
HAL Id: inria-00271394
https://hal.inria.fr/inria-00271394v3

Submitted on 30 Apr 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hypergraph-based Unsymmetric Nested Dissection
Ordering for Sparse LU Factorization

Laura Grigori, Erik Boman, Simplice Donfack, Timothy Davis

To cite this version:
Laura Grigori, Erik Boman, Simplice Donfack, Timothy Davis. Hypergraph-based Unsymmetric
Nested Dissection Ordering for Sparse LU Factorization. [Technical Report] RR-6520, INRIA. 2008.
�inria-00271394v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50266637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00271394v3
https://hal.archives-ouvertes.fr

ap por t
de r e c h e r c h e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
65

20
--

FR
+E

N
G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Hypergraph-based Unsymmetric Nested Dissection
Ordering for Sparse LU Factorization

Laura Grigori — Erik G. Boman — Simplice Donfack — Timothy A. Davis

N° 6520

Avril 2008

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

Hypergraph-based Unsymmetric Nested

Dissection Ordering for Sparse LU Factorization

Laura Grigori∗ , Erik G. Boman† , Simplice Donfack‡ , Timothy

A. Davis§

Thème NUM � Systèmes numériques
Équipe-Projet Grand-large

Rapport de recherche n° 6520 � Avril 2008 � 23 pages

Abstract: In this paper we present HUND, a hypergraph-based unsymmet-
ric nested dissection ordering algorithm for reducing the �ll-in incurred during
Gaussian elimination. HUND has several important properties. It takes a global
perspective of the entire matrix, as opposed to local heuristics. It takes into ac-
count the assymetry of the input matrix by using a hypergraph to represent its
structure. It is suitable for performing Gaussian elimination in parallel, with
partial pivoting. This is possible because the row permutations performed due
to partial pivoting do not destroy the column separators identi�ed by the nested
dissection approach. Experimental results on 27 medium and large size highly
unsymmetric matrices compare HUND to four other well-known reordering al-
gorithms. The results show that HUND provides a robust reordering algorithm,
in the sense that it is the best or close to the best (often within 10%) of all the
other methods.

Key-words: sparse LU-factorization, reordering techniques, hypergraph par-
titioning, nested dissection

∗ INRIA Saclay - Ile de France, Laboratoire de Recherche en Informatique Universite
Paris-Sud 11, France (laura.grigori@inria.fr).

† Scalable Algorithms Dept., Sandia National Laboratories, NM 87185-1318, USA, Sandia
is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration under
Contract DE-AC04-94AL85000. This work was supported by the US DOE O�ce of Science
through the CSCAPES SciDAC institute (egboman@sandia.gov).

‡ Universite de Yaounde I, Computer Science Department, B.P 812 Yaounde - Cameroun,
the work of this author was performed during his Master at INRIA Saclay through the INRIA
Internship program (sidonfack@gmail.com).

§ CISE Dept., University of Florida, supported by the National Science Foundation
(0620286) (davis@cise.ufl.edu).

Dissection Emboîtée Non-Symmetrique Basée sur

des Hypergraphes pour la Factorisation LU

Creuse

Résumé : Dans ce papier nous présentons HUND, un algorithme de renu-
mérotation d'inconnues pour la factorization LU creuse, utilisant une approche
de dissection emboîtées et des hypergraphes. HUND a quelques propriétés im-
portantes. Il utilise une approche globale de la matrice d'entrée. Il prends
en compte la non-symétrie de la matrice en utilisant un hypergraphe pour re-
présenter sa structure. Il peut être utilisé dans un algorithme parallèle pour
efectuer l'élimination de Gauss avec pivotage partiel. Ceci est possible car les
permutations de lignes e�ectuées due au pivotage partiel ne détruisent pas les
séparateurs de colonnes identi�és par l'approche dissection emboîtée. Les ré-
sultats expérimentaux obtenus sur 27 matrices de taille moyenne et grande et
avec une structure très non-symétrique compare HUND avec quatre autre heu-
ristiques de renumérotation très utilisées. Les résultats montrent que HUND
est un algorithme de renumérotation robuste, car il donne ou bien le meilleur
résultat, ou très prôche du meilleur résultat.

Mots-clés : factorisation LU creuse, renumérotation des inconnues, partition-
nement de hypergraphes, dissection emboîtée

HUND Algorithm 3

1 Introduction

Solving a linear system of equations Ax = b is an operation that lies at the
heart of many scienti�c applications. We focus on sparse, general systems in
this paper. Gaussian elimination can be used to accurately solve these systems,
and consists in decomposing the matrix A into the product of L and U , where
L is a lower triangular matrix and U is an upper triangular matrix. One of
the characteristics of Gaussian elimination is the notion of a �ll element, which
denotes a zero element of the original matrix that becomes nonzero in the factors
L and U due to the operations associated with the Gaussian elimination. Hence
one of the important preprocessing steps preceding the numerical computation
of the factors L and U consists in reordering the equations and variables such
that the number of �ll elements is reduced.

Although this problem is NP-complete [33], in practice there are several
e�cient �ll reducing heuristics. They can be grouped into two classes. The
�rst class uses local greedy heuristics to reduce the number of �ll elements at
each step of Gaussian elimination. One of the representative heuristics is the
minimum degree algorithm. This algorithm uses the graph associated with a
symmetric matrix, and chooses at each step to eliminate the row corresponding
to the vertex of minimum degree. Several variants, such as multiple minimum
degree [28] (Mmd) and approximate minimum degree [1] (Amd), improve the
minimum degree algorithm, in terms of time and/or memory usage.

The second class is based on global heuristics and uses graph partitioning to
restrict the �ll to only speci�c blocks of the permuted matrix. Nested dissec-
tion [15] is the main technique used in the graph partitioning approach. This
algorithm uses the graph of a symmetric matrix and employs a top-down divide-
and-conquer paradigm. The graph partitioning approach has the advantage of
reordering the matrix into a form suitable for parallel execution. State-of-the-art
nested dissection algorithms use multilevel partitioning [20, 25]. A widely used
routine is Metis_NodeND from the Metis [24] graph partitioning package.

It has been observed in practice that minimum degree is better at reducing
the �ll for smaller problems, while nested dissection works better for larger
problems. This observation has lead to the development of hybrid heuristics
that consist in applying several steps of nested dissection, followed by the usage
of a variant of the minimum degree algorithm on local blocks [21].

For unsymmetric matrices, the above algorithms use the graph associated
with the symmetrized matrix A+AT or AT A. One additional algorithm, the col-
umn approximate minimum degree [9] (Colamd), implements the approximate
minimum degree algorithm on AT A without explicitly forming the structure
of AT A. The approach of symmetrizing the input matrix works well in prac-
tice when the matrix is almost symmetric. However, when the matrix is very
unsymmetric, the information related to the asymmetry of the matrix is not
exploited.

There are few approaches in the literature that aim at developing �ll-reducing
algorithms targeting unsymmetric matrices. For local heuristics, this is due to
the fact that the techniques for improving the runtime of minimum degree are
di�cult to extend to unsymmetric matrices. In fact the minimum degree algo-
rithm is related to the Markowitz algorithm [30], which was developed earlier for
unsymmetric matrices. The Markowitz algorithm de�nes the degree of a vertex
(called the Markowitz count) as the product of the number of nonzeros in the

RR n° 6520

4 Laura Grigori , Erik G. Boman , Simplice Donfack , Timothy A. Davis

row and the number of nonzeros in the column corresponding to this vertex.
However, this algorithm is asymptotically slower than the minimum degree al-
gorithm. A recent local greedy heuristic for unsymmetric matrices is presented
in [2]. To obtain reasonable runtime, the authors use local symmetrization
techniques and the degree of a vertex is given by an approximate Markowitz
count.

In this paper we present one of the �rst �ll-reducing ordering algorithms
that fully exploits the asymmetry of the matrix and that is also suitable for
parallel execution. It relies on a variation of nested dissection, but it takes into
account the asymmetry of the input matrix by using a hypergraph to represent
its structure. The algorithm �rst computes a hyperedge separator of the entire
hypergraph that divides it into two disconnected parts. The matrix is reordered
such that the columns corresponding to the hyperedge separator are ordered
after those in the disconnected parts. The nested dissection is then recursively
applied to the hypergraph of the two disconnected parts, respectively. The
recursion can be stopped at any depth.

An important property of our approach is that the structure of the par-
titioned matrix is insensitive to row permutations. In other words, the row
permutations induced by pivoting during Gaussian elimination do not destroy
the column separators. Hence the �ll is reduced because it can occur only in the
column separators and in the disconnected parts of the matrix. But also this
property is particularly important for a parallel execution, since the communi-
cation pattern, which depends on the column separators, can be computed prior
to the numerical factorization. In addition, the partitioning algorithm can be
used in combination with other important techniques in sparse Gaussian elimi-
nation. This includes permuting large entries on the diagonal [12], a technique
improving stability in solvers implementing Gaussian elimination with static
pivoting [26].

We note that a partitioning algorithm that takes into account the asymmetry
of the input matrix was also considered by Du� and Scott in [13, 14]. There
are several important di�erences with our work. The authors focus on the
parallel execution of LU factorization, and their goal is to permute the matrix
to a so called singly-bordered block diagonal form. In this form the matrix
has several diagonal blocks (which can be rectangular), and the connections
between the di�erent blocks are assembled in the columns ordered at the end
of the matrix. The advantage of this form is that the diagonal blocks can be
factorized independently, though special care must be taken since the blocks
are often non-square. The authors do not analyze this approach for �ll-reducing
ordering. The core part of our method can be viewed as a recursive application
of the Du� and Scott strategy, but for ordering, where non-square blocks are less
problematic. We also gain similar advantages with respect to parallel execution.

The remainder of the paper is organized as follows. In Section 2 we give
several basic graph theory de�nitions and we describe in detail the nested dis-
section process. In Section 3 we present our hypergraph based unsymmetric
nested dissection algorithm and its di�erent steps. In Section 4 we describe a
possible variation of the algorithm that aims at decreasing the size of the separa-
tors. In Section 5 we present experimental results that study the e�ectiveness of
the new algorithm, in terms of �ll, on a set of highly unsymmetric matrices. We
also compare the results with other �ll-reducing ordering algorithms. Finally,
Section 6 concludes the paper.

INRIA

HUND Algorithm 5

2 Background: Nested Dissection and Hypergraphs

2.1 Nested Dissection

Nested dissection [15, 27] is a �ll-reducing ordering method based on the divide-
and-conquer principle. The standard method only applies to symmetric matri-
ces; here we show a nonsymmetric variation.

The sparsity structure of a structurally symmetric matrix is often repre-
sented as an undirected graph. The nested dissection method is based on �nd-
ing a small vertex separator, S, that partitions the graph into two disconnected
subgraphs. If we order the rows and columns corresponding to the separator
vertices S last, the permuted matrix PAPT has the form[

A11 0 A13

0 A22 A23

AT
13 AT

23 A33

]
(1)

where the diagonal blocks are square and symmetric. Now the diagonal blocks
A11 and A22 can be factored independently and will not cause any �ll in the zero
blocks. We propose a similar approach in the nonsymmetric case, based on a column
separator. Suppose we can permute A into the form[

A11 0 A13

0 A22 A23

0 0 A33

]
(2)

where none of the blocks are necessarily square. (This is known as singly bordered
block form.) Then we can perform Gaussian elimination and there will be no �ll in
the zero blocks. Furthermore, this property holds even if we allow partial pivoting
and row interchanges. Note that if any of the diagonal blocks are square, then A is
reducible and the linear systems decouple.

The question is how to obtain singly-bordered block structure with a small column
separator. There are two common approaches: a direct approach [3, 23], and indirect
methods that �rst �nd doubly-bordered block diagonal form [14]. We choose the direct
method, and use hypergraph partitioning.

2.2 Hypergraph Partitioning and Ordering

Since graph models are limited to (structurally) symmetric matrices, either a bipartite
graph or hypergraph must be used in the unsymmetric case. We prefer the hypergraph
model. A hypergraph H(V, E) contains a set of vertices V and a set of hyperedges
E (also known as nets), where each hyperedge is a subset of V . We will use the
column-net hypergraph model of a sparse matrix [4] where each row corresponds to a
vertex and each column is a hyperedge. Hyperedge ej contains the vertices given by
the nonzero entries in column j. An example of a matrix A is given in Equation 3 and
its hypergraph is shown in Figure 1.

A =

x x
x x x

x x x
x x x x

x x x
x x x
x x

x x x x

(3)

RR n° 6520

6 Laura Grigori , Erik G. Boman , Simplice Donfack , Timothy A. Davis

Figure 1: Hypergraph of matrix A in Equation 3. The large circles are vertices,
and the small black dots represent hyperedges (nets).

Suppose we partition the vertices (rows) into two sets, R1 and R2. This induces a
partition of the hyperedges (columns) into three sets: C1, C2, and C3. Let C1 be the
set of hyperedges (columns) where all the vertices (rows) are in R1. Similarly, let C2

be the set of hyperedges (columns) where all the vertices (rows) are in R2. Let C3 be
the set of hyperedges (columns) that are �cut�, that is, they have some vertices in R1

and some in R2. Now let P be a permutation such that all of R1 is ordered before R2,
and let Q be a similar column permutation. Then

PAQ =

[
A11 0 A13

0 A22 A23

]
(4)

It may happen that some rows in A11 or A22 are empty (all zero). In this case,
permute such rows to the bottom and we get

P̄AQ =

[
Ā11 0 Ā13

0 Ā22 Ā23

0 0 Ā33

]
(5)

Figure 2 displays the result of the �rst step of unsymmetric nested dissection
applied on the hypergraph in Figure 1. The matrix obtained after permuting matrix
A in Equation 3 is presented in Equation 6.

Figure 2: The result of the �rst step of unsymmetric nested dissection applied
on the hypergraph in Figure 1, the hyperedge separator is Es = {n5, n8}. Note
that the separator only contains hyperedges and no vertices.

INRIA

HUND Algorithm 7

PAQ =

x x
x x x

x x x
x x x x

x x x
x x x

x x x
x x

(6)

Hypergraph partitioning has been well studied [4]. The objective is to partition
the vertices into two parts such that there are approximately equally many vertices in
each part, and the number of cut hyperedges is minimized. Although it is an NP-hard
problem, fast multilevel algorithms give good solutions in practice. Good software is
readily available, like PaToH, hMetis, and Zoltan. The k-way partitioning problem
(k > 2) is usually solved by recursive bisection. We note that the MONET algorithm
[23] is precisely hypergraph partitioning applied to sparse matrices.

One disadvantage of hypergraph partitioning is that it can take relatively long
time. Fortunately, methods based on graph partitioning and vertex separators are
faster and can also produce the desired singly bordered block form [14] but we do not
explore this option here.

3 An Unsymmetric Nested Dissection Algorithm

We present an algorithm with three stages. First, we apply hypergraph-based nested
dissection to limit the �ll. Second, we perform row interchanges based on numerical
values to reduce pivoting. Third, we apply a local reordering on local blocks to again
reduce �ll.

3.1 Hypergraph Recursive Ordering

Recall our goal is to �nd permutations P1 and Q1 such that (P1AQ1)(Q
T
1 x) = P1b is

easier to solve than the original system Ax = b. Our idea is to apply the block de-
composition (4) recursively. This is quite di�erent from most recursive approaches for
solving linear systems, because our blocks are usually not square. Our approach works
because we only produce orderings recursively, and do not factor or solve recursively
(using the matrix blocks).

Figure 3.1 (left) shows the sparsity structure of P1AQ1 after two levels of bisection.
We continue the recursive bisection until each block is smaller than a chosen threshold.
As in symmetric nested dissection, we expect it is bene�cial to switch to a local ordering
algorithm on small blocks but in principle one could continue the recursion until each
block has only one row or column. We sketch the recursive ordering heuristic in
Algorithm 1. In this variant, the recursion stops at a constant block size, tmin.

3.2 Stabilization

The ordering procedure above only takes the structure into account, and not the
numerical values. To stabilize the factorization and minimize pivoting, we wish to
permute large entries to the diagonal. A standard approach is to model this as match-
ing in the bipartite graph [12], and we can use the HSL [22] routine MC64. We use the
matching permutation to permute the rows as shown in Figure 3.1 (right). Observe
that after row permutation, the diagonal blocks are now square. The remaining rows
in the originally rectangular blocks have been �pushed down�. All the permutations
applied on the matrix after this step should be symmetric.

RR n° 6520

8 Laura Grigori , Erik G. Boman , Simplice Donfack , Timothy A. Davis

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 3: The matrix after hypergraph ordering (left) and after row permutation
from matching (right).

Algorithm 1 Hypergraph Unsymmetric Nested Dissection
1: Function [p, q] = HUND(A)
2: [m,n] = size(A)
3: if min(m,n) ≤ tmin then

4: p= 1:m
5: q= 1:n
6: else

7: Create column-net hypergraph H for A
8: Partition H into two parts using hypergraph partitioning
9: Let p and q be the row and column permutations, respectively, to permute

A into the block structure in Eq. 4
10: [m1, n1] = size(A11)
11: [p1, q1] = HUND(A11)
12: [p2, q2] = HUND(A22)
13: p = p(p1, p2 + m1)
14: q = q(q1, q2 + n1)
15: end if

This permutation step for obtaining a strong diagonal is helpful for dynamic (par-
tial) pivoting methods, since the number of row swaps is signi�cantly reduced, thereby
speeding up the factorization process [12]. It is essential for static pivoting meth-
ods [26], because it decreases the probability of encountering small pivots during the
factorization.

3.3 Local Reordering

The goal of the third preprocessing step is to use local strategies to further decrease the
�ll in the blocks of the permuted matrix. Algorithms as CAMD [6] (constrained AMD)
or CCOLAMD [6] (constrained COLAMD) can be used for this step. These algorithms
are based on COLAMD, respectively AMD, and have the property of preserving the
partitioning obtained by the unsymmetric nested dissection algorithm. This is because
in a constrained ordering method, each node belongs to one of up to n constraint sets.
In our case, a constraint set corresponds to a separator or a partition. After the
ordering it is ensured that all the nodes in set zero are ordered �rst, followed by all
the nodes in set one, and so on.

INRIA

HUND Algorithm 9

A preprocessing step useful for the e�ciency of direct methods consists of re-
ordering the matrix according to a postorder traversal of its elimination tree. This
reordering tends to group together columns with the same non zero structure, so they
can be treated as a dense matrix during the numeric factorization. This allows for
the use of dense matrix kernels during numerical factorization, improves the memory
hierarchy usage, and hence leads to a more e�cient numeric factorization.

In order to preserve the structure obtained in the previous steps, we compute the
elimination tree corresponding to the diagonal blocks of the input matrix. Note that
in practice, postordering a matrix preserves its structure but can change the �ll in the
factors L and U . We remark that the local reordering should be applied symmetrically,
so that the diagonal is preserved.

3.4 Algorithm Summary

In summary, LU factorization with partial pivoting based on unsymmetric nested
dissection contains several distinct steps in the solution process:

1. Reorder the equations and variables by using the HUND heuristic that chooses
permutation matrices P1 and Q1 so that the number of �ll-in elements in the
factors L and U of P1AQ1 is reduced.

2. Choose a permutation matrix P2 so that the matrix P2P1AQ1 has large entries
on the diagonal. The above permutation helps ensure the accuracy of the com-
puted solution. In our tests this is achieved using the HSL routine MC64 [12].

3. Find a permutation matrix P3 using a local heuristic and a postorder of the
elimination tree associated with the diagonal blocks such that the �ll-in is fur-
ther reduced in the matrix P3P2P1AQ1P

T
3 . In our tests this is achieved using

constrained COLAMD and postordering based on the row merge tree [17] of the
diagonal blocks.

4. Compute the numerical values of L and U .

The execution of the above algorithm on a real matrix (fd18) is displayed in
Figure 4. The structure of the original matrix is presented at top left. The structure
obtained after the unsymmetric nested dissection HUND is presented at top right.
The structure obtained after permuting to place large entries on the diagonal using
MC64 is displayed at bottom left. And �nally the structure obtained after the local
ordering is displayed at bottom right.

4 Variations

We have presented an ordering method that uses both row and column permutations
to reorder a matrix to reduce �ll. We used a column separator approach based on
the column-net hypergraph model, where rows are vertices. Another option is to use
the row-net hypergraph model, where columns are vertices. The method will work as
before, except now we �nd row separators instead of column separators. One step of
hypergraph bisection gives the matrix block structure

PAQ =

(
A11 0 0
0 A22 0
A31 A32 A33

)
. (7)

The row separator approach is advantageous when the row separator is smaller
than the column separator. However, row permutations can now destroy the sparsity
structure. This variation is thus not suitable for partial pivoting with row interchanges
(though partial pivoting with column interchanges would be �ne). For static pivot-
ing, we can again use a permutation based on matching (MC64), but now we should
permute columns not rows.

RR n° 6520

10 Laura Grigori , Erik G. Boman , Simplice Donfack , Timothy A. Davis

Figure 4: Example of application of preprocessing steps on a real matrix fd18.
Displayed are (a) the structure of the original matrix fd18, (b) the structure
obtained after HUND, (c) after MC64, and (d) after CCOLAMD

INRIA

HUND Algorithm 11

Figure 5: Example of Mondriaan variation. The top level separator is a column
separator (blue), while one of the subproblems has a row separator (red) while
the other has a column separator (green).

4.1 Row-or-column (Mondriaan) Approach

Since the best variation (row or column) depends on the matrix structure, an intriguing
idea is to combine these two methods. The idea is to try both partitioning methods
for every bisection, and pick the best. This gives a recursive decomposition that
uses a combination of row and column separators. This is illustrated in Figure 4.1.
We call this row-or-column hybrid method Mondriaan ordering, since it is similar to
the Mondriaan method for sparse matrix partitioning [32], which also uses recursive
hypergraph bisection with varying directions.

Obtaining a strong diagonal is a bit more di�cult with the Mondriaan method.
As usual, we compute a matching in the bipartite graph, but it is not obvious how to
apply this as a permutation. A pure row or column permutation of the entire matrix
will ruin the sparsity structure. Instead, parts of the matrix should be permuted by
columns and other parts by rows. We omit the details here since it is di�cult to
describe.

We have not implemented the Mondriaan hybrid ordering, and leave it as future
work to evaluate the potential improvement over the column-based method.

5 Experimental Results

In this section we present experimental results for Hund algorithm applied to real
world matrices. The goal of the experiments is two-fold. First, we want to compare the
performance of the new ordering algorithm with other widely used ordering algorithms
as Mmd, Amd, Colamd and Metis (nested dissection). Second, we want to study
the quality of the partitioning, in terms of size of the separators. As stated in the
introduction, our goal is to reorder the matrix into a form that is suitable for parallel
computation, while reducing or at least maintaining comparable the number of �ll-in
elements in the factors L and U to other state-of-art reordering algorithms. We show
here that this goal is indeed achieved.

We use a set of highly unsymmetric matrices that represent a variety of application
domains. We present in Table 1 their characteristics which include the matrix order,
the number of nonzeros in the input matrix A, the numerical symmetry and the
application domain. The matrices are grouped depending on their number of nonzeros,

RR n° 6520

12 Laura Grigori , Erik G. Boman , Simplice Donfack , Timothy A. Davis

Matrix Order n nnz(A) Sym. Application Domain

1 lns_3937 3937 25407 0.14% Linearized n.-s. compressible
2 fd18 16428 63406 0.00% Crack problem
3 poli_large 15575 33074 0.05% Chemical process simulation
4 bayer04 20545 159082 0.02% Chemical process simulation
5 swang1 3169 20841 0.00% Semiconductor device sim
6 mark3jac020 9129 56175 1.00% Economic model
7 lhr04 4101 82682 0.00% Light hydrocarbon recovery
8 raefsky6 3402 137845 0.00% Incompressible �ow
9 zhao2 33861 166453 0.00% Electromagnetism
10 mult_dcop_03 25187 193216 1.00% Circuit simulation
11 shermanACb 18510 145149 3.00% Circuit simulation
12 jan99jac120sc 41374 260202 0.00% Economic model
13 bayer01 57735 277774 0.00% Chemical process simulation
14 sinc12 7500 294986 0.00% Single material crack problem
15 mark3jac140sc 64089 399735 1.00% Economic model
16 onetone1 36057 341088 4.00% Circuit simulation
17 af23560 23560 484256 0.00% Airfoil eigenvalue calculation
18 sinc15 11532 568526 0.00% Single material crack problem
19 e40r0100 17281 553562 0.20% Fluid dynamics
20 Zd_Jac2_db 22835 676439 0.00% Chemical process simulation
21 lhr34c 35152 764014 0.00% Light hydrocarbon recovery
22 sinc18 16428 973826 0.00% Single material crack problem
23 twotone 120750 1224224 11.00% circuit simulation
24 lhr71c 70304 1528092 0.00% Light hydrocarbon recovery
25 torso2 115967 1033473 0.00% Bioengineering
26 av41092 41092 1683902 0.00% Unstructured �nite element
27 bbmat 38744 1771722 0.06% Computational �uid dynamics

Table 1: Benchmark matrices.

with no particular order within a group. For example, the �rst eleven matrices have less
than 2·105 nonzeros, the following three matrices have less than 3·105 nonzeros, and so
on. The matrices are available from University of Florida Sparse Matrix collection [7].

5.1 Hund versus other Reordering Algorithms: Results with
SuperLU

We compare the ordering produced by Hund with four widely used �ll-reducing order-
ing algorithms, that is Mmd (applied on the structure of A + AT or on the structure
of AAT), Amd, Colamd, and Metis nested dissection (applied on the structure of
A + AT or on the structure of AAT). The quality of each algorithm can be evaluated
using several criteria, as the number of nonzero entries (nnz) in the factors L and U ,
the number of �oating point operations performed during the numerical factorization,
and the factorization time. We restrict our attention to the �rst criterion, the num-
ber of nonzeros in the factors L and U , since �oating point operations are very fast
on current computers while memory is often the bottleneck. (We also computed the
number of operations and the results were quite similar to the nonzero counts.)

In our �rst set of tests we use LU factorization with partial pivoting implemented
in the SuperLU solver [10]. SuperLU uses partial pivoting with threshold and chooses

INRIA

HUND Algorithm 13

in priority the diagonal element. In our experiments we use a threshold of 1, that is at
each step of factorization the element of maximum magnitude in the current column
of L is used as pivot. To evaluate Hund, the di�erent preprocessing steps presented
in section 3.4 are performed before the LU factorization with partial pivoting. That
is, �rst the matrix is reordered using Hund heuristic. Second, the MC64 routine [12]
is called to move large entries onto the diagonal. Third, the matrix is reordered using
constrained Colamd algorithm, as presented in [6], and based on a postorder traversal
of the row merge tree [17] of the diagonal blocks. After these three preprocessing steps,
the LU factorization with partial pivoting of SuperLU is called.

For the other reordering algorithms we use only two preprocessing steps. The
matrix is scaled and permuted using MC64 in order to place large entries on the
diagonal, and then a �ll-reducing ordering is applied.

The Hund reordering heuristic presented in Algorithm 1 starts with the hyper-
graph of the input matrix and partitions it recursively into two parts. The recursion
can be stopped either when a prede�ned number of parts is reached, or when the size
of a part is smaller than a prede�ned threshold. In our tests we use PaToH [5] (with
a �xed seed of 42 for the random number generator) to partition a hypergraph in two
parts at each iteration of Algorithm 1. To study the performance of Hund we vary
the number of parts in which the matrix is partitioned. When Hund partitions into a
�xed number of parts, we present the results obtained for the number of parts (denoted
as kparts) equal to 16 and 128. When Hund partitions until the size of each part is
smaller than a given threshold, we present results for values of threshold (denoted as
tmin) equal to 1 and 100.

Figure 6 compares Hund to the best result obtained for each matrix by one of
the other reordering algorithms tested. It displays the ratio of the smallest number of
nonzeros in the factors L and U obtained by one of the other reordering algorithms
relative to the number of nonzeros in the factors L and U obtained by four versions
of Hund (kparts = 16, kparts = 128, tmin = 1, tmin = 100). When this ratio is
bigger than 1, Hund is the best reordering strategy. Figure 6 also shows the best
reordering algorithm among Mmd, Colamd, Amd and Metis in term of �ll-in. For
completeness, we report in Table 3 of the Appendix, the results obtained for all the
ordering strategies tested. The represented values are nnz(L + U − I)/nnz(A). The
cases represented in the table by "-" mean that SuperLU failed due to too much �ll-in
generated, and hence a memory requirement that exceeded the limits of our computer.

We observe that for half of the matrices in our test set, one variant of Hund
induced the least �ll-in compared to the other state-of-art reordering algorithms. For
3 other matrices, each of Amd, Mmd and Colamd produced the best results, while
Metis produced the best result for 2 matrices. For 15 matrices, Colamd produces
results comparable to the best results.

For most of the matrices, the four variants of Hund produce comparable results.
As displayed in Table 3, the �ll-in has a large value between 30 and 50 for the

matrices mark3jac020, zhao2, sinc12, mark3jac140sc, sinc15, and sinc18 (num-
bers 6, 9, 14, 15, 18 and 22). However for these matrices Hund produced the best, or
very close to the best, results. The other reordering strategies lead generally to a
larger number of �ll-in elements. Colamd leads to a �ll-in factor between 42 and
116, and Metis (AT A) leads to a �ll-in factor between 32 and 66. The algorithms
(Mmd(A + AT) and Amd) fail for half of these matrices. Note that matrices sinc12,
sinc15, and sinc18 come from the same application domain (single-material crack
problem), as well as matrices mark3jac020 and mark3jac140sc (economic model).

In Figure 7 we restrict our attention to two variants of Hund (kparts = 128 and
tmin = 1) and compare them with one of the best algorithms that uses a local strategy
(Colamd) and one of the best algorithms that uses a global approach (Metis applied
to the structure of AT A). The �gure displays for each reordering algorithm the �ll-in,

RR n° 6520

14 Laura Grigori , Erik G. Boman , Simplice Donfack , Timothy A. Davis

Figure 6: Ratio of number of nonzeros in the factors L and U produced by best
state-of-art algorithm relative to four variants of Hund algorithm

Figure 7: Comparison of two variants of Hund with Colamd andMetis in terms
of �ll in the factors L and U , computed as nnz(L + U − I)/nnz(A)

INRIA

HUND Algorithm 15

Figure 8: Ratio of the number of nonzeros in the factors of L and U obtained
by Metis relative to Hund.

that is the ratio of the number of nonzeros of L and U to the number of nonzeros of
A. There are several cases for which Hund signi�cantly outperforms Colamd.

Figure 8 presents more in detail the �ll in the factors L and U obtained by the
two global strategies in our tests, Hund (with kparts = 128) and Metis (applied on
the structure of AT A, which was better than A + AT). We see that for most (about
two thirds) of the matrices in our test set Hund outperforms Metis. The best result
is obtained for matrix shermanACb, for which Hund leads to 3 times less �ll than
Metis.

5.2 Results with UMFPACK

UMFPACK is a right-looking multifrontal method which factorizes a sparse matrix
using a sequence of frontal matrices. A frontal matrix is a small dense matrix F that
holds k > 1 pivot rows and columns in their entirety. The lower right portion of the
frontal matrix is a contribution block C (or Schur complement) that remains after the
leading part is factorized into the corresponding k rows of U and columns of L:

F =

[
A11 A12

A21 A22

]
=

[
L11 0
L21 I

]
×
[

U11 U12

0 I

]
+

[
0 0
0 C22

]
The ordering strategy in UMFPACK combines a �ll-reducing symbolic preordering

with adjustments made during numeric factorization.
As the �rst step of �ll-reducing ordering, all pivots with zero Markowitz cost

(referred to as singletons) are removed from the matrix. Suppose a column j exists
with one nonzero entry aij . Then row i is removed from A and becomes the �rst row of
U ; column j is also removed and becomes the �rst column of L. This process repeats
until all remaining columns have two or more nonzero entries. Next, a similar process
is used for rows with one nonzero entry. These entries would be the leading and trailing

RR n° 6520

16 Laura Grigori , Erik G. Boman , Simplice Donfack , Timothy A. Davis

1-by-1 blocks of a block upper triangular form (Dulmage-Mendelsohn decomposition)
if UMFPACK were to compute such a form. This singleton removal process takes
O(|A|) time, where |A| is the number of entries in A; a complete permutation to
block triangular form can take much more time. Most matrices seen in practice that
are reducible to block triangular form have many such leading and trailing singleton
blocks, and �nding these singletons is often su�cient for obtaining the bene�ts of the
more-costly block triangular form.

If both the rows and columns lower or upper triangular n-by-n matrix are arbi-
trarily permuted, the singleton removal process will �nd n column singletons and will
permute A into upper triangular form. No numerical factorization is then needed.
One matrix in the test collection (raefsky6) falls into this category.

In the current version of UMFPACK (v5.2), singleton removal is always performed.
For these experiments (and in a future release of UMFPACK) we have added a pa-
rameter that allows the removal of singletons to be disabled. By default, singletons
are removed. We added this option for two reasons:

1. Removing singletons can restrict the �ll-reducing ordering applied to the matrix.
If removing of singletons causes an unsymmetric permutation to the matrix, then
the symmetric and 2-by-2 strategies are disabled (even if explicitly requested by
the user). For most matrices, such unsymmetric permutations are clear indi-
cators that the unsymmetric strategy should be used to obtain the best �ll-in.
For a very few matrices this can be a poor choice of ordering heuristics, how-
ever. More pertinent to this paper, however, it also confounds our experimental
results, since requesting the symmetric ordering (with AMD or METIS) would
otherwise lead to COLAMD being used instead.

2. Removing singletons does not diminish the numerical accuracy of the LU fac-
torization, but it can result in a matrix L that is not well-conditioned. With
normal partial pivoting, L is always well-conditioned and any ill-conditioning of
A is contained in U . Some applications (linear programming solvers, for example
[31]) require a well-conditioned L.

After singletons are removed, the columns (and perhaps the rows) of the remain
matrix are permuted to reduce �ll-in in the LU factorization, using one of the four
following strategies:

1. The auto strategy is the default: UMFPACK examines the nonzero pattern of
the matrix A and the entries on the diagonal of A, and selects one of the other
three strategies automatically. This usually leads to the best choice, but the
user can select one of the other strategies manually.

2. The unsymmetric strategy is best suited for matrices with an unsymmetric
nonzero pattern. A column ordering Q is chosen that minimizes the �ll-in in
the Cholesky factorization of QT AT AQ, or identically the R factor in the QR
factorization of AQ. Normally, a slightly modi�ed version of COLAMD is used
[9]; this algorithm is the same as COLAMD except that additional information
about each frontal matrix is collected for the subsequent numerical factorization.
This unsymmetric strategy is best suited for use with the HUND ordering. All
results that we present with HUND use this strategy. With the unsymmetric
strategy, UMFPACK can use COLAMD or HUND (applied to A) or either AMD
or METIS (applied to the pattern of AT A).

3. The symmetric strategy is selected for matrices with a nonzero-free diagonal
(or mostly so) symmetric (or nearly symmetric) nonzero pattern. A symmetric
ordering P is found that minimizes the �ll-in in the Cholesky factorization of
the matrix P (A + AT)P T . With the symmetric strategy, UMFPACK can use
AMD or METIS (both applied to the pattern of A + AT).

INRIA

HUND Algorithm 17

4. The 2-by-2 strategy is a pre-processing step followed by the symmetric strat-
egy. In the pre-processing step, rows are exchanged to increase the number of
nonzeros on the diagonal. None of our results in this paper use this strategy.

The next step is the numerical factorization, which can revise the ordering com-
puted by the symbolic preanalysis.

In the symbolic preanalysis, the size of each frontal matrix F is bounded by the
frontal matrix that would arise in a sparse multifrontal QR factorization. Since this
can be much larger what is needed by an LU factorization, columns within each frontal
matrix (the columns of A1∗) are reordered during numerical factorization to further
reduce �ll-in. This column reordering is only performed for the unsymmetric strategy;
it is not performed by SuperLU.

Numerical threshold partial pivoting is used to select pivots within the A11 and
A21 part of F . If the symmetric or 2-by-2 strategy is used, a strong preference is given
to the diagonal entry. SuperLU also has these options.

Since UMFPACK is a right-looking method, it can consider the sparsity of a can-
didate pivot row when deciding whether or not to select it. This is a key advantage
over left-looking methods such as Gilbert-Peierl's LU [16], SuperLU [10], and the im-
plementation of Gilbert-Peierl's left-looking sparse LU in CSparse [8]. Left-looking
methods cannot consider the sparsity of candidate pivot rows, since the matrix to the
right of the pivot column has not yet been updated when the pivot row is selected.

Removing singletons prior to the �ll-reducing ordering and factorization can have
a dramatic impact on �ll-in. This is another reason why UMFPACK can have a lower
�ll-in than SuperLU, but it is not intrinsic to the algorithm used by UMFPACK. That
is, singleton removal is independent of the method used to factorize the remaining
matrix, and any LU factorization method (including left-looking methods such as
SuperLU) could use it as well.

There are thus four primary di�erences between UMFPACK and SuperLU which
a�ect the results presented in this paper. The �rst three are detail of the implemen-
tation and not intrinsic to the methods used in UMFPACK and SuperLU.

1. UMFPACK removes singletons prior to factorization; SuperLU does not.

2. UMFPACK can selects ordering strategy automatically (unsymmetric, symmet-
ric, or 2-by-2); SuperLU does not.

3. UMFPACK revises its column orderings within each frontal matrix to reduce
�ll-in; SuperLU does not revise the column orderings with each supercolumn.

4. UMFPACK can select a sparse pivot row; SuperLU cannot.

In our results, we disable the automatic strategy selection. Instead, we use the
unsymmetric strategy for COLAMD, METIS (applied to AT A) and HUND. We use
the symmetric strategy with singletons disabled for AMD and METIS (applied to
A + AT). Complete results are shown in Table 4. Figure 9 displays a performance
pro�le of just four of the unsymmetric orderings (COLAMD, HUND with kparts = 16
and t = 100, and METIS applied to AT A). Overall, HUND provides a robust ordering
with a performance pro�le superior to both COLAMD and METIS. We can notice
that for 70% of the matrices, the performance of HUND (kparts = 16) is within 10%
of the best performance. A similar pro�le for the same four methods is given for the
SuperLU results in Figure 10.

5.3 Quality of the Partitioning

In this section we study the separators obtained during Hund's unsymmetric nested
dissection, when kparts = 128. These separators are important because they tend
to have an impact on the �ll in the factors L and U as well as on the suitability of
the reordered matrix for parallel execution. Fill in the factors can occur only in the

RR n° 6520

18 Laura Grigori , Erik G. Boman , Simplice Donfack , Timothy A. Davis

Figure 9: Performance pro�le of ordering methods with UMFPACK. Closer to
1, better the performance is.

Figure 10: Performance pro�le of ordering methods with SuperLU. Closer to 1,
better the performance is.

INRIA

HUND Algorithm 19

separators, hence smaller the separator size, fewer nonzeros should be obtained in the
factors. In a parallel execution, the communication will incur during the factorization
of the separators. Hence the communication will be reduced for separators of a smaller
size.

Column Counts Nonzero counts
Lvl 1 Lvl 2 Lvl 3 Lvl 1 Lvl 2 Lvl 3

1 3.33 / 3.33 3.33 / 3.33 2.05 / 2.39 3.82 / 3.82 3.82 / 3.82 2.39 / 2.77
2 0.85 / 0.85 0.91 / 0.91 0.62 / 0.66 1.18 / 1.18 1.06 / 1.07 0.64 / 0.69
3 0.65 / 0.65 0.18 / 0.28 0.13 / 0.37 1.09 / 1.09 0.27 / 0.42 0.27 / 0.82
4 0.40 / 0.40 0.24 / 0.25 0.23 / 0.31 1.03 / 1.03 0.68 / 0.81 0.70 / 0.97
5 2.97 / 2.97 1.47 / 1.51 1.32 / 1.45 3.13 / 3.13 1.54 / 1.59 1.39 / 1.53
6 4.44 / 4.44 5.13 / 5.14 1.18 / 1.30 7.12 / 7.12 12.14 / 12.16 1.80 / 2.03
7 2.66 / 2.66 1.89 / 2.27 1.38 / 1.51 4.14 / 4.14 2.88 / 3.22 1.95 / 2.54
8 13.43 / 13.43 8.14 / 8.76 3.29 / 4.61 16.36 / 16.36 10.69 / 10.86 4.13 / 5.93
9 1.83 / 1.83 1.37 / 1.40 0.90 / 0.93 1.83 / 1.83 1.45 / 1.48 0.90 / 0.92
10 43.71 / 43.71 11.51 / 23.02 2.90 / 11.59 63.23 / 63.23 8.73 / 17.46 2.12 / 8.49
11 29.39 / 29.39 10.00 / 19.99 3.13 / 12.52 45.78 / 45.78 10.07 / 20.13 3.08 / 12.32
12 1.07 / 1.07 1.07 / 1.07 0.84 / 0.97 7.94 / 7.94 7.84 / 7.92 4.13 / 5.53
13 0.14 / 0.14 0.08 / 0.11 0.06 / 0.09 0.26 / 0.26 0.14 / 0.15 0.11 / 0.17
14 15.33 / 15.33 15.69 / 15.87 2.48 / 4.41 20.47 / 20.47 18.37 / 18.40 3.01 / 5.32
15 0.63 / 0.63 0.65 / 0.65 0.64 / 0.65 1.00 / 1.00 1.02 / 1.03 1.00 / 1.03
16 2.27 / 2.27 0.91 / 0.95 0.51 / 0.73 16.12 / 16.12 4.59 / 4.77 1.86 / 4.18
17 2.58 / 2.58 2.58 / 2.58 2.29 / 2.41 2.59 / 2.59 2.59 / 2.59 2.33 / 2.44
18 31.22 / 31.22 7.80 / 7.80 2.52 / 3.10 36.85 / 36.85 10.15 / 10.17 2.92 / 3.63
19 3.61 / 3.61 1.83 / 2.05 1.70 / 1.96 4.14 / 4.14 2.09 / 2.35 1.94 / 2.25
20 0.00 / 0.00 0.60 / 1.20 0.50 / 1.02 0.00 / 0.00 1.56 / 3.11 1.33 / 2.71
21 0.18 / 0.18 0.42 / 0.46 0.34 / 0.47 0.16 / 0.16 0.64 / 0.71 0.47 / 0.61
22 31.56 / 31.56 7.88 / 7.88 2.43 / 2.68 37.35 / 37.35 10.12 / 10.12 2.82 / 3.12
23 1.71 / 1.71 0.38 / 0.74 0.25 / 0.95 3.71 / 3.71 1.32 / 2.60 0.14 / 0.45
24 0.15 / 0.15 0.11 / 0.13 0.20 / 0.23 0.21 / 0.21 0.11 / 0.15 0.29 / 0.35
25 0.45 / 0.45 0.17 / 0.22 0.20 / 0.26 0.45 / 0.45 0.17 / 0.22 0.20 / 0.26
26 4.23 / 4.23 1.66 / 2.65 0.65 / 1.23 29.43 / 29.43 12.34 / 23.91 2.74 / 6.81
27 2.75 / 2.75 2.40 / 2.40 2.37 / 2.40 1.28 / 1.28 2.94 / 2.97 2.63 / 2.77

Table 2: Percentage of columns and of nonzeros in the separators corresponding
to the �rst three levels of unsymmetric nested dissection Hund with kparts =
128. The values are displayed as AVG/MAX, and compute separatorsize/n ∗
100, where n is the order of the matrix.

Table 2 present the number of columns and the number of nonzeros in the sep-
arators obtained at each step of the unsymmetric nested dissection. In these ta-
bles, level i denotes the step i of unsymmetric nested dissection. For each level we
determine the maximum and the average separator size. The values displayed are
separatorsize/n ∗ 100. We display the results only for the �rst three levels, since the
results for the other levels were in general less than 1%. Note that a value of 0.0
denotes a small value rounded to zero.

For several matrices, the number of columns and the number of nonzeros in the
separators of the �rst and the second level are very large. For example, for matrix
mult_dcop_03 (number 10), 43.4% of the columns are in the �rst level separator,
and an average of 11.5% of the columns are in the second level separator. Matrices

RR n° 6520

20 Laura Grigori , Erik G. Boman , Simplice Donfack , Timothy A. Davis

shermanACb, sinc12, sinc15, and sinc18 (numbers 11, 14, 18, 22) have more than
15% of the columns in the �rst level separator. As already previously observed and
as reported in Table 3, for matrices in sinc family, Hund leads to a high amount of
�ll in the factors L and U , between 32 and 62. This observation shows that the size
of the separator has an important impact on the quality of the reordering, that is the
number of nonzeros in the factors L and U .

However this is not always true. For example the matrices zhao2 and mark3jac140sc
(numbers 9, 15) have separators of small size. But the �ll in the factors L and U is
high, 61 for zhao2 and 46 for mark3jac140sc.

6 Conclusions

We have presented a new ordering algorithm (HUND) for unsymmetric sparse matrix
factorization, based on hypergraph partitioning and unsymmetric nested dissection.
To enhance performance, we proposed a hybrid method that combines the nested dis-
section with local reordering. Our method allows partial pivoting, without destroying
sparsity. We have tested the method using SuperLU and UMFPACK, two well-known
partial pivoting LU codes. Empirical experiments show that our method is highly
competitive with existing ordering methods. In particular, it is robust in the sense
that it in most cases (23 out of 27 in our study) it performs close to the best of all the
other existing methods (often within 10%). Thus, it is a good choice as an all-purpose
ordering method.

The HUND method was designed for parallel computing, though we only evaluated
it in serial here. The recursive top-down design allows coarse-grain parallelism, as
opposed to local search methods like AMD and COLAMD. For symmetric systems,
nested dissection ordering is considered superior for large systems and it is reasonable
to expect the same holds for unsymmetric systems. The most expensive part of HUND
is hypergraph partitioning, which can be done e�ciently in parallel using the Zoltan
toolkit [11]. The matching for strong diagonal can also be performed in parallel [29],
though no parallel MC64 is yet available. Local reordering can be done locally in
serial. Thus, our approach is well suited for fully parallel solvers that aim at being
time and memory scalable [18, 26].

There are several directions for future work. First, we only used the default settings
for the hypergraph partitioner. By default, Patoh tries to achieve a balance of 3%.
This is quite strict, and perhaps a looser tolerance would work better in HUND. We can
likely reduce �ll and operation count by allowing more imbalance in the partitioning
(and thus the elimination tree). A second future optimization is the �Mondriaan�
version with varying directions outlined in section 4. A third direction is to study
hybridization with other local (greedy) ordering methods, in particular, the recent
unsymmetric method by Amestoy, Li, and Ng [2].

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Du�. An approximate minimum degree
ordering algorithm. SIAM J. Matrix Anal. Appl., 17:886�905, 1996.

[2] P. R. Amestoy, X. S. Li, and E. G. Ng. Diagonal Markowitz scheme with local
symmetrization. SIAM J. Matrix Anal. Appl., 29(1):228�244, 2007.

[3] C. Aykanat, A. P�nar, and U. V. Çatalyürek. Permuting sparse rectangular ma-
trices into block-diagonal form. SIAM J. Sci. Comp., 26(6):1860�1879, 2004.

[4] U. V. CatalyÃ¼rek and C. Aykanat. Hypergraph-partitioning based decomposi-
tion for parallel sparse-matrix vector multiplication. IEEE Transaction on Par-
allel and Distributed Systems, 10(7):673�693, 1999.

[5] U. V. CatalyÃ¼rek and C. Aykanat. Patoh: Partitioning tool for hypergraphs.
User's guide, 1999.

INRIA

HUND Algorithm 21

[6] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 8xx:
CHOLMOD, sparse Cholesky factorization and update/downdate. ACM Trans.
Math. Softw., 200x. (to appear).

[7] T. Davis. University of Florida Sparse Matrix Collection. NA Digest, vol. 92, no.
42, October 16, 1994, NA Digest, vol. 96, no. 28, July 23, 1996, and NA Digest,
vol. 97, no. 23, June 7, 1997. http://www.cise.u�.edu/research/sparse/matrices.

[8] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, PA,
2006.

[9] T. A. Davis, J. R. Gilbert, S. Larimore, and E. Ng. Algorithm 836: Colamd,
a column approximate minimum degree ordering algorithm. ACM Trans. Math.
Software, 30(3):377�380, 2004.

[10] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A
Supernodal Approach to Sparse Partial Pivoting. SIAM J. Mat. Anal. Appl.,
20(3):720�755, 1999.

[11] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and U. Catalyurek. Parallel
hypergraph partitioning for scienti�c computing. In Proc. of 20th International
Parallel and Distributed Processing Symposium (IPDPS'06). IEEE, 2006.

[12] I. S. Du� and J. Koster. On algorithms for permuting large entries to the diagonal
of a sparse matrix. SIAM J. Mat. Anal. and Appl., 22(4):973�996, 2001.

[13] I. S. Du� and J. A. Scott. A parallel direct solver for large sparse highly unsym-
metric linear systems. ACM Trans. Math. Software, 30(2):95�117, 2004.

[14] I. S. Du� and J. A. Scott. Stabilized bordered block diagonal forms for parallel
sparse solvers. Parallel Computing, 31:275�289, 2005.

[15] A. George. Nested dissection of a regular �nite-element mesh. SIAM J. Numerical
Analysis, 10:345�363, 1973.

[16] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to
arithmetic operations. SIAM J. Sci. Stat. Comput., 9:862�874, 1988.

[17] L. Grigori, M. Cosnard, and E. Ng. On the Row Merge Tree for Sparse LU Factor-
ization with Partial Pivoting. BIT Numerical Mathematics Journal, 47(1):45�76,
2007.

[18] L. Grigori, J. Demmel, and X. Li. Parallel Symbolic Factorization for Sparse
LU Factorization with Static Pivoting. SIAM J. on Sc. Comp., 29(3):1289�1314,
2007.

[19] B. Hendrickson and R. Leland. An Improved Spectral Graph Partitioning Al-
gorithm for Mapping Parallel Computations. SIAM J. Sci. Stat. Comput.,
16(2):452�469, 1995.

[20] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.
In Proc. Supercomputing '95. ACM, December 1995.

[21] B. Hendrickson and E. Rothberg. Improving the runtime and quality of nested
dissection ordering. SIAM J. Sci. Comp., 20(2):468�489, 1997.

[22] HSL. A collection of Fortran codes for large scale scienti�c computation, 2004.
http://www.cse.clrc.ac.uk/nag/hsl/.

[23] Y. Hu, K. Maguire, and R. Blake. A multilevel unsymmetric matrix ordering
algorithm for parallel process simulation. Computers and Chemical Engineering,
23:1631�1647, January 2000.

[24] G. Karypis and V. Kumar. Metis: A software package for partitioning unstruc-
tured graphs, partitioning meshes and computing �ll-reducing orderings of sparse
matrices - verstion 4.0, 1998. See http://www-users.cs.umn.edu/karypis/metis.

[25] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM J. on Scienti�c Computing, 20:359�392, 1999.

[26] X. S. Li and J. W. Demmel. SuperLU_DIST: A Scalable Distributed-memory
Sparse Direct Solver for Unsymmetric linear systems. ACM Trans. Math. Soft-
ware, 29(2), 2003.

[27] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection. SIAM
Journal on Numerical Analysis, 16:346�358, 1979.

[28] J. W. H. Liu. Modi�cation of the minimum degree algorithm by multiple elimi-
nation. ACM Trans. Math. Software, 11:141�153, 1985.

RR n° 6520

22 Laura Grigori , Erik G. Boman , Simplice Donfack , Timothy A. Davis

Mmd Mmd Colamd Amd Metis Metis Hund

(AT + A) (AT A) (AT + A) (AT A) k=16 k=128 t=1 t=100

1 46.6 13.5 13.6 46.7 22.8 15.3 15.0 15.2 15.2 15.2
2 337.9 19.2 18.3 112.3 47.1 16.8 19.6 16.8 17.2 16.9
3 1.0 1.1 1.1 1.0 1.0 1.1 1.1 1.1 1.1 1.1
4 18.3 3.5 3.4 10.4 10.1 3.9 3.4 3.6 3.7 3.6
5 5.7 7.7 7.5 5.6 6.0 8.3 8.3 8.4 8.2 8.3
6 105.7 42.8 42.0 86.8 60.9 32.9 30.6 30.0 30.0 30.0

7 22.4 4.0 3.9 9.4 6.7 4.6 4.5 4.5 4.5 4.5
8 28.8 7.6 7.9 23.5 15.5 7.0 6.8 6.7 6.7 6.7

9 - 94.7 111.9 - 225.2 66.0 71.5 62.7 61.9 62.3
10 19.8 93.4 8.1 218.0 83.9 - 39.9 4.9 3.2 3.2

11 3.9 37.0 23.1 14.5 40.2 39.0 40.8 11.6 11.5 11.6
12 93.3 23.0 18.7 85.9 76.8 19.4 16.8 16.5 16.8 16.7
13 10.1 5.3 4.8 5.2 17.2 5.3 5.1 4.9 4.7 4.7

14 68.6 47.2 54.4 55.1 48.2 32.3 33.9 32.8 32.7 32.8
15 - 144.8 116.0 - 102.8 54.7 49.1 46.5 46.6 46.5

16 17.2 12.9 13.4 18.1 27.8 14.2 11.1 11.1 11.4 11.2
17 80.5 26.1 24.9 33.0 28.3 27.6 29.3 29.8 29.6 29.6
18 92.5 61.0 68.1 72.1 66.5 42.4 53.5 52.2 52.4 52.2

19 - 13.1 14.7 - 28.5 13.0 13.6 12.4 12.3 12.4
20 14.7 5.5 5.5 15.2 8.5 7.1 6.0 6.1 6.1 6.1
21 27.6 4.5 4.5 13.2 9.6 4.8 4.8 5.0 4.9 4.9
22 - 76.3 81.4 - 85.7 55.9 64.7 62.5 62.6 62.6
23 29.5 15.8 13.1 45.8 - 20.8 23.9 24.1 23.5 23.2
24 36.0 4.5 4.6 13.1 9.9 5.0 4.7 4.9 4.9 4.9
25 8.3 14.0 16.7 9.9 8.9 13.4 15.8 15.2 14.3 14.5
26 - 23.2 25.8 - 41.5 16.4 16.8 15.5 15.1 15.2
27 - 27.8 28.1 - 61.2 28.2 29.5 28.8 28.8 28.8

Table 3: Fill in the factors L and U , computed as nnz(L + U − I)/nnz(A)
obtained by di�erent �ll-reducing strategies with SuperLU

[29] F. Manne and R. Bisseling. A parallel approximation algorithm for the weighted
maximum matching problem. In Proc. Seventh Int. Conf. on Parallel Processing
and Applied Mathematics (PPAM 2007), 2007.

[30] H. M. Markowitz. The elimination form of the inverse and its application to linear
programming. Management, 3:255�269, 1957.

[31] M. A. Saunders. personal communication.
[32] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method

for parallel sparse matrix-vector multiplication. SIAM Review, 47(1):67�95, 2005.
[33] M. Yannakakis. Computing the minimum �ll-in is np-complete. SIAM J. Alg.

Disc. Meth., 2(x):77�79, 1981.

Appendix

In Table 3 we present the detailed experimental data that was used to create Fig-
ures 6, 7 and 8 in section 5, using SuperLU.

Table 4 presents the results using UMFPACK, for Figure 9.

INRIA

HUND Algorithm 23

Colamd Amd Metis Metis Hund

(AT + A) (AT A) k=16 k=128 t=1 t=100

1 11.5 40.5 23.8 14.5 14.3 14.1 14.2 14.3
2 14.5 134.4 125.0 14.0 14.2 13.8 13.9 13.8

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
4 2.5 4.0 11.7 2.8 2.7 2.9 2.8 2.9
5 6.9 5.7 6.0 7.7 7.2 7.3 7.2 7.3
6 32.9 45.0 36.9 29.3 25.0 24.8 24.8 24.9
7 3.0 13.0 9.5 3.8 3.6 3.6 3.6 3.6
8 1.0 2.0 2.1 1.0 1.0 1.0 1.0 1.0

9 78.7 47.2 28.4 55.7 57.6 51.0 50.3 50.7
10 1.9 2.3 2.8 2.3 1.9 2.0 1.9 2.0
11 4.4 4.1 4.9 4.1 4.1 4.1 4.0 4.1
12 8.8 7.6 9.5 10.7 9.2 9.2 9.4 9.3
13 3.0 4.7 13.0 3.6 3.3 3.5 3.4 3.4
14 38.3 36.5 35.4 20.6 22.7 21.9 19.9 22.3
15 79.6 63.9 42.0 44.7 41.9 39.7 39.2 40.1
16 10.2 - 37.8 11.6 9.5 9.6 10.2 9.6
17 22.0 16.9 17.5 24.9 25.6 25.6 25.6 25.5
18 49.9 - - 29.9 41.4 39.7 40.0 41.5
19 6.8 14.4 11.6 8.5 6.2 7.8 8.3 7.8
20 4.6 9.8 6.1 5.6 5.0 4.6 4.7 4.7
21 3.8 26.8 20.9 4.2 3.8 4.0 4.0 4.0
22 - - - 38.9 - - - -
23 5.9 - 14.4 8.3 6.1 6.1 6.1 6.3
24 3.8 - - 4.2 3.8 4.0 4.0 4.0
25 14.3 9.4 8.9 11.6 13.1 12.5 11.5 12.1
26 20.2 - - 11.2 11.8 11.0 10.6 10.7
27 23.7 - 25.8 25.6 25.4 24.6 24.8 24.8

Table 4: Fill in the factors L and U , computed as nnz(L+U−I)/nnz(A), using
UMFPACK

RR n° 6520

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

