76,382 research outputs found

    Replication stress and chromatin context link ATM activation to a role in DNA replication

    Get PDF
    ATM-mediated signaling in response to DNA damage is a barrier to tumorigenesis. Here we asked whether replication stress could also contribute to ATM signaling. We demonstrate that, in the absence of DNA damage, ATM responds to replication stress in a hypoxia-induced heterochromatin-like context. In certain hypoxic conditions, replication stress occurs in the absence of detectable DNA damage. Hypoxia also induces H3K9me3, a histone modification associated with gene repression and heterochromatin. Hypoxia-induced replication stress together with increased H3K9me3 leads to ATM activation. Importantly, ATM prevents the accumulation of DNA damage in hypoxia. Most significantly, we describe a stress-specific role for ATM in maintaining DNA replication rates in a background of increased H3K9me3. Furthermore, the ATM-mediated response to oncogene-induced replication stress is enhanced in hypoxic conditions. Together, these data indicate that hypoxia plays a critical role in the activation of the DNA damage response, therefore contributing to this barrier to tumorigenesis

    Effects of Hyperbaric Hypoxia on Some Enzyme Systems in the Mammalian Liver

    Get PDF
    The metabolic effects of hypobaric hypoxic stress on the mammalian liver were studied. The lactate dehydrogenase (LDH) and succinate dehydrogenase (SDH) activity of mouse liver homogenates were measured after exposure to an equivalent altitude of 36,000 feet and compared to controls kept at zero altitude. After six and twelve hour incubation periods, the altitude exposed samples demonstrated a significantly higher LDH activity than controls. SDH activity remained unchanged from controls after six hours but was significantly lower than controls after a 12 hour exposure to altitude. It is concluded that the changes in enzyme activity reflect a metabolic control mechanism attempting to maintain adequate energy production during periods of exposure to hypobaric hypoxic stress

    Combined therapies of antithrombotics and antioxidants delay in silico brain tumor progression

    Full text link
    Glioblastoma multiforme, the most frequent type of primary brain tumor, is a rapidly evolving and spatially heterogeneous high-grade astrocytoma that presents areas of necrosis, hypercellularity and microvascular hyperplasia. The aberrant vasculature leads to hypoxic areas and results in an increase of the oxidative stress selecting for more invasive tumor cell phenotypes. In our study we assay in silico different therapeutic approaches which combine antithrombotics, antioxidants and standard radiotherapy. To do so, we have developed a biocomputational model of glioblastoma multiforme that incorporates the spatio-temporal interplay among two glioma cell phenotypes corresponding to oxygenated and hypoxic cells, a necrotic core and the local vasculature whose response evolves with tumor progression. Our numerical simulations predict that suitable combinations of antithrombotics and antioxidants may diminish, in a synergetic way, oxidative stress and the subsequent hypoxic response. This novel therapeutical strategy, with potentially low or no toxicity, might reduce tumor invasion and further sensitize glioblastoma multiforme to conventional radiotherapy or other cytotoxic agents, hopefully increasing median patient overall survival time.Comment: 8 figure

    Functional inhibition of acid sphingomyelinase by Fluphenazine triggers hypoxia-specific tumor cell death

    Get PDF
    Owing to lagging or insufficient neo-angiogenesis, hypoxia is a feature of most solid tumors. Hypoxic tumor regions contribute to resistance against antiproliferative chemotherapeutics, radiotherapy and immunotherapy. Targeting cells in hypoxic tumor areas is therefore an important strategy for cancer treatment. Most approaches for targeting hypoxic cells focus on the inhibition of hypoxia adaption pathways but only a limited number of compounds with the potential to specifically target hypoxic tumor regions have been identified. By using tumor spheroids in hypoxic conditions as screening system, we identified a set of compounds, including the phenothiazine antipsychotic Fluphenazine, as hits with novel mode of action. Fluphenazine functionally inhibits acid sphingomyelinase and causes cellular sphingomyelin accumulation, which induces cancer cell death specifically in hypoxic tumor spheroids. Moreover, we found that functional inhibition of acid sphingomyelinase leads to overactivation of hypoxia stress-response pathways and that hypoxia-specific cell death is mediated by the stress-responsive transcription factor ATF4. Taken together, the here presented data suggest a novel, yet unexplored mechanism in which induction of sphingolipid stress leads to the overactivation of hypoxia stress-response pathways and thereby promotes their pro-apoptotic tumor-suppressor functions to specifically kill cells in hypoxic tumor areas

    Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress

    Get PDF
    The modulation of primary nitrogen metabolism by hypoxic stress was studied in young Medicago truncatula seedlings. Hypoxic seedlings were characterized by the up-regulation of glutamate dehydrogenase 1 (GDH1) and mitochondrial alanine aminotransferase (mAlaAT), and down-regulation of glutamine synthetase 1b (GS1b), NADH-glutamate synthase (NADH-GOGAT), glutamate dehydrogenase 3 (GDH3), and isocitrate dehydrogenase (ICDH) gene expression. Hypoxic stress severely inhibited GS activity and stimulated NADH-GOGAT activity. GDH activity was lower in hypoxic seedlings than in the control, however, under either normoxia or hypoxia, the in vivo activity was directed towards glutamate deamination. 15NH4 labelling showed for the first time that the adaptive reaction of the plant to hypoxia consisted of a concerted modulation of nitrogen flux through the pathways of both alanine and glutamate synthesis. In hypoxic seedlings, newly synthesized 15N-alanine increased and accumulated as the major amino acid, asparagine synthesis was inhibited, while 15N-glutamate was synthesized at a similar rate to that in the control. A discrepancy between the up-regulation of GDH1 expression and the down-regulation of GDH activity by hypoxic stress highlighted for the first time the complex regulation of this enzyme by hypoxia. Higher rates of glycolysis and ethanol fermentation are known to cause the fast depletion of sugar stores and carbon stress. It is proposed that the expression of GDH1 was stimulated by hypoxia-induced carbon stress, while the enzyme protein might be involved during post-hypoxic stress contributing to the regeneration of 2-oxoglutarate via the GDH shunt

    Effects of hypoxia on benthic macrofauna and bioturbation in the Estuary and Gulf of St. Lawrence, Canada

    Get PDF
    The bottom water in the 4300 m deep Lower St. Lawrence Estuary (LSLE) is persistently hypoxic in contrast to the normoxic bottom waters in the Gulf of St. Lawrence (GSL). We photographed the seabed at 11 stations in the Estuary and Gulf of St. Lawrence (EGSL) during the summers 2006 and 2007 and analysed the images to identify bioturbation traces (lebensspuren) and benthic macrofauna. The objective was to identify the environmental variables that influence the density and diversity of benthic macrofauna and bioturbation traces, and the differences that exist among regions with high, medium and low oxygen levels in the bottom water. The bottom water oxygen concentration is the variable that best explains the densities of total-traces as well as surface-traces. However, the density of these traces was higher in hypoxic regions than in well-oxygenated regions. The higher density of traces in the hypoxic region of the LSLE is mainly due to the activities of the surface deposit feeder Ophiura sp., which occurs in large numbers in this region. Possible explanations explored are stress behaviour of the organisms in response to hypoxia and different benthic macrofauna community structures between the hypoxic regions of the LSLE and the normoxic regions of the GSL. In the former, surface deposit feeders and low-oxygen tolerant species dominate over suspension feeders and low-oxygen intolerant species

    The separate or the combined effect of hypoxia and salinity on growth and ionic relations of four wheat varieties

    Get PDF
    To evaluate hypoxic-salinity tolerance in wheat varieties, three Japanese varieties (Nourin-61, Chikugo Izumi and Shirasagi Komugi, relatively salt tolerant) and one Pakistani variety (Blue Silver, relatively salt sensitive) were grown under control, hypoxia, saline and hypoxic-saline conditions. The results suggested that relatively hypoxia and salt tolerant variety Nourin-61 was capable of producing the highest relative shoot yield under combined stress conditions. On the other hand, relatively sensitive variety to both hypoxia and salinity conditions, could not withstand harmful effects of combined stress. A more close correlation of plant growth characters between salinity and hypoxic-salinity than hypoxia and hypoxic-salinity indicated that varieties with higher salt tolerance would suffer less than varieties with higher hypoxia tolerance under combined stress conditions. And the balance of Na/K ratio in shoot tissues seems to be the major evaluation factor as the tolerant variety when salinity and hypoxia stress occur together

    Hypoxia, acidification and oxidative stress in cells cultured at large distances from an oxygen source

    Get PDF
    Hypoxia is a condition frequently encountered by cells in tissues, whether as a normal feature of their microenvironment or subsequent to deregulated growth. Hypoxia can lead to acidifcation and increased oxidative stress, with profound consequences for cell physiology and tumorigenesis. Therefore, the interplay between hypoxia and oxidative stress is an important aspect for understanding the efects of hypoxic microenvironments on cells. We have used a previously developed variant of the method of coverslip-induced hypoxia to study the process of acidifcation in a hypoxic microenvironment and to simultaneously visualize intracellular levels of hypoxia and oxidative stress. We observed high accumulation of CO2 in hypoxic conditions, which we show is the main contributor to acidifcation in our model. Also, increased levels of oxidative stress were observed in moderately hypoxic cells close to the oxygen source, where the mitochondrial membrane potential was preserved. Conversely, cells at large distances from the oxygen source showed higher levels of hypoxia, milder oxidative stress and reduced mitochondrial membrane potential. Our results contribute to characterize the interplay between reduced oxygen levels, acidifcation and oxidative stress in a simple in vitro setting, which can be used to model cell responses to an altered environment, such as the early tumor microenvironment

    Dietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heart

    Get PDF
    This is the final version. It was first published by Wiley in The Journal of Physiology at http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2014.275263/abstract.Hypoxic exposure is associated with impaired cardiac energetics in humans and altered mitochondrial function, with suppressed complex I-supported respiration, in rat heart. This response might limit reactive oxygen species (ROS) generation, but at the cost of impaired electron transport chain (ETC) activity. Dietary nitrate supplementation improves mitochondrial efficiency and can promote tissue oxygenation by enhancing blood flow. We therefore hypothesised that ETC dysfunction, impaired energetics and oxidative damage in the hearts of rats exposed to chronic hypoxia could be alleviated by sustained administration of a moderate dose of dietary nitrate. Male Wistar rats (n=40) were given water supplemented with 0.7 mmol/L NaCl (as control) or 0.7 mmol/L NaNO3, elevating plasma nitrate levels by 80%, and were exposed to 13% O2 (hypoxia) or normoxia (n=10 per group) for 14 days. Respiration rates, ETC protein levels, mitochondrial density, ATP content and protein carbonylation were measured in cardiac muscle. Complex I respiration rates and protein levels were 33% lower in hypoxic/NaCl rats compared with normoxic/NaCl controls. Protein carbonylation was 65% higher in hearts of hypoxic rats compared with controls, indicating increased oxidative stress, whilst ATP levels were 62% lower. Respiration rates, complex I protein and activity, protein carbonylation and ATP levels were all fully protected in the hearts of nitrate-supplemented hypoxic rats. Both in normoxia and hypoxia, dietary nitrate suppressed cardiac arginase expression and activity and markedly elevated cardiac L-arginine concentrations, unmasking a novel mechanism of action by which nitrate enhances tissue NO bioavailability. Dietary nitrate therefore alleviates metabolic abnormalities in the hypoxic heart, improving myocardial energetics

    A depletable pool of adenosine in area CA1 of the rat hippocampus

    Get PDF
    Adenosine plays a major modulatory and neuroprotective role in the mammalian CNS. During cerebral metabolic stress, such as hypoxia or ischemia, the increase in extracellular adenosine inhibits excitatory synaptic transmission onto vulnerable neurons via presynaptic adenosine A1 receptors, thereby reducing the activation of postsynaptic glutamate receptors. Using a combination of extracellular and whole-cell recordings in the CA1 region of hippocampal slices from 12- to 24-d-old rats, we have found that this protective depression of synaptic transmission weakens with repeated exposure to hypoxia, thereby allowing potentially damaging excitation to both persist for longer during oxygen deprivation and recover more rapidly on reoxygenation. This phenomenon is unlikely to involve A1 receptor desensitization or impaired nucleoside transport. Instead, by using the selective A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine and a novel adenosine sensor, we demonstrate that adenosine production is reduced with repeated episodes of hypoxia. Furthermore, this adenosine depletion can be reversed at least partially either by the application of exogenous adenosine, but not by a stable A1 agonist, N6-cyclopentyladenosine, or by endogenous means by prolonged (2 hr) recovery between hypoxic episodes. Given the vital neuroprotective role of adenosine, these findings suggest that depletion of adenosine may underlie the increased neuronal vulnerability to repetitive or secondary hypoxia/ischemia in cerebrovascular disease and head injury
    corecore