260 research outputs found

    On partitioning problems with complex objectives

    Get PDF
    Hypergraph and graph partitioning tools are used to partition work for efficient parallelization of many sparse matrix computations. Most of the time, the objective function that is reduced by these tools relates to reducing the communication requirements, and the balancing constraints satisfied by these tools relate to balancing the work or memory requirements. Sometimes, the objective sought for having balance is a complex function of the partition. We describe some important class of parallel sparse matrix computations that have such balance objectives. For these cases, the current state of the art partitioning tools fall short of being adequate. To the best of our knowledge, there is only a single algorithmic framework in the literature to address such balance objectives. We propose another algorithmic framework to tackle complex objectives and experimentally investigate the proposed framework.Les outils de partitionnement de graphes et d'hypergraphes interviennent pour paralléliser efficacement de nombreux algorithmes liés aux matrices creuses. La plupart du temps, la fonction objectif minimisée par ces outils est liée au besoin de réduire les coûts de communication, tandis que les contraintes d'équilibre à satisfaire sont elles liées à l'équilibrage de la charge ou de la consommation mémoire. Parfois, l'objectif d'équilibre est une fonction complexe du partitionnement. Nous décrivons plusieurs applications majeures de calcul parallèle sur des matrices creuses où de telles contraintes d'équilibre apparaissent. Pour ces exemples, même les outils de partitionnement les plus pointus sont loin d'être adéquats. Pour autant que nous sachions, il n'existe dans la littérature qu'un seul cadre algorithmique qui traite ces problèmes. Nous proposons ici une nouvelle approche algorithmique et fournissons des résultats d'expériences la mettant en œuvre

    Partitioning, Ordering, and Load Balancing in a Hierarchically Parallel Hybrid Linear Solver

    Get PDF
    Institut National Polytechnique de Toulouse, RT-APO-12-2PDSLin is a general-purpose algebraic parallel hybrid (direct/iterative) linear solver based on the Schur complement method. The most challenging step of the solver is the computation of a preconditioner based on an approximate global Schur complement. We investigate two combinatorial problems to enhance PDSLin's performance at this step. The first is a multi-constraint partitioning problem to balance the workload while computing the preconditioner in parallel. For this, we describe and evaluate a number of graph and hypergraph partitioning algorithms to satisfy our particular objective and constraints. The second problem is to reorder the sparse right-hand side vectors to improve the data access locality during the parallel solution of a sparse triangular system with multiple right-hand sides. This is to speed up the process of eliminating the unknowns associated with the interface. We study two reordering techniques: one based on a postordering of the elimination tree and the other based on a hypergraph partitioning. To demonstrate the effect of these techniques on the performance of PDSLin, we present the numerical results of solving large-scale linear systems arising from two applications of our interest: numerical simulations of modeling accelerator cavities and of modeling fusion devices

    A Novel Partitioning Method for Accelerating the Block Cimmino Algorithm

    Get PDF
    We propose a novel block-row partitioning method in order to improve the convergence rate of the block Cimmino algorithm for solving general sparse linear systems of equations. The convergence rate of the block Cimmino algorithm depends on the orthogonality among the block rows obtained by the partitioning method. The proposed method takes numerical orthogonality among block rows into account by proposing a row inner-product graph model of the coefficient matrix. In the graph partitioning formulation defined on this graph model, the partitioning objective of minimizing the cutsize directly corresponds to minimizing the sum of inter-block inner products between block rows thus leading to an improvement in the eigenvalue spectrum of the iteration matrix. This in turn leads to a significant reduction in the number of iterations required for convergence. Extensive experiments conducted on a large set of matrices confirm the validity of the proposed method against a state-of-the-art method

    Combinatorial problems in solving linear systems

    Get PDF
    42 pages, available as LIP research report RR-2009-15Numerical linear algebra and combinatorial optimization are vast subjects; as is their interaction. In virtually all cases there should be a notion of sparsity for a combinatorial problem to arise. Sparse matrices therefore form the basis of the interaction of these two seemingly disparate subjects. As the core of many of today's numerical linear algebra computations consists of the solution of sparse linear system by direct or iterative methods, we survey some combinatorial problems, ideas, and algorithms relating to these computations. On the direct methods side, we discuss issues such as matrix ordering; bipartite matching and matrix scaling for better pivoting; task assignment and scheduling for parallel multifrontal solvers. On the iterative method side, we discuss preconditioning techniques including incomplete factorization preconditioners, support graph preconditioners, and algebraic multigrid. In a separate part, we discuss the block triangular form of sparse matrices

    Computational Optimization Techniques for Graph Partitioning

    Get PDF
    Partitioning graphs into two or more subgraphs is a fundamental operation in computer science, with applications in large-scale graph analytics, distributed and parallel data processing, and fill-reducing orderings in sparse matrix algorithms. Computing balanced and minimally connected subgraphs is a common pre-processing step in these areas, and must therefore be done quickly and efficiently. Since graph partitioning is NP-hard, heuristics must be used. These heuristics must balance the need to produce high quality partitions with that of providing practical performance. Traditional methods of partitioning graphs rely heavily on combinatorics, but recent developments in continuous optimization formulations have led to the development of hybrid methods that combine the best of both approaches. This work describes numerical optimization formulations for two classes of graph partitioning problems, edge cuts and vertex separators. Optimization-based formulations for each of these problems are described, and hybrid algorithms combining these optimization-based approaches with traditional combinatoric methods are presented. Efficient implementations and computational results for these algorithms are presented in a C++ graph partitioning library competitive with the state of the art. Additionally, an optimization-based approach to hypergraph partitioning is proposed

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    An Object-Oriented Algorithmic Laboratory for Ordering Sparse Matrices

    Get PDF
    We focus on two known NP-hard problems that have applications in sparse matrix computations: the envelope/wavefront reduction problem and the fill reduction problem. Envelope/wavefront reducing orderings have a wide range of applications including profile and frontal solvers, incomplete factorization preconditioning, graph reordering for cache performance, gene sequencing, and spatial databases. Fill reducing orderings are generally limited to—but an inextricable part of—sparse matrix factorization. Our major contribution to this field is the design of new and improved heuristics for these NP-hard problems and their efficient implementation in a robust, cross-platform, object-oriented software package. In this body of research, we (1) examine current ordering algorithms, analyze their asymptotic complexity, and characterize their behavior in model problems, (2) introduce new and improved algorithms that address deficiencies found in previous heuristics, (3) implement an object-oriented library of these algorithms in a robust, modular fashion without significant loss of efficiency, and (4) extend our algorithms and software to address both generalized and constrained problems. We stress that the major contribution is the algorithms and the implementation; the whole being greater than the sum of its parts. The initial motivation for implementing our algorithms in object-oriented software was to manage the inherent complexity. During our research came the realization that the object-oriented implementation enabled new possibilities for augmented algorithms that would not have been as natural to generalize from a procedural implementation. Some extensions are constructed from a family of related algorithmic components, thereby creating a poly-algorithm that can adapt its strategy to the properties of the specific problem instance dynamically. Other algorithms are tailored for special constraints by aggregating algorithmic components and having them collaboratively generate the global ordering. Our software laboratory, “Spindle,” implements state-of-the-art ordering algorithms for sparse matrices and graphs. We have used it to examine and augment the behavior of existing algorithms and test new ones. Its 40,000+ lines of C++ code includes a base library test drivers, sample applications, and interfaces to C, C++, Matlab, and PETSc. Spindle is freely available and can be built on a variety of UNIX platforms as well as WindowsNT

    Hypergraph-based Unsymmetric Nested Dissection Ordering for Sparse LU Factorization

    Get PDF
    In this paper we present HUND, a hypergraph-based unsymmetric nested dissection ordering algorithm for reducing the fill-in incurred during Gaussian elimination. HUND has several important properties. It takes a global perspective of the entire matrix, as opposed to local heuristics. It takes into account the assymetry of the input matrix by using a hypergraph to represent its structure. It is suitable for performing Gaussian elimination in parallel, with partial pivoting. This is possible because the row permutations performed due to partial pivoting do not destroy the column separators identified by the nested dissection approach. Experimental results on 27 medium and large size highly unsymmetric matrices compare HUND to four other well-known reordering algorithms. The results show that HUND provides a robust reordering algorithm, in the sense that it is the best or close to the best (often within 10%10\%) of all the other methods
    • …
    corecore