Forderer and Schmeck Energy Informatics (2019), 2(Suppl 1): 18

https://doi.org/10.1186/542162-019-0077-z E ne rgy I nfo rm atl cs

State-based load profile generation for ®

Check for

deli tic flexibilit
Kevin Forderer'” and Hartmut Schmeck '
From The 8th DACH+ Conference on Energy Informatics,
Salzburg, Austria. 26-27 September, 2019
*Correspondence: foerderer@fzi.de
'FZI Research Center for Abstract
Information Technology, Communicating the energetic flexibility of distributed energy resources (DERs) is a key
Ej;iiggggﬁﬁ;;o’m 76131 requirement for enabling explicit and targeted requests to steer their behavior. The
Full list of author information is approach presented in this paper allows the generation of load profiles that are likely to
available at the end of the article be feasible, which means the load profiles can be reproduced by the respective DERs. It
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profiles for individual DERs, load profiles for aggregates of multiple DERs can be
generated. We evaluate the approach by training and testing artificial neural networks
(ANNs) for three configurations of DERs. Even for aggregates of multiple DERs, ratios of
feasible load profiles to the total number of generated load profiles of over 99% can be
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Introduction
With the growing use of variable renewable energy, like wind and solar power, influenc-
ing electricity demand becomes increasingly relevant for balancing electricity supply and
demand. Distributed energy resources (DERs), such as battery storage systems (BESSs)
and combined heat and power plants (CHP plants), are sources of flexibility that may
be used by a demand side manager (DSMgr) to steer electricity demand. Following the
notion of Bremer et al. (2010), Mauser et al. (2017) and Sawall et al. (2018) the energetic
flexibility of a DER can be understood as the set of load profiles the DER is technically
able to attain while performing its duties, i.e., satisfying all constraints. Each load pro-
file in this set is called feasible. While this understanding of energetic flexibility is by no
means restricted to electricity, we focus on electric load profiles in this paper. However,
the addition of further commodities is rather simple.

In order to exploit the flexibility of DERs a DSMgr needs to know how their opera-
tion may be influenced. The primary goal of the approach presented in this paper is to
enable a DSMgr to plan and steer the behavior of diverse DERs that are managed by a
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local energy management system (EMS). This is achieved by providing a method to gen-
erate load profiles with a high likelihood of being feasible. These load profiles can then
act as target schedules and be communicated to the respective EMSs. The algorithm for
generating load profiles uses special models that allow a targeted search for feasible load
profiles. Hence, the DSMgr is able to shape the load profiles according to their needs. The
employed models in combination act as a model for the energetic flexibility of the rep-
resented DERs. In this paper, we use machine learning approaches, and more precisely
artificial neural networks (ANNs), to create the required models. The major benefit of our
approach is the generic representation of flexibility, allowing to use a single interface for
all kinds of flexible devices and even aggregates of multiple DERs. Also, by using machine
learning models, the models for future applications may potentially be learned from data
directly captured from real DERs, eliminating the need for handcrafting and formulating
physical models.

All scripts and models, including the simulation models for generating the training data
and the neural models, as well as the results presented in this paper have been published
on GitHub (see “Availability of data and materials”). The paper is structured as follows: An
overview of and a comparison with related approaches and applications of similar models
in the context of electric load profiles is given in “Related work” The “State-based load
profile generation” section introduces the approach for generating feasible load profiles
investigated in this paper. The simulation models used for generating the training data
and the chosen parameters are presented in “Simulation models and parameters”. “Neural
models” presents the ANNs used in the evaluation of the approach. “Evaluation setup”
provides further details of the implementation of the load profile generation process that
has been used for evaluating the approach. Results of the evaluation are presented in
“Results’, which is followed by a “Conclusion”.

Related work

Load profiles can be generated in various ways and for different reasons. In Hoogsteen
et al. (2016) a bottom-up approach is used to create a household load profile generator
for evaluating demand side management approaches. Among other things, the genera-
tor supports different household configurations, occupancy profiles and several classes of
flexible devices. Markov chains are another option for generating load profiles. For exam-
ple, a Markov chain with 24 states is used in McLoughlin et al. (2010) to generate domestic
load profiles for households in Ireland. Hidden Markov models are used in Akkaya et al.
(2016) to generate randomized control sequences for lighting appliances. In all cases the
respective goal is to produce load profiles or control sequences that are similar to real
ones, e.g., in terms of statistical properties. More examples for Markov models can be
found in Tao et al. (2017), including a Markov chain model that can be used to evaluate
the capacity and estimate the availability of a BESS that stores photovoltaic generation
(Song et al. 2013).

In contrast, the goal of the approach presented in this paper is to allow some external
party, namely the DSMgr, to explore and select load profiles that are likely to be feasible.
This is achieved by explicitly estimating the state of the represented DERs at any consid-
ered point in time. While the same is possible using finite-state machines (Costanzo et al.
2012) and other state-based models like petri-nets (Grafil et al. 2014) and again Markov
models, the size of these models increases rapidly with the number of considered DERSs,
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as the number of possible states grows exponentially. This growth can be tackled by using
equations and inequalities to derive the model graph, i.e., the nodes and edges, instead of
handling and communicating the graph itself: The nodes representing the states are deter-
mined by the state transition equations. Edges can be derived from inequalities encoding
feasible operational choices. This way of encoding a Markov model and other state-based
models can easily be implemented in the approach presented in this paper by replacing
the ANNs with these equations and inequalities. By using ANNSs instead, the model can
potentially be learned in an automated process. Furthermore, the size of an ANN is deter-
mined by the number of parameters and weights. As our “Results” show, transitions in
large state spaces can be approximated sufficiently well using relatively small ANNs.

Neural networks and other machine learning approaches can be used in many different
energy related applications, such as power system monitoring (Malbasa et al. 2017), non-
intrusive load monitoring (Batra et al. 2014), forecasting (Rashid et al. 2006; Rodrigues
et al. 2014; Abuella and Chowdhury 2015; Severini et al. 2015; MacDougall et al. 2016)
and automated DER operation (Santo et al. 2018). For the modeling of the energetic
flexibility of DERs, there are multiple approaches based on machine learning in the lit-
erature. They aim to provide a description of the flexibility of one or multiple DERs for
a DSMgr or some other type of superordinate controller. The utilization of the support
vector data description (SVDD) is proposed by Bremer et al. (2010, 2011); Bremer and
Sonnenschein (2013b). They use SVDDs as surrogate models for the flexibility of micro
CHP plants (Bremer et al. 2010) and other DERs, such as cooling devices and shiftable
loads (Bremer et al. 2011). By exploiting the characteristics of the SVDD, infeasible load
profiles can approximately be projected onto the set of feasible load profiles (Bremer and
Sonnenschein 2013b; 2013a). It is also possible to encode additional information in the
description (Niefe et al. 2016) and use the models to train an aggregated model (Bremer
and Lehnhoff 2017; 2018). Another approach for identifying feasible load profiles, which
could also be used to describe the flexibility of DERSs, is to use a cascade of overlapping
classifiers (Neugebauer et al. 2015; Neugebauer et al. 2016; Neugebauer et al. 2017).

In Forderer et al. (2018b); Forderer et al. (2018a) we propose and evaluate the utiliza-
tion of ANN’s as surrogate models for the energetic flexibility of DERs. In contrast to the
SVDD and cascade classifier, the ANN based models need to be generated and commu-
nicated only once initially to represent a given configuration of DERs. This is achieved
by using the state of the DERs as a model input. However, the question how to generate
feasible load profiles in a practical way remained unanswered. The good performance of
the classification and the generation patterns in Forderer et al. (2018a) motivated us to
combine both patterns, resulting in the approach presented in this paper. As our work is
greatly inspired by Markov models and Markov decision processes, the approach and ter-
minology are similar to concepts used in reinforcement learning. Especially model-based
reinforcement learning, where models are used to estimate the state of physical systems
by learning state transitions, is very similar in its basics. We refer to Sutton and Barto
(2018) for more information on reinforcement learning and to Vdzquez-Canteli and Nagy
(2019) for a review of reinforcement learning in the context of demand response. The
major difference to model-based reinforcement learning is that our approach decouples
the model generation from the task of optimizing a given target, as these functions are
carried out by different actors, the EMS and the DSMgr. Furthermore, while a DSMgr
may use algorithms from reinforcement learning, they are by no means bound to do so.
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State-based load profile generation

In our approach we combine the advantages of multiple approaches discussed in the
“Related work” section. By using the state of the represented systems as a model input,
creating and communicating the flexibility model once is sufficient to describe the system
in any given state. When using ANNs or other machine learning models, the over-
all amount of data that needs to be communicated is relatively small. Similar to the
SVDD approach, it allows to search for load profiles, with the major difference that
there is no need for mapping infeasible load profiles to feasible ones. For simplicity,
throughout this paper, we consider the case of a single residential building. Neverthe-
less, due to its genericity, the approach may also be used to model other types of DERs
and aggregates, e.g., industrial plants. Describing the flexibility of the building and its
DERs is achieved by providing a model to the DSMgr that allows the identification
of feasible load profiles for the building, i.e., the aggregate of all local consumption
and production. After identifying a suitable load profile, the DSMgr transmits the
intended load profile to the EMS of the building. The EMS then schedules the DERs
accordingly.

Describing and exploiting flexibility

The following paragraphs define and describe the information that needs to be exchanged
between the EMS of the building and the DSMgr. The terminology and selected symbols
are greatly inspired by Markov decision processes (see, e.g., Sutton and Barto (2018)).

States At each (discrete) point in time ¢ the building is in a state s; € S, where S is
the set of all possible states. Please note, while in a mathematical sense tuples and vec-
tors are not the same, we use both terms synonymously, as is common in the context of
machine learning. In general, the state of a real system is a vector and only observed par-
tially, e.g., due to a lack of sensors. Nevertheless, a small subset of the available data may
already yield enough information to describe the flexibility of the system sufficiently well,
e.g., the SOC of a BESS in combination with its capacity and nominal power. It is not
necessary that the DSMgr has knowledge on how to interpret s;, since all needed infor-
mation can be derived with the help of the supplied models and mappings introduced
below.

Actions An action a; € A defines how the system behaves during the next period
and thereby determines the load and the subsequent state s;y;. For instance, A =
{“charge with 1 kW”, “idle”, “discharge with 1 kW”} may be an action set for a BESS. The
finite set A includes all actions the system is able to perform in any state s € S. In general,
at a given time ¢ only a subset of A is feasible. In order to generate a feasible load profile
only feasible actions are allowed to be executed.

Classifier Based on the current state s;, the classifier ¢ : S —[0,1]"! assigns ratings
to the actions in the set A. The result is a vector of ratings c(s;) that may be inter-
preted as a vector of probabilities for the feasibility of the individual actions. Given
an empty BESS with the actions defined above, the result could look like ¢((SOC =
0)) = (0.98,0.93,0.01) and thereby indicate that discharging is not feasible. This type of
classification is called a multiclass-multilabel classification.
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Action mapping The action mapping provides information about the consequences of
choosing a certain action. The DSMgr needs this information to derive the load profile
and assess the options. In its simplest form [ : A — R, it specifies the electrical power
the system consumes or provides when executing the respective action. For the BESS,
this is [(“charge with 1 kW”) = 1 kW, [(“idle”) = 0 kW, and /(“discharge with 1 kW”) =
—1 kW. The mapping could also include additional data for the DSMgr to consider when
generating and subsequently selecting a load profile by expanding the target domain to
R¥,k > 1. Possible additions include prices, consumption of commodities other than
electricity, and emissions of greenhouse gases.

State estimator Given a state s; and an action ay, the state estimator generates an esti-
mate S¢.1 = f(s¢, ap) of the state s;11. If the Markov property does not hold, either S needs
to be adapted, or the state estimator needs to memorize additional information. Although
the estimator may be trained to forecast external influences, e.g., production from vari-
able renewable energy, local energy demand, or interactions between residents and DERs,
in this paper, these values are provided to the state estimator as an additional input. Thus,
the state is estimated as $;4+1 = f(ss, ar, J¢), with the forecast of external influences J; in
period ¢. By moving stochastic influences into the model input, the tasks of forecasting
stochastic values and representing energetic flexibility are separated.

State mapping In general, since the employed ANN only approximates the real state
transition function, the state estimator introduces small errors every time it is used,
potentially amplifying errors from earlier periods. The state mapping p : S — S is an
optional map used to correct some of these errors. In this paper it is used to repair and
discretize the elements of §;41 in order to retain their similarity to the training data and
keep them in the space of possible states S. This is done by specifying a set of bins for the
individual elements of 5,41 and replacing each element with the value assigned to the bin
it belongs to. Consider, for example, the SOC of the BESS which lies in S =[0, 1]. With
bins {(—o0, 0.05),[0.05,0.15), . ..,[0.85,0.95), [ 0.95, c0)} for the values {0,0.1,...,0.9,1}
an erroneous estimate of §,11 = (1.1) ¢ S is corrected to $;+1 = (1) € S. On the other
hand, the potentially correct estimate of §;+1 = (0.55) € S is mapped to §;+1 = (0.6) € S.
Hence, a sufficiently precise discretization is required. Especially for binary elements the
state mapping can reduce noise in the estimated state, as the rounded value is likely
to be true.

In regard to constraints it is possible to distinguish between hard and soft constraints.
While hard constraints define limits that can not be exceeded, generally due to technical
limitations, soft constraints are based on preferences (Bremer et al. 2010; Bremer and
Sonnenschein 2013a; Niefle et al. 2016). Hence, at the cost of unsatisfied preferences, soft
constraints may be violated. In the context of the state-based load profile generation, the
classifier ¢(-) represents only hard constraints. Soft constraints could be introduced by
augmenting the action mapping as mentioned above.

An overview of the steps for exploiting the flexibility is depicted in Fig. 1. The models
and the mappings that are initially transmitted to the DSMgr are virtually static. Only if
there are changes to the building that invalidate one of these parameters, e.g., the addition
of new DERs, new models and mappings need to be determined by the EMS of the build-
ing. For generating feasible load profiles, the current state as well as the latest forecasts
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Fig. 1 Provision and utilization of the flexibility model (cf. (Forderer et al. 2018b)). Information generated by
the EMS is depicted with a gray background and static information with an additional bold outline

for external influences are required. These variables are dynamic and sent periodically or
requested when needed. In the state retrieval step depicted in Fig. 1, the EMS transmits
the load profile it has planned for the building to the DSMgr. This load profile is optional
and may be used to determine the flexibility in the terms of deviations. With all this infor-
mation the DSMgr is able to generate feasible load profiles, conduct a directed search for
load profiles beneficial for their goals, or do a combination of both. The employed algo-
rithm uses the process outlined in the “Process for generating load profiles” section. The
best load profile according to the objective of the DSMgr is selected and then sent to and
realized by the building’s EMS. A feedback mechanism for approving the schedule could
easily be added.

The central components of the presented approach are the classifier and the state
estimator. There are several options for designing these components. For example, as
discussed in “Related work’, equations and inequalities can be used to encode a Markov
model or finite state machine. In this paper, the classifier and the state estimator are both
ANN:Ss. With their help, the load profile is created element by element in a sequential pro-
cess. The repeated estimation of the system’s state by the state estimator makes the ANN
a recurrent neural network (RNN). Of course, a single RNN could have been used to com-
bine the classifier and state estimator within a single neural model, e.g., by embedding the
feasible actions into the state space. However, we decided to stick to the generic structure
depicted in Fig. 2.

Process for generating load profiles

Since a load profile is a vector in R” with T elements specifying the average power during
the respective period of time, at least 7 iterations are needed to create a load profile start-
ing in period ¢t = 0. The process for generating feasible load profiles is depicted in Fig. 2.
Using the classifier c(-) and the state s, all actions are rated regarding their feasibility. For
the first period the state s is given by the EMS of the building. The resulting vector c(s;),
the action mapping I(-) which holds information about the building’s load caused by each
action, and, optionally, the load profile planned by the EMS are used to select a beneficial
action. Whether an action is classified feasible or not is based on c¢(s;) and how to select
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Fig. 2 The algorithm employed by the DSMgr iteratively determines a load profile using the model,
parameters and variables provided by the EMS of the building. All data supplied by the EMS of the building is
illustrated with a gray background and static information is additionally depicted with a bold outline

a feasible action is use case specific. Generally an action is considered feasible when the
assigned rating exceeds a predefined threshold. When only taking the aggregated load of
the building into consideration, action choices are based on the associated consumption
or production of electricity. Actions could, for instance, be selected in a greedy fashion,
trying to minimize the distance to a target load profile. Additional information like costs
resulting from implementing certain actions could also be taken into account. The aver-
age power consumed or produced by the building during period ¢t when implementing
the selected, feasible action a; is given by /(a;) and stored by the search algorithm. Given
a; the estimate of the subsequent state §;11 = f (s¢, az, J¢) is computed using the state esti-
mator f(-) and the forecasts y; provided by the building’s EMS. In some cases it may be
beneficial to introduce a postprocessing step to correct some of the errors introduced by
the state estimator. This optional step uses the state mapping p(-). In subsequent itera-
tions the state resulting from the previous iteration 8,41 is used as an input instead of
the state so sent by the EMS of the building. The resulting load profile is given by the
sequence of power values ({(ap), . . ., l(ar—_1)) resulting from the action selection. Devices
that simply follow a fixed load profile once activated can be represented by encoding the
load profile into a set of actions. Alternatively, /() could be adapted to include informa-
tion about future periods that is added to subsequent values. After a feasible load profile
has been identified, the process may either be restarted from scratch to compute a com-
pletely new load profile or at any previously computed state in order to adapt the load
profile starting from the respective iteration.

Dead ends and artificial constraints

Depending on the investigated configuration of DERs and constraints it is possible that
certain sequences of actions may lead to a state without any further feasible actions. Take
for example a CHP plant that is connected to a hot water tank (HWT), must satisfy all
heat consumption, and needs to remain in an “off” or “on” state for a given minimum dwell
time after changing its mode. When switching off the CHP plant, the HWT may run out
of heat before the minimum dwell time has passed, leading to conflicting constraints. In
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this case, the load profile generation needs to be restarted from a period before reach-
ing this dead end. Such situations may be avoided by introducing additional constraints
or by converting hard constraints to soft constraints. In our example, there could be an
additional (hard) constraint requiring a given minimum SOC of the HWT for the CHP
plant to be able to shut down. By adapting the lower boundary according to the predicted
heat demand, the described dead end can be avoided. In the following, we refer to such
additionally introduced hard constraints as artificial constraints. Artificial constraints are
introduced to shape the space of feasible load profiles and may require adding further
elements to the state vector. How these constraints are derived and whether or not an
adaptation of the state space is required is case specific.

Data acquisition

To train the classifier and the state estimator, data of feasible actions and state transitions
are required. These data may be captured from real physical devices or generated by sim-
ulation models. Figure 3 shows which data is required to train the classifier and the state
estimator respectively, and when this data can be collected. The boldface elements are the
respective models’ outputs. At the discrete point in time ¢, the real or simulated build-
ing determines its current state and evaluates the available operational choices, i.e., the
feasible actions, to choose an action. In order to train the classifier, states and sets of fea-
sible actions for many different points in time need to be collected. The subsequent state
results from the building’s dynamics and is depending on the state, the chosen action and
other external influences like the local consumption of energy or the solar irradiation.
Hence, all of these are required to train the state estimator.

When using data of a real building, the most important requirement is that the data
needs to cover a sufficiently large range of system states. States that are never reached in
the records, although technically attainable, will not be correctly represented in the result-
ing flexibility model. A simulation model, on the other hand, can easily provide diverse
states.

Implementing a simulation model specifically for training another model raises the
question why this exact simulation model can not be given to the DSMgr in the first place.
As we pointed out before, using equations and inequalities for the classifier and state esti-
mator instead of machine learning based models is indeed possible with our approach.
The main motivation in seeking the utilization of machine learning models lies in the

DAttt d ' (A viuiulteriniutrgniuiaiaieieieie ittt
'

Classifier ! 1State estimator |

'| Feasible actions | : : Feasible actions | |

] Action choice Action choice
| External influencesi | External influences | E
oot oY ot
1 1 1
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Fig. 3 Data required for training the models. State, feasible actions and the action choice are collected at
discrete points in time, while external influences accumulate over time. Classifier and state estimator do not
overlap in this depiction solely for the sake of clarity




Forderer and Schmeck Energy Informatics (2019), 2(Suppl 1): 18 Page 9 of 20

potential of learning aggregated models. As we show in this paper, it is possible to learn a
model of an aggregated system. In theory, larger aggregated models can be trained from
individual models, by executing the process described in Process for generating load pro-
files and collecting the required data depicted in Fig. 3. When actions are defined on the
basis of consumed and produced power, the aggregated model may simply reuse the exact
same set of actions. Hence, in this case, only the dimension of the state space grows. Also,
when defining actions in such a way, the action mapping is only required if soft constraints
need consideration. Furthermore, using ANNs may help to obscure some of the processes
happening in the building. However, this is by no means guaranteed.

Simulation models and parameters

All data used to train the neural models is generated during the training process using
simulation models. The simulation models emulate the represented systems starting from
a randomly selected initial state. In each simulation step the set of feasible actions for
the current system state is determined and an action is chosen randomly. Each sample
for training the classifier is generated from a single simulation period. Although we use
single periods as samples for training the state estimator in this paper, a sample may also
comprise a sequence of simulation steps to allow unfolding the recurrent neural model

(see Goodfellow et al. (2016) for more information on unfolding RNNs).

Considered building configurations

In this paper three building configurations are considered. Each configuration is different
in terms of the state space, the set of possible actions, as well as the associated restrictions
and parameters the neural models need to learn from the data. A detailed description
of the simulation models can be found in the subsequent sections. The following list
provides an overview of the investigated configurations:

BESS: The state of the BESS is given by its SOC. Each action is uniquely associated
with a power consumed or provided by the BESS. Hence, whether an action is
feasible or not depends solely on the SOC of the BESS. The minimum and maxi-
mum power are assumed to be constant. Charging and discharging efficiencies are
considered.

CHP plant with HWT: The basic state is defined by the current mode of operation of
the CHP plant, the dwell time and the temperature of the HWT encoded as SOC.
Additional state variables have been introduced to configure constraints and prevent
states without feasible actions. Only the two modes “off” and “on” with fixed pow-
ers are considered. After switching its mode of operation, the CHP plant needs to
spend a certain time in the respective mode before the mode may be changed again.
Whether an action is feasible or not is also dependent on the HWT’s SOC. Further-
more, the ramping of the CHP plant and the heat loss of the HWT are considered in
the state computation.

Aggregated system: The aggregated system, i.e., a BESS in combination with a CHP
plant and a HWT, combines both of the above configurations.

Simulation models

The simulation models are based on those we used in Forderer et al. (2018a).
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BESS

One of the simplest options to define the state of the BESS is the amount of stored energy
or equivalently the SOC. In the model, the SOC is computed in terms of the BESS’s usable
capacity, i.e., the BESS may be discharged to an SOC of 0 and charged up to an SOC of
1. The amount of energy in the BESS at the beginning of period ¢ is given by e;. When
charging or discharging with power p; over the length of a period At the change in the
stored amount of energy (before loss) is

n‘peAt ,pr >0

Aep =
! n—ldptAt bt <0

(1)
with charging and discharging efficiencies 7¢ and . Each possible choice for the power
P+ is equivalent to an action. For the loss, we distinguish a base loss that is equal to the loss
at an SOC of 0 and a relative loss that is proportional to the SOC. As the SOC can not fall
below O for a feasible load profile, this allows an intuitive state transition equation. The
relative loss /" is the percentage of stored energy that is lost every period. It is assumed
that the stored energy changes linearly over the course of a period. The base loss # is a
fixed amount of energy that vanishes every period. With these losses the amount of stored
energy in ¢ + 1 is given by

e e
et+1=et+Aet—%~1r—lb

lr l}" (2)
=(e-(1—=)+2e -1 1+-).
= (e (1=5) raa=r) /(1+3)

Please note the occurrence of e;1 on both sides of the first line, as the loss is based on
the average SOC. It is /" = I* = 0 for the BESS, but the same equations are used for the
HWT. For identifying feasible actions the computation steps are simply reversed. From
Eq.2itis

rr rr
A€t=€t+1'(1+2)—et'(1—2>+lh. (3)

By setting e;1 to 0 and then to the amount of energy equivalent to an SOC of 100%, the
minimum and the maximum Ae; are derived. In combination with Eq. 1 the minimum
and maximum power can be computed. By filtering out all actions exceeding one of these
bounds, only feasible actions remain. The feasible actions are then stored in a list. In
the simulation, the action selection for the BESS is performed randomly with uniformly
distributed probabilities to create equal amounts of samples for each action.

CHP plant with HWT

The basic state of the CHP plant, as it is implemented in the simulation model, can be
described with two variables. First, its current mode of operation, i.e., whether it is turned
off or on, and the time it has been staying in this mode. Each mode of operation is asso-
ciated with a minimum dwell time. Therefore, the mode may only be changed after the
plant has stayed sufficiently long in the current mode. This constraint prevents frequent
starting and stopping of the CHP plant. To allow varying the dwell time constraints, addi-
tional state variables for the minimum dwell time of each mode are introduced. The EMS
can use this variable to restrict the number of CHP plant activations by the DSMgr. Fur-
ther constraints are imposed by the HWT and more precisely its SOC. The CHP plant
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may only run if the SOC does not exceed 100% and it must run if the stored amount of
thermal energy is not sufficient for satisfying the building’s thermal energy demand.

Similar to the BESS, the state of the HWT is computed with Egs. 1, 2 and 3. As stated
before, although included in the model, the parameters of the BESS have been chosen to
neglect self-discharge. For the HWT, on the other hand, we neglect the efficiencies and
consider self-discharge instead.

Since the CHP plant may only be turned off and on, there are only two actions available.
Due to the combination of minimum dwell times for the CHP plant and the SOC limita-
tions, there may arise situations without any feasible action as described in the “Dead ends
and artificial constraints” section. To avoid this problem we introduce additional, artifi-
cial minimum and maximum SOCs for the HWT. The CHP plant may only be started
if the SOC is below its imposed maximum and only be stopped for an SOC above the
minimum. Given suitable boundaries, dead end situations can be avoided. There are of
course other possibilities to resolve this issue. In summary, including the additional vari-
ables, the state is given by the current operation mode of the CHP plant, the dwell time in
this mode, the minimum dwell times for each mode, the SOC of the HWT, and the min-
imum and maximum HWT SOC. Whether an action is feasible or not is determined by
the dwell time and the SOC in relation to the given boundaries. Again, for each iteration,
feasible actions are stored in a list. The action selection in the simulation is random.

Aggregated system

The aggregated system combines both simulation models described above. Hence, the
state of the system is given by the SOC of the BESS, the current CHP plant operation
mode, the dwell time in this mode, the minimum dwell times for each mode of the
CHP plant, the SOC of the HWT, and the minimum and maximum HWT SOC. For our
experiments, the set of possible actions for the aggregated system is simply the Cartesian
product of both individual sets of possible actions. In consequence, there are multiple
actions associated with the same aggregated building load. As the DSMgr aims to steer
this aggregated load, identical actions in terms of resulting power consumed or produced
could have been compared to remove the less desirable actions and reduce the amount of

overall possible actions (see also “Data acquisition”).

Simulation model parameters

An overview of the model parameters is given by Table 1. The parameters for the simu-
lated BESS and CHP plant have been scaled in order to generate values from the intervals
[—1,1] and [ 0, 1] for the respective DER’s power. Thermal demand, as well as the param-
eters for the HWT have been divided by 6 and thereby scaled accordingly. Originally,
the HW'T has a capacity of about 18 kWh which is roughly equivalent to a tank volume
of ~ 780 1 with temperatures ranging from 60° to 80 °C and 20 °C environmental tem-
perature. The losses in W of a HWT with energy efficiency class B and volume V in
liters are in [ 8.5 4 4.25 - V94,12 4+ 5.93 . V04) (European Union 2013). With V = 7801
and the normalization, the losses are in the interval [11.58,16.18). Assuming a linear
relationship between the SOC of the HWT and the heat losses, the total heat loss per
simulated period is set to 11.58 4+ SOC - (16.18 — 11.58) W. Thermal demand time series
for a day in winter, summer, and the intermediate seasons, have been generated using the
CREST Demand Model (McKenna and Thomson 2016). The seasons represent varying
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Table 1 Overview of the model parameters. The parameters for the BESS and the CHP plant have
been normalized individually. Thermal consumption, the hot water tank capacity, and losses have
been divided by 6 in order to scale them to a size appropriate for the normalized CHP plant

Parameter Normalized values
BESS Power el. [—1,11 kW in steps of 0.01 kW
Capacity 1 kWh
Efficiency n¢ =n? =094
0.8836 round-trip efficiency
CHP plant Power el. 0 kW or 1 kW
Power thermal 0kWor 1 kW
HWT Capacity 3 kWh
Heat loss 11.58 4+ SOC - (16.18 — 11.58) W
Energy efficiency class B (European Union 2013)
Thermal demand Winter 9.99 kWh/day
Intermediate 7.82 kWh/day
Summer 3.10 kWh/day

consumption patterns. Table 1 shows the normalized total demand. Each of the three
series is the average of 60 simulations of identical four person households on a weekday
and has a temporal resolution of one minute. Although the simulation models and the
neural models use intervals of 15 min, the series are not aggregated. Instead, new ther-
mal energy demand series are created by randomly selecting one value out of each 15 min

period.

Neural models

Since we use a rather arbitrary structure for the neural networks, it is very likely that
there are more specialized ANNs that can achieve even better results. The structure of
both neural models is depicted in Fig. 4. Both models use a linear layer with biases for

Classifier State estimator
l [a.s.9] |
l N
!Teaer\ Linear (Isl, w) [ Linear (I[Ia,s,y]l, w) |
- ;
| | module (w, w i % ‘ Gated residual module (w, w) ‘
‘ module (w, w) ‘ ‘ module (w, w) ‘
module (w, w; Gated residual module (w, w)
Linear (w,w) module (w, w] ‘ Gated residual module (w, w) ‘
I
v v v
R Linear (w, lal) | Linear (w, Isl) |
A\
s
[ a ] l s |

Fig. 4 Structure of the evaluated ANNSs for the classifier and state estimator. The numbers in parentheses
define the number of elements in the input and output vectors, where | - | is the number of elements in the
state s, one-hot encoded action a and forecast y. Linear layers are linear functions with a bias. ReLU and
Sigmoid are non-linear activation functions. The symbols x and + are the elementwise multiplication and
addition, and 1 stands for the identity
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changing the number of elements in the input vector to w. This is followed by a sequence
of modules consisting of other ANN layers. In the classifier such a module consists only
of linear layers with biases and rectified linear units, i.e., ReLU(x) = x™ = max{x, 0}.
The state estimator makes use of a more complex gated residual module which in its
structure is similar to a layer of the WaveNet (van den Oord et al. 2016): The outputs of
two modules are multiplied elementwise. Thereby one of the modules acts as a gate which
can remove elements from the other module’s output by choosing a value of 0. Then, a
residual connection adds the input of the modules to the result of the multiplication. The
advantage of such a residual module is that its influence on the output can more easily
be eliminated by the training algorithm (He et al. 2016), which is especially relevant if
the module is not needed. The number of modules determines the depth of the neural
network and can be adapted using a hyperparemeter. Finally, a linear layer with biases

is used to change the number of elements from w to the desired output vector size. The
1

1+e™™"

Aside from the structure of the ANN:S, there are countless (hyper-)parameters to opti-

sigmoid activation function is Sigmoid(x) =

mize and approaches to consider when training ANNSs, including the selection of the
optimization algorithm, loss function, i.e., the objective optimized by the training algo-
rithm, batch size and learning rate. The models for the classifier and state estimator are
trained separately. In both cases the algorithm Adam (see Goodfellow et al. (2016)) is
used for optimizing the neural models. The learning rate is adapted dynamically, based
on the observed losses from previous batches and the number of training iterations. As
is recommended in Goodfellow et al. (2016), a regularization term is introduced to the
loss function to force smaller ANN weights. The term consists of the sum of the absolute
model weights and is multiplied with a factor allowing to configure the impact of the reg-
ularization. Additionally, norm clipping is used to prevent too large optimization steps
(Goodfellow et al. 2016). The source code and training logs that are published alongside
the models provide a deeper insight into the employed regularization techniques and the
parameter choices for the individual results.

Classifier

Given solely the state of the building and its DERs s; as input, the classifier computes
a vector containing ratings for every action in the set A. These |A| ratings from the
interval [0, 1] may be interpreted as the probability of feasibility for each individual
action. For the three DER configurations BESS, CHP plant with HWT, and aggregated
system, there are 1, 8, and 9 elements in s; respectively (see Simulation models). For
the creation of training samples, the simulation model and randomly selected initial
states sop are used to generate vectors for each state, indicating the feasibility of each
action. Whether an action is feasible or not is encoded with 0 and 1, where a value of
1 denotes feasible actions. The target function for training the ANN is the binary cross
entropy.

State estimator

The loss function applied for training the state estimator is the mean squared error. By
applying weights to the estimated and the target state before computing the loss, the
training algorithm can be steered to focus on certain variables that need to be predicted
more precisely. An element of the state vector with a high weight compared to the other
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weights provides a leverage for reducing the loss significantly by providing more precise
forecasts for that respective element. Furthermore, although the inputs are all from the
interval [0, 1], not every element in the state vector needs to be forecasted with exactly
the same precision, especially since we apply a discretization as is described in Describing
and exploiting flexibility.

Evaluation setup

To evaluate the approach for generating feasible load profiles presented in this paper,
neural models for the classifier and state estimator are trained as described in the previous
sections and tested in the process depicted in Fig. 2. The goal of the evaluation is to show
that the approach combined with ANNs can be used to reliably generate feasible and
diverse load profiles, preferably from the entire space of feasible load profiles. We used
python with pytorch 1.0.1 for the implementation of all necessary models and scripts.
During the training process, training batches are randomly generated with the help of the
simulation models. In the evaluation, load profiles for one day with a temporal resolution
of 15 min, i.e.,, consisting of 96 values, are generated using the presented approach in
combination with the trained ANNs. With the simulation models used to generate the
training samples, the generated load profiles are then evaluated for their actual feasibility.
This section outlines the implementation of the remaining components in Fig. 2 needed
in order to evaluate the approach.

Forecasts and initial states

For the load profile generation, thermal energy demand forecasts are generated from the
data already used in the simulation models. All forecasts are assumed to be perfect. The
load profiles planned by the EMS have not been used in the evaluation, since they are
an optional element and the goal is to evaluate the feasibility of the presented approach.
The initial states are selected randomly from the possible initial states used in the simula-
tion model. In order to take varying thermal demand into account, the randomly selected
artificial SOC bounds of the HWT are adapted according to the season. For winter, the
intermediate seasons, and summer, the lower bound is at least 0.25, 0.2, as well as 0.15,
and the upper bound is at most 0.85, 0.8, as well as 0.75. These exact bounds are an arbi-
trary choice, considering only that there is a relationship between the season and thermal
demand. In practice, the EMS of the building would adapt these bounds to reflect the
forecasted demand.

Action selection

Before an action can be selected, a list of feasible actions is required. Given the rating of
the classifier c(s;), all states c(s;) > 0.95 are classified as feasible. The threshold of 0.95 is
an arbitrary choice and the selection of other values is likely to change the results. It has
been set close to the value 1, since a false negative classification of an action is significantly
less problematic than a false positive. With a false negative, the amount of available actions
is restricted. A false positive, on the other hand, is an option that makes the generated load
profile infeasible if selected. This threshold may be optimized and adapted in the future.
Assuming that there is always at least one feasible action, i.e., there are no dead end states
(see “Dead ends and artificial constraints”), when all ratings are below the threshold, the
action with the highest rating is selected. Without this assumption, a series of actions that
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leads to the dead end state s; has to be considered infeasible and the process needs to be
(partially) repeated from a state s; in T < £.

In states close to boundaries imposed by constraints, small estimation errors may suf-
fice to make a generated load profile infeasible, leading to an invalid load profile that is
very similar to a feasible one. A possible solution to deal with this issue is the utilization
of buffers. For the two configurations including a CHP plant and HWT, a buffer is added
to the minimum and maximum HWT SOC values in the state vector. This is equivalent
to further restricting the allowable HWT SOCs by tightening the artificial HWT con-
straints. With this buffer, some of the actions near the feasibility boundary are ruled out
to increase the likelihood of selecting feasible actions. The changes are applied to the state
vector before passing it to the classifier. The buffer is not applied in the state estimation
or simulation models. Hence, the number of false negatives increases with an increasing
buffer. Please note that for simplicity Fig. 2 does not include this additional preprocessing
step.

After all actions likely to be feasible have been determined, an action needs to be
selected. This is done randomly, drawing from a uniform distribution. A real DSMgr
would rather conduct a targeted search and select the actions based on the action mapping

and the target function to find a (nearly) optimal solution.

State processing

Even though the state estimator may generate good results during the training, estimating
multiple steps may lead to growing errors. To counter this, in the state processing step, the
state vector is discretized as described in “Describing and exploiting flexibility” section.

Results

The complete implementation of all simulation and neural models, the training and eval-
uation algorithms, as well as the presented ANNs with the respective training logs and
results have been published (see “Availability of data and materials”).

For each building configuration and different buffer sizes 1000 load profiles were gen-
erated. A summary is shown in Table 2. The false negative rate (FNR) and false positive
rate (FPR) of the action classification strongly depend on the selected threshold for fea-
sibility and the size of the buffer. As described earlier, the threshold has been set to 0.95
to ensure a low rate of false positives, since a false positive may invalidate a load profile,
while a false negative only narrows the available flexibility. Buffers are only applied to the
additional, artificial constraints for the HWT SOC. Since the buffers are applied to the

Table 2 Feasibility and classification results for each configuration, based on 1000 individually
generated load profiles

Buffer Building configuration Feasible FNR FPR Feasible (relaxed)

- BESS 98.3% 0.016% 0417% -

0.00 CHP plant with HWT 52.0% 4.297% 1.004% 95.3%
Aggregated system 51.2% 7.814% 0.841% 96.0%

0.05 CHP plant with HWT 95.1% 13.017% 0.033% 99.2%
Aggregated system 96.7% 15.554% 0.016% 99.2%

0.10 CHP plant with HWT 99.6% 19.779% 0.000% 99.8%

Aggregated system 98.8% 21.156% 0.001% 99.1%
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classifier input, the classification result contains an increased amount of false negatives
compared to the actual target vector. For the BESS 98.3% of the generated load profiles
are feasible, even without applying any buffers. In contrast, when no buffers are used, the
models for the configurations including a CHP plant and HWT only generate about 50%
feasible load profiles. As the buffer increases, the percentage grows. It may be surprising
that there are infeasible load profiles when using a buffer of 0.1 even though there are
no false positives. This is caused by situations where no action can be identified as valid
option. Since we assume that there is always at least one feasible action, the action with
the highest rating was chosen, even though there was no action rated above the threshold.
For the configurations including a CHP plant and HWT, infeasibility is often caused by
inaccurate HWT SOC estimations. Since the maximum and minimum SOC boundaries
are artificially narrowed down to avoid dead ends, the resulting load profile may violate
these artificial constraints while satisfying all real constraints. To determine the share of
load profiles that satisfy the actual constraints, we remove the artificial SOC limitations
after the load profile has been generated. The results for these relaxed constraints are
given in Table 2. Even without buffers, which in this case simply further narrow the artifi-
cial boundaries, over 95% of the generated load profiles would actually be attainable. For
increasing buffers, the percentage again increases. As mentioned before, a smart selec-
tion process for the boundaries could help to further improve the results. Judging from
the results, by applying similar artificial constraints to the BESS the rate of feasible load
profiles could easily be increased to over 99%.

It is important to note that while the artificial constraints, buffers and high threshold
for classifying actions as feasible help to increase the share of attainable load profiles, they
also restrict the search space, i.e., the space of load profiles that can be generated. For
larger buffers and more artificial constraints, a growing number of actually feasible load
profiles is ruled out. The results for the BESS show that high shares of feasible load pro-
files can indeed be achieved without artificial constraints and buffers. While the artificial
HWT SOC constraints were introduced to avoid dead ends and the need for restarting the
generation process, the introduction of buffers for the classifier was primarily motivated
by the poor performance of the ANNSs in states close to multiple boundaries at once. By
improving the employed models or assuming a slightly different set of constraints, buffers
may not be needed anymore for the CHP plant with a HWT.

The percentage of feasible load profiles alone is not sufficient for telling how well the
flexibility of the building in the respective configuration is reflected. If, for example,
the generated load profiles are very similar to each other, a high percentage of feasi-
ble load profiles may be achieved, while the true flexibility isn’t represented at all. To
make sure that the approach we present in this paper allows the generation of diverse
load profiles, another 1000 load profiles for the aggregated system were generated. For
each load profile the initial state is identical and comprises a BESS and HWT SOC
of 50%, a CHP plant that has been running for 10 periods and is still running, mini-
mum dwell times of two periods for each mode, as well as a minimum and maximum
HWT SOC of 0.25 and 0.85. A buffer of 0.05 was applied before the action selection.
The thermal demand forecast is a series for the demand in winter and is also iden-
tical for each generated profile. Of the 1000 generated load profiles 997 are feasible.
A heat map of these feasible load profiles is depicted in Fig. 5. With the relaxed con-
straints all 1000 profiles are feasible. The figure shows that the load profiles are very
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Fig. 5 Heat map indicating the coverage of all possible electric powers by the 997 generated load profiles.
The more load profiles include a specific power value at a given period, the brighter the respective area. Black
areas are reached by none of the 997 load profiles

diverse, as in every period t the majority of possible values is attainable with at least
one load profile. In the early periods, there are some areas that are only covered by few
load profiles. Similar areas show up when changing the initial state or the random seed
for the random selection of the actions. These sparely covered regions are the result
of high HWT SOCs. As more time passes, the underlying SOCs become more evenly
distributed.

As depicted in Fig. 4, the state estimator and the classifier both consist of a sequence of
modules. While the implemented source code allows up to five modules, the presented
results have been generated with ANNSs using three modules at most. Even though those
unused modules are included, each neural model that has been trained is less than 1 MiB
in size. Removing the unused modules would lead to sizes of a few 100 KiB. To put this
number into perspective, the dataset for the aggregated system has 2.564.776.224 possible
states.

With regard to the training of the ANNS, we noticed the importance of regularization
and learning rate adaptations. Without these, the resulting neural models perform sig-
nificantly worse, to the extent that the classifier may just output a constant value for any
input. Furthermore, system states that require the consideration of multiple constraints,
as they are close to the imposed boundaries, showed to be a challenge for the classifiers.
The application of buffers can help to deal with uncertainty by pushing the boundary
regions towards states that are more likely to be feasible. Moreover, looking at infeasible
load profiles showed that they are similar to actually feasible load profiles. It is also impor-
tant to note that a better training or validation loss does not necessarily lead to a higher
number of feasible load profiles. A possible reason could be overfitting. Since our imple-
mentation selects models based on the worst validation batch loss, better results may have
been achieved using another benchmark. Reducing the validation batch size could also
help, since the loss of a batch is computed as an average and the influence of samples that
produce bad outputs is rather small if they are rare.
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Conclusion

The approach presented in this paper enables the generation and directed search of load
profiles for DERs. The employed models are used to perform an approximate simulation
of the represented systems without the need of detailed knowledge of the systems them-
selves. Since operational choices can easily be evaluated during the sequential process,
a targeted load profile search is enabled. As the results show, we were able to generate
diverse load profiles with a high likelihood of being feasible, not only for single DERs,
but also for aggregates of multiple DERs. Hence, the presented approach could benefit
demand side management measures by providing detailed information on the flexibility
of diverse DERs.

Aside from the general applicability, we showed how additional constraints and buffers
may be used to further increase the rate of feasible load profiles at the cost of narrowing
the search space. Whether such restrictions of the search space pose an issue or not and
how they should be designed needs to be assessed on a case-by-case basis. All code nec-
essary to train own models and test the load profile generation has been published online,
including the presented simulation and neural models, as well as the training logs and
results (see “Availability of data and materials”).

In the future, we will continue to work on the approach by improving the ANNS, as
well as the training process, by adding more DERs, and by evaluating and comparing the
approach with others in a realistic scenario. Also, the field of reinforcement learning could
provide beneficial ideas and concepts to further improve the approach, especially when
using a state and action definition that does not require a separate classifier, e.g., when
embedding feasible actions into the state. Moreover, the aggregation of multiple models
to a combined model is a topic of interest, as it potentially enables large scale applications
of the approach.
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