process to control, or enable the controller to learn how the process behaves. Adaptive Multi-Agent Systems (AMAS) are able to learn and adapt themselves to their environment thanks to the cooperative self-organization of their agents. A change in the organization of the agents results in a change of the emergent function. Thus we assume that AMAS are a good alternative for complex systems control, reuniting learning, adaptivity, robustness and genericity. The problem of control leads to a speciÂżc architecture presented in this paper

    Self-adaptive Aided Decision-making - Application to Maritime Surveillance

    Get PDF
    Information required for decision-making in complex applications, such as flood forecast or maritime surveillance, can be represented using a mathematical function. However, due to the complexity of the considered applications and their dynamics, the parameters involved in the mathematical function can be hard to value a priori. This paper presents a Multi-Agent System, called PaMAS (Parameter Multi-Agent System) that is able to learn such parameters values on the fly, autonomously, cooperatively and by self-adaptation. It also illustrates the application of PaMAS in the context of the maritime surveillance European project I2C. It finally provides an evaluation of the PaMAS learning

    Classification of Explainable Artificial Intelligence Methods through Their Output Formats

    Get PDF
    Machine and deep learning have proven their utility to generate data-driven models with high accuracy and precision. However, their non-linear, complex structures are often difficult to interpret. Consequently, many scholars have developed a plethora of methods to explain their functioning and the logic of their inferences. This systematic review aimed to organise these methods into a hierarchical classification system that builds upon and extends existing taxonomies by adding a significant dimension—the output formats. The reviewed scientific papers were retrieved by conducting an initial search on Google Scholar with the keywords “explainable artificial intelligence”; “explainable machine learning”; and “interpretable machine learning”. A subsequent iterative search was carried out by checking the bibliography of these articles. The addition of the dimension of the explanation format makes the proposed classification system a practical tool for scholars, supporting them to select the most suitable type of explanation format for the problem at hand. Given the wide variety of challenges faced by researchers, the existing XAI methods provide several solutions to meet the requirements that differ considerably between the users, problems and application fields of artificial intelligence (AI). The task of identifying the most appropriate explanation can be daunting, thus the need for a classification system that helps with the selection of methods. This work concludes by critically identifying the limitations of the formats of explanations and by providing recommendations and possible future research directions on how to build a more generally applicable XAI method. Future work should be flexible enough to meet the many requirements posed by the widespread use of AI in several fields, and the new regulation

    Towards Flexible and Cognitive Production—Addressing the Production Challenges

    Get PDF
    Globalization in the field of industry is fostering the need for cognitive production systems. To implement modern concepts that enable tools and systems for such a cognitive production system, several challenges on the shop floor level must first be resolved. This paper discusses the implementation of selected cognitive technologies on a real industrial case-study of a construction machine manufacturer. The partner company works on the concept of mass customization but utilizes manual labour for the high-variety assembly stations or lines. Sensing and guidance devices are used to provide information to the worker and also retrieve and monitor the working, with respecting data privacy policies. Next, a specified process of data contextualization, visual analytics, and causal discovery is used to extract useful information from the retrieved data via sensors. Communications and safety systems are explained further to complete the loop of implementation of cognitive entities on a manual assembly line. This deepened involvement of cognitive technologies are human-centered, rather than automated systems. The explained cognitive technologies enhance human interaction with the processes and ease the production methods. These concepts form a quintessential vision for an effective assembly line. This paper revolutionizes the existing industry 4.0 with an even-intensified human–machine interaction and moving towards cognitivity

    On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters

    Get PDF
    This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms. In particular a novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to estimate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between players when they should take decisions under uncertainty. Each player chooses an action after taking into account the actions of the other players and also the uncertainty. Uncertainty can occur either in terms of noisy observations or various types of other players. In addition, in contrast to other game-theoretic and heuristic algorithms for distributed optimisation, it is not necessary to find the optimal parameters a priori. Various parameter values can be used initially as inputs to different models. Therefore, the resulting decisions will be aggregate results of all the parameter values. Simulations are used to test the performance of the proposed methodology against other game-theoretic learning algorithms.</p

    Dynamic Controllability Made Simple

    Get PDF
    Simple Temporal Networks with Uncertainty (STNUs) are a well-studied model for representing temporal constraints, where some intervals (contingent links) have an unknown but bounded duration, discovered only during execution. An STNU is dynamically controllable (DC) if there exists a strategy to execute its time-points satisfying all the constraints, regardless of the actual duration of contingent links revealed during execution. In this work we present a new system of constraint propagation rules for STNUs, which is sound-and-complete for DC checking. Our system comprises just three rules which, differently from the ones proposed in all previous works, only generate unconditioned constraints. In particular, after applying our sound rules, the network remains an STNU in all respects. Moreover, our completeness proof is short and non-algorithmic, based on the explicit construction of a valid execution strategy. This is a substantial simplification of the theory which underlies all the polynomial-time algorithms for DC-checking. Our analysis also shows: (1) the existence of late execution strategies for STNUs, (2) the equivalence of several variants of the notion of DC, (3) the existence of a fast algorithm for real-time execution of STNUs, which runs in O(KN) total time in a network with K contingent links and N time points, considerably improving the previous O(N^3)-time bound

    State-based load profile generation for modeling energetic flexibility

    Get PDF
    Communicating the energetic flexibility of distributed energy resources (DERs) is a key requirement for enabling explicit and targeted requests to steer their behavior. The approach presented in this paper allows the generation of load profiles that are likely to be feasible, which means the load profiles can be reproduced by the respective DERs. It also allows to conduct a targeted search for specific load profiles. Aside from load profiles for individual DERs, load profiles for aggregates of multiple DERs can be generated. We evaluate the approach by training and testing artificial neural networks (ANNs) for three configurations of DERs. Even for aggregates of multiple DERs, ratios of feasible load profiles to the total number of generated load profiles of over 99% can be achieved. The trained ANNs act as surrogate models for the represented DERs. Using these models, a demand side manager is able to determine beneficial load profiles. The resulting load profiles can then be used as target schedules which the respective DERs must follow

    Negotiation Based Resource Allocation to Control Information Diffusion

    Get PDF
    Study of diffusion or propagation of information over a network of connected entities play a vital role in understanding and analyzing the impact of such diffusion, in particular, in the context of epidemiology, and social and market sciences. Typical concerns addressed by these studies are to control the diffusion such that influence is maximally (in case of opinion propagation) or minimally (in case of infectious disease) felt across the network. Controlling diffusion requires deployment of resources and often availability of resources are socio-economically constrained. In this context, we propose an agent-based framework for resource allocation, where agents operate in a cooperative environment and each agent is responsible for identifying and validating control strategies in a network under its control. The framework considers the presence of a central controller that is responsible for negotiating with the agents and allocate resources among the agents. Such assumptions replicates real-world scenarios, particularly in controlling infection spread, where the resources are distributed by a central agency (federal govt.) and the deployment of resources are managed by a local agency (state govt.). If there exists an allocation that meets the requirements of all the agents, our framework is guaranteed to find one such allocation. While such allocation can be obtained in a blind search methods (such as checking the minimum number of resources required by each agent or by checking allocations between each pairs), we show that considering the responses from each agent and considering allocation among all the agents results in a “negotiation” based technique that converges to a solution faster than the brute force methods. We evaluated our framework using data publicly available from Stanford Network Analysis Project to simulate different types of networks for each agents
    • …
    corecore