
Old Dominion University
ODU Digital Commons

Computer Science Theses & Dissertations Computer Science

Spring 2000

An Object-Oriented Algorithmic Laboratory for
Ordering Sparse Matrices
Gary Karl Kumfert
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_etds
Part of the Computer Sciences Commons, and the Mathematics Commons

This Dissertation is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Recommended Citation
Kumfert, Gary K.. "An Object-Oriented Algorithmic Laboratory for Ordering Sparse Matrices" (2000). Doctor of Philosophy (PhD),
dissertation, Computer Science, Old Dominion University, DOI: 10.25777/n4ss-xc64
https://digitalcommons.odu.edu/computerscience_etds/108

https://digitalcommons.odu.edu/?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_etds/108?utm_source=digitalcommons.odu.edu%2Fcomputerscience_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

AN OBJECT-ORIENTED ALGORITHMIC LABORATORY

FOR ORDERING SPARSE MATRICES

Gary Karl Kumfert
B.S. May 1993 Old Dominion University

A Dissertation Submitted to the Faculty o f
Old Dominion University in Partial Fulfillment o f the

Requirement for the Degree o f

DOCTOR OF PHILOSOPHY

COMPUTER SCIENCE

OLD DOMINION UNIVERSITY
May 2000

by

Alex Pothen (Director)

Chet Grosch (Member)

(Member)

StedieifO lariu (Member)

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

AN OBJECT-ORIENTED ALGORITHMIC LABORATORY
FOR ORDERING SPARSE MATRICES

Gary Karl Kumfert
Old Dominion University, 2000

Advisor: Dr. Alex Pothen

We focus on two known NP-hard problems that have applications in sparse matrix computations: the

envelope/wavefront reduction problem and the fill reduction problem. Envelope/wavefront reducing or

derings have a wide range o f applications including profile and frontal solvers, incomplete factorization

preconditioning, graph reordering for cache performance, gene sequencing, and spatial databases. Fill

reducing orderings are generally limited to — but an inextricable part o f — sparse matrix factorization.

Our major contribution to this field is the design o f new and improved heuristics for these NP-hard

problems and their efficient implementation in a robust, cross-platform, object-oriented software package.

In this body of research, we (I) examine current ordering algorithms, analyze their asymptotic complex

ity, and characterize their behavior in model problems, (2) introduce new and improved algorithms that

address deficiencies found in previous heuristics, (3) implement an object-oriented library o f these algo

rithms in a robust, modular fashion without significant loss o f efficiency, and (4) extend our algorithms

and software to address both generalized and constrained problems. We stress that the major contribution

is the algorithms and the implementation; the whole being greater than the sum o f its parts.

The initial motivation for implementing our algorithms in object-oriented software was to manage the

inherent complexity. During our research came the realization that the object-oriented implementation

enabled new possibilities for augmented algorithms that would not have been as natural to generalize

from a procedural implementation. Some extensions are constructed from a family o f related algorithmic

components, thereby creating a poly-algorithm that can adapt its strategy to the properties o f the spe

cific problem instance dynamically. Other algorithms are tailored fo r special constraints by aggregating

algorithmic components and having them collaboratively generate the global ordering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our software laboratory, “Spindle" implements state-of-the-art ordering algorithms for sparse matrices

and graphs. We have used it to examine and augment the behavior o f existing algorithms and test new

ones. Its 40,000+ lines o f C++ code includes a base library test drivers, sample applications, and interfaces

to C, C++, Matlab, and PETSc. Spindle is freely available and can be built on a variety o f UNIX platforms

as well as WindowsNT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V

To my wife. Wen.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

There are many people who have helped me in my research and contributed to the successful completion

o f this dissertation.

I extend many, many thanks to my committee members for their patience and hours of guidance on

my research and editing o f this manuscript. It has been much improved because of their feedback.

The untiring efforts o f my advisor, Alex Pothen, deserve special recognition. He has been my mentor,

friend, task master, guru, and role model. I very much enjoyed working under him and am grateful for his

support.

I am also very grateful for the moral and political support o f David Keyes; also a teacher, mentor, and

friend. He has gone to bat for me on more than one occasion, and always been a supporter of my research

and my activism.

Special thanks also goes to two o f my office mates, colleagues, and friends Florin Dobrian and David

Hysom. I have enjoyed and appreciated the constant interaction with them about algorithms, linear al

gebra, object-oriented design, politics, economics, religion, mountain climbing, stress management, and

photography.

My thanks also to Bruce Hendrickson who was very supportive o f my work from early on. He pro

vided lots o f support when we were using Chaco for spectral orderings.

I learned a lot, both individually and collectively, from the PETSc Team — Satish Balay, Lois

Curfmann-M clnnes, Barry Smith, and Bill Gropp — at Argonne National Labs. I also learned a lot

o f software tricks digging though their code.

T hanks also goes to Jennifer Scott at Rutherford Appleton Labs who offered a lot o f help and support

on my early Sloan work.

I also greatly benefitted from impromptu meetings with Joseph Liu, Tim Davis and Cleve Ashcraft at

various conferences and through email. They were all very helpful in explaining the finer points o f their

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

various implementations. Cleve deserves special thanks for also voluntarily reviewing this manuscript

and providing very useful feedback.

Special mention goes to the love and support I recieved from my family: my wife. Wen Kumfert;

my parents, Carolyn Carr and Gerhard Kumfert; and my brother Kirk Kumfert. I know a copy o f this

dissertation will sit in Kirk’s classroom, just to show his students that matrices are indeed used beyond

high school math classes.

Thanks also goes to the federal government, which funded most o f my graduate studies. My re

search was supported by National Science Foundation grants CCR-94I2698 and DMS-9807172, and by

a GAANN fellowship from the Department o f Education. The final editing was performed under the

auspices o f the U.S. Department o f Energy by Lawrence Livermore National Laboratory under contract

no. W -7405-Eng-48.

Finally, I wish to acknowledge two teachers from Philadelphia Public Schools that have significantly

influenced me at an early age.

I wish to pay tribute to my calculus teacher at Northeast Public High School, the late Jerry Kramer.

He made me work hard, and made me want to succeed. His untimely death was a terrible loss. I would

not have started my career in Mathematics were it not for his influence.

I am also very grateful for Marilyn Melstein — my first computer science teacher and still a friend to

this day. She did more than teach us how to program in BASIC on Apple II’s and II+’s. She encouraged

creativity and problem solving with a passion. I still remember to this day one particular assignment that

I completed using nested loops; she called it an “elegant solution." In a way, I have been striving for that

ever since.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DISCLAIMER

The final editing o f this document occurred while the author was employed by an agency o f the United

States Government under the management o f the University of California. Neither the United States

Government nor the University o f California nor any o f their employees, makes any warranty, express

or implied, or assumes any legal liability o r responsibility for the accuracy, completeness, o r usefulness

o f any information, apparatus, product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

recommendation, o r favoring by the United States Government or the University o f California. The views

and opinions o f the authors expressed herein do not necessarily state or reflect those o f the United States

Government or the University of California, and shall not be used for advertising or product endorsement

purposes.

UCRL-LR-136934

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ix

TABLE OF CONTENTS
Page

USTOFTABLES .. x

LIST OF FIGURES.. xi

LIST OF ALGORITHMS.. xiii

Section

1. INTRODUCTION... I

2. BACKGROUND... 3
SPARSE MATRIX COMPUTATIONS.. 3
OBJECT-ORIENTED PROGRAMMING.. 10

3. ALGORITHMS.. 16
DIAMETER OF A GRAPH.. 16
ENVELOPE/WAVEFRONT REDUCTION... 21
FILL REDUCTION... 59
SUM M ARY... 91

4. SOFTWARE.. 92
RESOURCES U S E D .. 92
D E SIG N ... 93
FEATURES... 114
BALANCING FEATURES WITH PERFORMANCE.. 123
SUM M ARY... 126

5. RESULTS.. 128
ENVELOPE/WAVEFRONT REDUCTION... 128
POLYMORPHIC MINIMUM FIL L .. 134

6. EXTENSIONS .. 150
UNSYMMETRIC ORDERINGS... 150
CONSTRAINED ORDERINGS .. 157
SUM M ARY... 160

7. CONCLUSION.. 162

BIBLIOGRAPHY... 164

IN D E X ... 172

V IT A .. 175

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

LIST OF TABLES
Table Page

1. Results o f two problems on a CRAY-J90 using MA42... 55

2. Convergence o f preconditioned CG on b o d y . y - 5 and b c s s t k l 7 57

3. Several Greedy Fill-Reducing Heuristics... 67

4. Transition table for the D a ta S tru c t c la ss ... 97

5. Transition table for the S p i n d l e A l g o r i t h m c l a s s ... 106

6. Eighteen test problems for wavefront reduction... 129

7. Mean square Wavefront sizes for various algorithms relative to RCM.................................... 130

S. Maximum wavefront sizes relative to the RCM algorithm... 131

9. Envelope sizes relative to RCM... 132

10. Bandwidths relative to RCM.. 132

11. CPU times relative to the RCM algorithm... 133

12. Test Set for Fill Reducing Orderings.. 135

13. Comparison o f MMD implementations: GENMMD and SPOOLES vs. S p in d le 137

14. Comparison o f AMD Implementations: AMDBAR and SPOOLES vs. S p i n d l e 138

15. Storage requirements for factors using various fill-reducing orderings.................................... 141

16. Work requirements for factors using various fill-reducing orderings.. 142

17. CPU time to generate various fill-reducing orderings.. 143

18. Comparison o f Spindle’s greedy algorithms vs. reported nested dissection algorithms. . . 149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xi

LIST OF FIGURES
Figure Page

1. Different Graph Models o f a Sparse Matrix... 4

2. A “black box" formulation o f a sparse direct s o lv e r ... 9

3. Example of row-widths and wavefronts .. 25

4. Structure of b c s s t k 3 0 with four orderings... 26

5. Domains of a Vertical Ordering on rectangular 5-point grid... 29

6. Domains of a Diagonal Ordering on rectangular 5-point grid... 30

7. Domains of a Vertical Ordering on rectangular 9-point grid... 32

8. Domains of a Diagonal Ordering on rectangular 9-point grid... 34

9. The Sloan algorithm in progress... 43

10. Envelope parameters o f b a r t h 5 as a function o f the weights IVj and \V2........................... 45

11. Envelope parameters o f f i n a n c e 5 12 as a function o f the weights Wi and VV■>................ 46

12. Relative timing performance o f RCM, ArraySloan. and HeapSIoan algorithms.................. 50

13. Convergence of b o d y . y - 5 for various orderings using IC(0) preconditioned C G 56

14. C o n v e rg e n c e o fb c s s tk l7 for various orderings using IC(2) preconditioned CG 56

15. Examples o f factorization and fill.. 60

16. Example o f a quotient graph... 63

17. Quotient Graph Transformation in Detail.. 65

18. State Diagram o f a Quotient Graph... 71

19. The Quotient Graph while eliminating a 16 x 16 torus.. 85

20. Interface to the C lassM etaD ata class... 94

21. Interface to the S p in d le B aseC la ss class... 95

22. Interface to the D a ta S tru c tu re class.. 96

23. Example o f P e r m u t a t i o n M a p ... 102

24. Object persistence o f P e r m u ta t io n M a p : part 1 103

25. Object persistence o f P e r m u t a t io n M ap : part 2 ... 104

26. Interface to the S p ind leA lgorithm class... 105

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xii

Figure Page

27. Example: Algorithms in a c '^ n ... I l l

28. A C-like function that directly accesses a Graph's data .. 112

29. A C++ global function using Graph::adjJterator .. 113

30. Example: cyclic dependency between classes.. 115

31. Example: removing cyclic dependencies by ecalation.. 115

32. Inheritance hierarchy for multiple matrix formats... 119

33. The Strategy Pattern.. 120

34. An augmented Strategy Pattern... 121

35. Interaction o f initializing the ordering... 122

36. Interaction of the ordering.. 123

37. Interaction of eliminating vertices during ordering... 124

38. Supemode compression and elimination in fill-reducing o r d e r in g s 144

39. Details o f pdslO when dynamically changing from MMD to A M D 146

40. Details o f ken 13 when dynamically changing from MMD to A M D 147

41. An example square, unsy mmetric matrix... 151

42. Example of LU factorization.. 155

43. Constrained wavefront reduction example.. 159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xiii

LIST OF ALGORITHMS
Algorithm Page

1. The Pseudo-Diameter Algorithm... 19

2. The Sloan algorithm for a vertex-weighted graph.. 42

3. The Multiple Minimum Degree algorithm defined in terms o f a Quotient Graph................... 66

4. The most expensive loop in the MD and MMD update process.. 75

5. The most expensive loop in the AMD update p r o c e s s .. 79

6. Computing degree using the reachable set iterator.. 125

7. Computing degree without using the reachable set iterators... 126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

I. INTRODUCTION

There are two major ordering problems that are addressed in this thesis, motivated primarily by their

application to sparse matrix computations in scientific computing. Both o f these problems are known to

be NP-hard and have had several heuristics vie for dominance in each case. These algorithms are designed

to work on large problems, often testing the amount o f storage available on the computer.

For the envelope/wavefront reduction problem, we were successful in enhancing a combinatorial

heuristic in several ways. We achieved a significant reduction in the asymptotic complexity and show

a corresponding reduction in actual running time. We also identified a clear dichotomy in how the al

gorithm behaved with different problem instances and therefore could further improve the quality o f the

result. Finally, we were able to adapt the algorithm to refine an existing ordering, which gives rise to an

interesting algebraic-combinatorial hybrid.

The fill reduction problem has received a great deal more attention with many papers and algorithms

already published. Interestingly, while most of the algorithms are closely related, there is no single

piece o f software that implements all o f these algorithms. We provide an entire suite of greedy fill-

reducing ordering algorithms. We also present asymptotic complexity bounds for the minimum degree

(MD). multiple minimum degree (MMD). and approximate minimum degree (AMD) algorithms. Our

implementation is the first known implementation using advanced object-oriented techniques such as

polymorphism. The execution time o f our implementation using these object-oriented techniques is within

a small constant o f traditional Fortran implementations, but far more flexible.

Our interest in developing new algorithms therefore extends to their efficient implementation. Signif

icant attention is therefore expended on the design and implementation o f our object-oriented software,

Sprndie. We use Spmdfe to experiment with, and extend our knowledge in, ordering problems. Special

attention is paid to the trade-offs between the use of elegant, advanced software techniques and achiev

ing high performance retain efficiency comparable with procedurally based codes implemented in C and

Fortran77.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There is a critical relationship between the "computer science” and "software engineering” — the

algorithms and the implementation — that should not be dismissed lightly. Advanced algorithms, which

are essential for good performance, are increasingly complex and can greatly benefit from good object-

oriented implementations. In return, a well-defined framework o f algorithmic components is significantly

more flexible and extensible than a collection o f algorithmic "black boxes.”

Most computations involving a large, sparse systems o f equations are sensitive to the ordering o f the

equations and the unknowns. For some instances, such as direct factorization, the impact o f ordering this

system is well understood. Other instances, such as incomplete factorization preconditioning, the effect

o f the ordering has been observed but is not well understood or even well characterized. Ordering these

systems for specific computations is often vital to make the computation efficient, or even tractable. A

poor ordering o f the matrix in a sparse direct factorization can inflate the asymptotic complexity from

0 (n 2) to 0 (n 3). The ordering of the matrix in incomplete factor preconditioned Krylov solver can

accelerate or even prohibit convergence.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

2. BACKGROUND

The information required to frame this research in context is provided here. Our research spans the do

mains o f sparse numerical linear algebra and object-oriented software engineering. Section 2 .1 discusses

relevant sparse matrix topics, primarily graph models and sparse factorization. Section 2.2 enumerates

the software design principles we consider in the process of building the object-oriented software.

2.1 Sparse Matrix Computations

We often describe solving the system o f equations

A x = b

where .1 is large and sparse. Interestingly, the "sparse" qualifier is never actually defined. An informal

working definition — generally attributed to J. H. Wilkinson [40| — is that the matrix .-I has enough zero

entries to make storing only the non-zero entries and their explicit indices more efficient than that storing

the zeros explicitly and foregoing the indices. Assuming 8 byte double-precision floating point numbers

(16 for complex numbers) and 4 byte integers for the indexing, only one half o f the n 2 entries in an n x n

matrix would need to be zero.

In practice, a much stronger statement o f sparsity can be made — especially in matrices arising from

finite differences and finite element methods. These matrices are so sparse that there are only 0{n)

non-zero entries.

2.1.1 Graph Models

The placement o f the nonzeros in the matrix, called the nonzero structure, determines many aspects o f

sparse matrix computations. Graphs are a common abstraction to model the nonzero structure o f a sparse

matrix. In this section, we list three graph models, some o f their salient characteristics, and in what

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

(a) grapht.-b (b)col .imersect.graph(.-I)

i • • • •
• i

•

• *_
(d) spy(.-l)

FlCi. I . Different Graphs Models o f a Sparse Matrix, (a) adjacency graph, (b) column intersection
graph, and (c) hypergraph o f the same sparse matrix (d). Note that fo r the hypergraph, the hyperedges
are represented as black circles with white labels fo r the hubs.

contexts each model is most appropriate. Figure L presents all three models Tor a simple matrix to further

illustrate their differences.

2.1.1.a Adjacency Graph

By far the most common graph model employed is that o f an undirected graph on a symmetric sparse

matrix, called the adjacency graph. The name may sound somewhat redundant until one realizes that

an undirected graph is commonly stored represented as an adjacency matrix. The adjacency graph is so

pervasive that it is commonly referred to as the graph o f a matrix, even though other graph models exist.

Before discussing the construction o f this model, we need to introduce the concept o f structural symmetry

and its relation the normal concept o f a symmetric matrix.

Definition 2.1 Consider a sparse n x n matrix .4 = [a^]. The matrix is said to be structurally symmetric

i f and only iffo r every atJ jk 0 in A there exists aji ^ 0.

R em ark 2.1 I f a matrix is symmetric, it must also be structurally symmetric.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

Definition 2.2 Consider a sparse, structurally symmetric n x n matrix .4. = The graph o f the matrix,

G(.-l) = (V. E), where I ' is a set o fn vertices corresponding to the n rows/columns o f A, and E is a set

o f edges (i . j) where (i . j) € E a t] ^ 0.

The adjacency graph is the most common graph model employed in ordering and partitioning codes,

despite its known deficiencies [42,43). The most immediate problem is that it is restricted to symmetric

matrices. It is not uncommon to find software that will add explicit nonzeros to a sparse, square, un-

symmetric matrices to make them structurally symmetric. Furthermore self edges induced by nonzero

diagonal elements in the matrix, if any, are dropped. Thus, an unsymmetric matrix permutation derived

from a symmetric graph may have anomalies that are caused by the implicit removal o f any diagonal

nonzeros. It should also be noted that partitioning codes typically use this model, and typically try to

minimize edge cuts, though this does not accurately translate into communication costs in a matrix-vector

multiply in parallel [151.

It is common to have weights attached to the vertices, edges, or both in a graph. Rarely are these

weights directly related to the nonzero values in the original matrix. More often these weights are integer

values that are used for combinatorial purposes.

2.1.1.b Column Intersection Graph

The column intersection graph can be generated for any rectangular matrix. It has been used to generate a

column permutation for unsymmetric fill-reducing orderings. The construction of the column intersection

graph is as follows.

Definition 2.3 Consider a sparse m x n matrix .4 The column intersection graph o f the matrix.

Ge(A) = (f ’c, Ec). where is a set o f n vertices corresponding to the n columns o f A. and E c is a set

o f edges (i , j) where (i , j) 6 £ c » o n / 0 and a tj / 0 fo r some row k.

While this heuristic has been used in commercial applications, it is imperfect. The mapping from

rectangular matrices is onto, but not one-to-one. That is to say that the column intersection graph does

not directly translate back into the nonzero structure o f a unique matrix. In Figure 1(b) the column

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

intersection graph is completely connected, even though the original matrix is sparse. Clearly, we could

add any number o f additional nonzeros to the original matrix in Figure 1(d) without changing the column

intersection graph.

There is a relationship between a column intersection graph and an adjacency graph as given in the

following theorem.

O bservation 2.1 For any sparse rectangular matrix A = [u.j], the column intersection graph is identical

to the adjacency graph « /.4 T .l.

2.1.1.c Hypergraph

The hypergraph model is the least commonly implemented, but may be the most robust model o f all. It

has applications particularly in unsymmetric wavefront and partitioning applications, though no known

codes using it currently exist.

Definition 2.4 Consider a sparse m x n matrix .4 = [a,j|. The hypergraph o f the matrix. Cl/, (.4) =

(I /,, Eit), where I'/, is a set o f n vertices corresponding to the n columns o f A. and Eh is a set o f hyper

edges (i . j , k , . . .) corresponding to the m columns o f .4. Each vertex j is a member o f hyperedge i i f an

only i f a, j ^ 0.

2.1.1.d Additional Graph Theory

Graph compression is an important technique that is critical for achieving the best performance in modem

codes. To explain the rationale behind graph compression, we m ust first define indistinguishable vertices.

Definition 2.5 Given an undirected graph G = {V, E), two vertices v, w 6 V' are indistinguishable i f

and only i f there exists an edge {v, w) 6 E and {adj(u) U v } = {adj(u/) U u/}.

Graph compression is the practice o f finding sets o f indistinguishable vertices and replacing them with

a single supervertex. This supervertex has a weight equal to the number o f constituent indistinguishable

vertices. I f there is an edge between two supervertices i and j in the compressed graph, it logically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

represents vwgt(i) x vwgt(j) edges in the original graph, where vwgt() is the vertex weight. Therefore, it

is only necessary to store an array o f length | V'| for the vertex weights o f the compressed graph — edge

weights are computed on demand.

Graph compression can drastically reduce the storage required for. and the time spent indexing into,

sparse data structure. In most cases, an ordering can be performed on the compressed graph with the

understanding that members o f a supervertex are numbered sequentially. Working with the compressed

graph can even improve the quality o f the result, particularly with some new fill-reducing heuristics.

This compression technique applies to sparse matrices, but it is not exactly the same. In our ordering

algorithms, we are concerned only with the structure o f the matrix, not the values contained therein.

Sparse matrices, however, have values associated with each nonzero entry that must be preserved. In

sparse matrices, the indistinguishable vertices form dense blocks — called inodes in PETSc [7. 8 |. and

supernodes in SuperLU [56|. This reduces time and space for sparse indexing and increases flop rates

and cache performance by operating on dense blocks within a sparse matrix.

Definition 2.6 A clique, C. in a graph G = {V. E) is a set o f vertices C C V’ such that for every i and j

in C. there exists an edge {i . j) in E.

O bservation 2.2 Each set o f indistinguishable vertices forms a clique, but not every clique forms an

indistinguishable set o f vertices.

For the rest o f this manuscript, a graph is assumed to be undirected and may or may not be compressed.

Any uncompressed graph without explicit vertex or edge weights is assumed to have all vertex and edge

weights equal to one.

If x is a vertex in the graph, then we define its adjacency set ad j(x) as the set o f all vertices that share

an edge with x . If X is a set o f vertices in a graph, then its adjacency set

The degree o f a vertex is typically defined for unweighted graphs as deg(x) = |ad j(x)|. For compressed

graphs, each edge represents a connection between every vertex in the first supervertex to every vertex

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

in the second. Therefore the weight o f each edge in a compressed graph is implicitly the product o f the

vertex weights on either end. Thus, the degree for a compressed graph is

deg(x) = vw gt(x) * ^ vwgt(u).
u e a i l jU)

One characteristic o f all these graph representations is that it does not have an implicit ordering in

the same way that a matrix does. To capture this on a graph, we must label the vertices. Computing a

reordering o f the matrix is then reduced to the problem o f relabeling the vertices in the graph. This will

cause a change o f placement o f nonzeros in the matrix, but not the number of them.

The structure o f a symmetric matrix .4 can be altered by performing symmetric (identical row and

column) permutations. For unsymmetric matrices, ordering algorithms can either make the matrix struc

turally symmetric and continue, or use a model that supports unsymmetric matrices and generate separate

row and column permutations.

It is also interesting to note that all o f the graph models presented have undirected edges (or hyper

edges). This is probably due to analytical ease more than necessity. There is, in fact, a very natural

directed graph model for sparse unsymmetric factorization, but its deployment in actual codes is far from

widespread.

2.1.2 Sparse Direct Solvers

To solve a large, sparse symmetric system o f equations Ax = b directly, the matrix A is decomposed

into the product o f LDU where L is a lower triangular matrix, D is diagonal, and U is upper triangular.

The modified system o f equations LD U x = b can then be solved quickly through a series o f triangular

backsolves and diagonal scalings. If the original matrix is symmetric, then U = Lr , and the storage and

arithmetic required to form the factorization is halved.

If A is a sparse matrix, the LU factors often are significantly less sparse. Since sparsity o f the factors

is determined by the nonzero structure o f the original matrix and the elimination order, it is prudent to

consider permuting the system to (PrAPc)(Pcx) = Prb using row and column permutation matrices.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

A b

L.D.U
p> p*
rr > *c , solveorder factor

x

FIG. 2. A “black box" formulation o f a sparse direct solver.

Pr, Pc> that reduces the storage and arithmetic work required for the process. If the original matrix .4 is

symmetric, then P r = Pc to preserve symmetry.

If A is symmetric and positive definite, then the factorization is numerically stable for any symmetric

permutation. Otherwise, it is still common to permute the system to reduce work and storage. Only during

the factorization itself is care taken to maintain numeric stability, which can degrade the amount of work

and storage saved.

The direct solution of a sparse symmetric linear system o f equations can be described in three lines,

corresponding to the three main computational steps: order, factor, and solve.

(P r ,P c) = o rd e r(.l) (2.1)

(.L , D . U , P U P 'C) = factor (.4. Pr , P ,) (2.2)

x = so l\e (L ,D ,L ’.P'r.P ',b) (2.3)

where .4 is a sparse, symmetric, matrix, L is the lower triangular factorization, D is a diagonal scaling

matrix, P r and Pc are row and column permutations. P ' and P ' are the permutations after being modified

by the factorization process for numerical stability, b is the known vector, and x is the unknown solution.

Equivalently, we show a “black box” scheme in Fig. 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

2.2 Object-Oriented Programming

There is more to computer science than just transforming a mathematical algorithm to a working piece of

software. There is an art to getting the software to be usable, flexible, to withstand years o f use on multiple

platforms. Software lasts far longer than hardware; it must because it is more difficult and expensive to

build.

We chose to follow object-oriented paradigms in implementing our software because we firmly be

lieved in several guiding principles in software design: interface simplicity, complexity management,

flexibility, extensibility, safety, and efficiency. Object-oriented software does not automatically follow

these principles, but they were easier to adhere to when implemented with object-oriented techniques

than without.

Implementing these ordering algorithms using object-oriented software and following these principles

us a fundamental part o f the design has dramatically increased the amount o f work and time spent in this

research. However, we are confident that the “value added" by providing a robust and usable piece of

software is in itself a new and significant contribution. It is only after having the software tool that we

were able to get new insights and develop novel solutions. This research has convinced us that object-

oriented programming not only produces better and more usable code, but also provides tools to solve

problems in ways that are not natural otherwise.

2.2.1 Interface Simplicity

One o f the cornerstones o f providing a simple interface is to get the abstraction correct. We want to

provide components that users are familiar with, and allow them to use the components in an intuitive

way. The computations are formulated in terms o f things like sparse matrices, vectors and permutations,

and in terms o f algorithms like orderings, factorizations, and solvers. Accordingly, we strive to provide

abstractions for such entities with minimal interfaces to avoid code-bloat, and user confusion.

Previous ordering codes, primarily those implemented in C or Fortran are coded for generality and

highly tuned for performance, often with little invested in interface simplicity. Users are commonly

required to memorize data layouts for complicated data structures, handle storage requirements explicitly.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

and use extensive combinations of codes and flags in the parameter lists of function calls. Thus the

engineer o r scientist using the software must think in terms o f the software implementation and not in

terms o f the problem itself.

2.2.2 Complexity management

Even with very clean abstractions at the individual entity level, complexity can creep in as these pieces are

assembled into larger, more complicated components. By aggregating objects, we stress the abstraction

and its minimal interface. If the interface is too simple, the objects lack generality. If the interface is too

complex, the objects lose usability. To manage the complexity o f large collections o f objects, we depend

on encapsulation and layers o f design.

Memory allocation should only be a concern for the simplest objects: character strings, vectors, etc.

Higher level objects such as sparse matrices, ordering algorithms, and solvers should defer such matters

to their constituent lower-level objects.

In Fortran77. for example, a sparse matrix is commonly represented as a collection several arrays.

Algorithms are implemented as simple subroutines which read from and write to these arrays. Since

there is no support for abstract data types in Fortran77. these subroutines tend to have long argument lists

with several arguments per abstract data structure. Additionally, since Fortran 77 lacks dynamic memory

allocation, users o f the subroutine commonly must produce additional work arrays to be used internally

by the subroutine. This forces users o f high-level routines to be constantly aware o f low-level details

which increases the complexity of the software.

2.2.3 Flexibility

The key to achieving flexibility is loose coupling. We design separate abstractions for structural enti

ties such as sparse matrices, permutations, and vectors on one side and for ordering and factorization

algorithms one the other side. One can and should expect to swap in different ordering or factorization

objects in the solver much in the same way that components in a stereo system can be swapped in and

out. Once the stereo has been configured, it can be set to perform different tasks by pressing different

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

buttons. Advanced users can even use on-screen programming to perform more arcane functions. So too

with flexible software. Ordering and factorization are performed only once in a series o f systems with the

same coefficient matrix but with different right hand sides, however the triangular solves must be repeated

for every system in the series. A similar situation occurs with iterative refinement, where triangular solves

must be repeated for a single run o f the ordering and factorization algorithms.

Swapping components does not happen only with data structures and algorithms. In general, we want

to be able to swap smaller components within a larger one. For instance, factorization is usually composed

o f a couple distinct phases (symbolic factorization and numerical factorization). Positive definite solvers

and indefinite solvers differ only in the numerical factorization where the latter must pay attention to

numerical stability. Therefore this is the only component we should swap out. By splitting a factorization

algorithm in this way we provide the possibility o f performing only symbolic work, for those who are not

interested in the numerical results.

The challenge is that flexibility and simplicity are at odds with one another. The simplest interface to

a solver would be just a black box that one throws a coefficient matrix and a right hand side in one end

and produces the solution out the other end. While very easy to use, it would not be at all flexible. On

the other hand, a very flexible implementation can expose too many details, making a steeper learning

curve for users. We try to provide multiple entry points to our code and let the user decide which one is

apropriate for their needs.

While little o f this part o f the design philosophy is radically new. we find that it is also not generally

established practice either. This style o f software is harder to implement correctly because it provides

multiple possible execution paths. It resembles more the event-driven software of windowing programs

than a simple subroutine that marches though its prescribed execution path.

2.2.4 Extensibility

Whereas flexibility allows us to push different buttons and interchange components, extensibility allows

others to create new components and alter the effects o f certain buttons. The best techniques we found

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

for ensuring extensibility in our codes were by enforcing decoupling, providing robust interfaces, and

pointing out specific places for polymorphism.

Extensibility is not an automatic feature o f a program written in an object-oriented language. Rather,

it is a disciplined choice early in the design. In our implementations, we have very explicit points where

the code was designed to be extended. Our intent is to keep the package open to other ordering algorithms

and better heuristics as they become available.

2.2.5 Safety

When we talk about safety here, we are concerned with two major issues: protecting the user from making

programming mistakes with components from our codes (compile time errors), and providing meaningful

error handling when errors are detected at run-time. Earlier we argued that the simplicity o f the interface

increases the usability o f the software, we add here that usability is further increased by safety.

Compile time safety is heavily dependent on features o f the programming language. Any strongly

typed language can adequately prevent users from putting square pegs in round holes. That is. we can

prevent users from passing a vector as an argument that should really be a matrix.

Run time errors are more difficult to handle. Structural entities such as sparse matrices and permuta

tions are inputs for factorization algorithms. When such an algorithm is run. it not only should detect if

the inputs are valid, but also that they correspond to each other.

The biggest difficulty about error handling is that while we, the library writers know very well how to

detect the error conditions when they occur, we must leave it to the user o f the library to determine what

action should be taken. Error handling is an important and ail too often overlooked part o f writing appli

cations o f any significant size. Because we are writing a multi-language based application and provide

multiple interfaces (Fortnin77, C, Matlab. C++) we immediately rejected using C++ exception handling.

Instead, we have made the more complicated classes self-aware. They are responsible for performing

self-diagnostics to confirm that they ate in a valid state. If any instances are not in a valid state, they are

responsible for being able to report what errors were detected upon request.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

2J.6 Efficiency

An efficient piece o f software is one that makes judicious use of resources. Previous direct solver packages

tend to be highly efficient, using compact data structures and algorithms that are intimately intertwined

in the code. Decoupling the data structures from the algorithms and requiring them to interact through a

high-level interface can add significant computational overhead. The compromise between flexibility and

efficiency is determined by these interfaces.

Consider the means by which an algorithmic object accesses the data stored in a structural object, say

a factorization operating on a sparse matrix. Correct object-oriented design requires full encapsulation of

the matrix, meaning that the factorization algorithm must not be aware of the internal representation of

the sparse matrix. The most general way to retrieve values of elements within a matrix is to query each

pair o f row and column indices. For a sparse n x n matrix, this means making nr queries for only 0{n)

data.

In practice, sparse matrix algorithms must take advantage of the storage format as an essential opti

mization. This is often done in object-oriented libraries like PETSc by “data-structure neutral" program

ming. This is accomplished by providing an abstract base class for a matrix or vector, and deriving a

concrete implementations for each data-layout: row-major compressed sparse, column-major AIJ triples,

blocked, etc. Then each concrete derived class must implement its own basic linear algebra functions.

Given t types o f matrices and n basic linear algebra subroutines for each, these libraries provide t x n

virtual functions.

Our goal is very narrow: provide an ordering code that is as fast as any other software written in

any other language, but is more usable, flexible, and extensible because we used object-oriented design

and advanced programming paradigms. Our algorithms are far more complicated than a matrix-vector

multiply and providing a set o f algorithms for each possible representation o f the matrix is not feasible.

Even if we did general algorithms that operate on matrices regardless o f their layout, we could not make

any guarantees about performance. In short, we are more concerned about adding new algorithms, not

adding more matrix formats. Spindle's ordering algorithms apply to general, sparse, symmetric matrices

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

that must be laid out in a specific way for efficient computations. We provide enough tools to convert to

Spindle's graph and matrix classes.

Finally, we put some restrictions on the object-oriented techniques we made use of. For example,

we do not define operator overloading for our matrices and vectors because our contribution is not in

providing a general matrix class, but in providing a suite o f ordering algorithms. We eschew the use o f

multiple inheritance, although we have found one occasion where its use is very helpful and so have used

it there.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

3. ALGORITHMS

This chapter presents three problems and applicable algorithms. The graph diameter problem and the

pseudo-diameter algorithm are discussed in Section 3.1. The envelope/wavefront reduction problem and

our Fast Sloan Algorithm is discussed at length in Section 3.2. Finally, we motivate the fill reduction

problem and discuss a suite o f greedy fill reducing ordering algorithms in Section 3.3.

3.1 Diameter of a Graph

Finding the diam eter o f a graph is not an ordering problem per se, but it is a necessary first step for

many ordering algorithms such as the Reverse Cuthill-McKee (RCM) [17], Gibbs-Poole-Stockmeyer

(GPS) [38 .55 |.G ibbs-K ing (GK) [37. 5 l | , and Sloan [2 6 .5 2 .76 | algorithms. In Section 3.1.1 we define

the diameter o f a graph and show that it requires C?(|V'| * |E |) time, which is more expensive than the

ordering algorithms themselves. In practice, a heuristic that computes a pseudo-diameter. or approximate

diameter, is used employed. We step through a modem implementation o f the pseudo-diameter algorithm

in Section 3.1.2.

3.1.1 Definitions and Concepts

We begin by defining what we mean by the diameter of a graph. To do so. we need to also introduce the

notion o f distance between two vertices in the graph.

Definition 3.1 d is tc (u , u). the distance between two vertices u .u in a graph G. is the length o f the

shortest path between vertices u and u in G.

Definition 3.2 The diameter o f a graph G, is a path from s to e such that d istf;(s . e) is the maximum o f

all distances between any nodes in G.

lengthjof.diameter((7) = max distfu, u)
u.ireVriC)

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

To find the distance from one vertex in a graph to all other vertices, simply perform a breadth-first-

search starting at that vertex, called the root. It is well known that the time spent in a breadth-first-search

is C7(| V'I + |£ |) [16. pg. 4721 where the initialization overhead is 0 (|V '|) and the search itself is 0 (|£ |) .

The last vertex visited by the breadth-first-search is also the farthest from the root. To find the diameter of

a graph, one needs consider the farthest vertex from every possible root. Therefore a breadth-first-search

needs to be performed for each vertex in the graph. Since the initialization overhead need only incurred

once, computing the diameter takes 0 (| V | + | l ' | * |£ |) or simply 0 (|V | * |E |) time.

The start and end vertices o f a diameter o f a graph are not necessarily unique. Given a specific pair

o f start and end vertices in a graph, the shortest path between them need not be unique either. While

technically the diameter o f a graph includes all the intermediate vertices in the path between the start

and end vertices, we are only interested in these two. Therefore, we often talk about a pseudo-diameter

algorithm selecting two vertices (the start and end vertices) instead o f generating an entire path through

the graph.

Before presenting the pseudo-diameter algorithm in detail, it is necessary to introduce a few additional

concepts, all o f them centering around the level structure of a graph.

Definition 3.3 The level structure o f a graph G is a sequence o f level sets Z.(l, L \. L> £/, where

1. all vertices in L0 are adjacent only to vertices in Lo or L\

2. all vertices in £,/, are adjacent only to vertices in £/, or £ /,_ t

3. all vertices in L„ where i € [1 ,h — 1] are adjacent only to vertices in £ ,_ [. L„ or L,+\.

A level structure o f a graph can be generated easily by a simple breadth-first-search (BFS) from the root

vertex. Whereas a BFS simply visits vertices in a certain order, we must add the concept o f level sets, or

distinct levels to use a BFS to implement a pseudo-diameter algorithm. With the separation o f distinct

levels in a BFS, we also get the following useful concepts.

Definition 3.4 The height o f a level structure is the number o f levels sets in the structure.

R em ark 3.1 The length o f a pseudo-diameter is the same as the height o f a level structure rooted at

either s o r e .

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Definition 3.5 The w idth o f a level structure is the maximum number o f vertices in o f any o f its level sets.

3.1.2 The Pseudo-Diameter Algorithm In Detail

The pseudo-diameter algorithm is presented as Algorithm 1. As presented, it takes a graph and a shrinking

strategy as input. We will discuss the role o f the shrinking strategy shortly. When completed, the pseudo-

diameter algorithm returns two vertices s and e as the start and end vertices o f the pseudo-diameter.

The pseudo-diameter computation uses two BFS engines (line I). The forwardBFS always uses the

current start vertex as the root. The reverseBFS object uses candidates for the end vertex as the

root. Initially, the start node is chosen to be any vertex o f smallest degree (line 2) and the end node is

unknown (line 4). Now the algorithm enters the main outer loop which does not exit until a suitable

end node has been determined and all candidates have been exhausted. For each iteration o f the outer

loop, we perform the forward breadth-lirst-search (line 5), set the current diameter as the height o f the

level structure (equivalently, the distance from the last node in the BFS to the root), and get the set o f ail

vertices that are in the farthest level set. called the candidate set (line 7). At this point in our discussion,

we will skip lines 8. 11. 13-14 and 23-24 as they are all optimizations to improve performance. They

will be revisited after (he fundamentals are explained. For each candidate for end vertex in the candidate

set (line 10), we do a reverse breadth-lirst-search. We are particularly interested in the candidate whose

reverse breadth-lirst-search has the minimum width, so we initialize the local variable min.width to an

arbitrarily large number (line 9).

If we find a candidate that has a narrower level structure than the forward breadth-lirst-search (line 15),

then we make this candidate vertex the new start vertex (line 16) and restart the algorithm. The b r e a k

in line 17, affects only the inner loop (lines 10- 21) and jum ps to line 22, since e is still undetermined, the

outer loop (lines 4-22) starts a new iteration.

If the reverse breadth-first-search does not have more levels than the forward breadth-first-search, then

it must have at least as many. Furthermore, if it is narrower than the most narrow reverse breadth-first-

search so far (line 19), then we've found a new minimum width (line 20), and the candidate is chosen as

the end vertex (line 21).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

A lg o rith m I (The Pseudo-Diameter Algorithm.)

[s. e | = PseudoDiametertconst Graph* g. ShrinkingStrategy* strategy)
{

/ / Create two breadth-first-search engines
1. BFS forwardBFS(g). reverseBFS(g);

/ / Initialize start and end vertices of pseudo-diameter
2. Graph::vertex s = g—> vertex_of_mi ni mum.degree();
3. Graph::vertexe = - I : / / - / is flag for non vertex

4 . d o // while e = = -I

//do BFS starting at start node 's’
5. forwardBFS.execute..at(s >;

//get candidateSet o f end nodes
6. int diameter = forwardBFS.heightt);
7. Graph: :vertexSet candidateSet =

forwardBFS.vertices.aUcvel(diameter);

/ / shrink candidateSet to a manageable number
8. stategy->shrink(candidateSet):

9. int min.width = MAX.INT;
10. for each candidate in candidateSet {

//do BFS from each candidate
//(abort i f widthl) > ‘min.width’)

11. revcrseBFS.short.circuit.at(min.width):
12. reverscBFS.cxecute.at(candidate):

//determine i f candidate is appropriate as V
13. if (rcvcrseBFS.has-short.circuitedO) {

/ / reverseBFS is wider tlum a previous reverseBFS with e
14. COntinuO : //do nothing, skip this candidate
15. } else if (reverseBFS.heighK) > diameter &&

reverseBFS.widthi) < min.width) {
/ / reverseBFS is better than the forwardBFS
//reset algorithm with candidate as new s

16. s = candidate:
17. e = - l:
18. break:
19. } else if (reverseBFS.width() < min-width) {

/ / reverseBFS is narrower tlum any others
//make this new end node

20. min-width = reverseBFS. widthO:
21. e = candidate:

}
} //end foreach

22. } While(e = -l);
/ / swap s die i f the reverseBFS is mrrower than forwardBFS

23. if (forwardBFS.widthO > reverseBFS.width()) {
24. return [e, s];

}
25. return [s. e 1;

} //end function

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Now to revisit the optimizations. The most important is the shrinking strategy (line 8). Instead o f

performing a reverse breadth-first-search on all vertices that are farthest away from the start vertex, it is

much faster to only try a select subset. Various heuristics can be applied such as: sorting the candidates

by degree and choosing half o f that set [76|. choosing a single vertex o f each degree [26|, and sorting the

candidate set by vertex degree and choosing the first five vertices that are not adjacent to any previously

chosen vertex [72].

Another useful optimization is the short-circuiting mechanism (lines 11, 13-14). Since we know that

we will not be accepting any candidate whose level structure is wider than the one we currently have,

we can abort the breadth-first-search as soon a level set that is sufficiently large is detected. First, we

enable the mechanism at line 11. Recall that if this is the first time through the inner loop, m in .w id th is

arbitrarily large, so we know it will not be triggered. At line 13. we test if the reverse breadth-first-search

has triggered. If so. we know this candidate will be rejected and we continue immediately to the next

candidate (line 14).

Finally we have our start and end vertices (line 23). but it is possible for the reverse breadth-first-

search to be narrower than the forward breadth-first-search. If this is the case, then we simply return the

start and end vertex pair reversed (line 24). Otherwise, we return them as is (line 25).

3.1.3 History

A modern implementation o f the pseudo-diameter algorithm has become significantly faster and more

complex in the last thirty years. Gibbs. Poole, and Stockmeyer [38] observed that at the end of a pseudo

diameter computation, there are two level structures available: one from the start node and one from the

end node. They observed that some post-processing o f these two level structures can obtain a third level

structure whose width is usually less than the o ther two. George and Liu [31] recommended terminating

the construction o f any level set as soon as the width exceeded that o f the narrowest level set found so

far. Lewis [55] recommended that candidate vertices be sorted by degree, since pseudoperipheral vertices

tend to have low degree.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Sloan [76] incorporated both o f these modifications into his algorithm. He also observed that vertices

with high degrees are often not selected as potential start or end vertices. He therefore introduced a the

first shrinking strategy that took only the first half o f candidate vertices sorted by degree. Duff. Reid, and

Scott [26] and later Reid and Scott [72] have introduced more aggressive shrinking strategies. In the latter

work, they restrict the candidate set to no more than five in order o f increasing degree and omitting any

vertes that is a neighbor o f a vertex already considered.

By being so restrictive, the algorithm generates level structures for a minimal number o f vertices and

can greatly improve its execution time. Furthermore. Reid and Scott [72] point out that the width of the

level sets from the start and end vertices are not necessarily the same. If the latter is more narrow, it is

advantageous to switch the start and end vertices.

3.2 Envelope/Wavefront Reduction

The envelope/wavefront reduction problem1 is a classic graph ordering problem that has many applica

tions that extend far beyond numerical linear algebra or sparse matrix computations.

We first introduce relevant definitions and notation (Section 3.2.1) and then derive formulae for com

puting the envelope and wavefront for certain model problems (Section 3.2.2). We review the history

o f algorithmic development for this important problem (Section 3.2.3) and discuss our enhancements to

the algorithm (Section 3.2.4). Our Fast Sloan Algorithm is discussed in detail (Section 3.2.5) and then

its asymptotic complexity is analyzed (Section 3.2.6). Next we discuss our related algorithm of Sloan

Refinement (Section 3.2.7). We end this section with a brief overview o f some promising applications

(Section 3.2.8) and a brief examination o f the impact our published research [52] in this problem has had.

3.2.1 Definitions and Notation

For the purposes o f this discussion, we will restrict ourselves to structurally symmetric matrices (see

Definition 2.1. page 4). This is a classic restriction in the literature and greatly simplifies the presentation

o f new material. Later, we will show how this class o f algorithms can be generalized to the unsymmetric

'also called skyline or profile reduction

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case. For the sake o f simplicity, we will assume that all the diagonal elements o f .4 are nonzero. While

this is certainly the case for symmetric, positive definite matrices, it is not true in general. However, since

these algorithms center on the undirected general graph model — which does not capture self-edges —

this is not an unreasonable assumption.

Definition 3.6 Consider a large, sparse, structurally symmetric matrix, .4. The envelope o f the matrix .4.

is defined as the set o f all matrix entries n tJ between and including the first nonzero o f the row, tip to and

excluding the diagonal.

env(.4) = {ai.j 9: / ,(.4) < j < i . 1 < i < «} •

where fi(A) is the column o f the first nonzero entry in the ith row o f A.

The envelope of a symmetric matrix is easily visualized. Picture a sparse, structurally symmetric matrix,

then remove the upper triangle (including the diagonal) and the leading zero elements in each row. The

remaining elements (whether nonzero or zero) are in the envelope o f the matrix.

For analysis, we also introduce the row width o f a sparse, structurally symmetric matrix. We will use

this concept to define the bandwidth of a matrix and show the relation between the bandwidth and the

profile.

Definition 3.7 Consider a large, sparse, structurally symmetric matrix. A. The row width o f the i tb row,

nv,(.4), is the difference between i and the column index o f the first nonzero element on the »th row, or

equivalently,

rw ,(.4) = m ax (i - j) .
j ■

Definition 3.8 Given a large, sparse structurally symmetric matrix. .4. the bandwidth o f A is defined as

the max row width:

bw (jl) = m ax rw j(.4).
I < i< n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

The bandwidth o f a matrix is very important for a class o f solvers called baneled solvers that store matrices

in a banded format. As we are interested in general sparse matrices, we have little use for this specialized

format. It is worth noting, however, that bandwidth reducing orderings, such as Reverse Cuthill McKee

(RCM) (17.59], are critically dependent on the pseudo-diameter algorithm. In fact, most o f the time spent

doing an RCM ordering is actually spent doing the pseudo-diameter computation. Although we've done

no algorithmic work in the bandwidth problem, we provide an RCM implementation in our software since

(1) we had a first-rate pseudo-diameter implementation (2) the rest was easy to implement and (3) most

other RCM implementations have not kept current with the faster (and better quality) pseudo-diameter

codes.

We now show that there is a relationship between the bandwidth reduction problem and the wavefront

reduction problem: they can both be stated in terms of the row width.

R em ark 3.2 Given a large, sparse structurally symmetric matrix. .4, the size o f the envelope o f A is the

sum o f the row widths:

n

|env(.4)| =]$T nv ,(.4).
i=i

Therefore, we can state the bandwidth reduction problem in terms o f minimizing the maximum row width,

and we can state the envelope reduction in terms o f minimizing the sum o f the row widths.

While we have now adequately defined the envelope reduction problem, we have yet to define the

analogous wavefront reduction problem. We define the wavefront below and then show how it too can be

defined in terms o f row width.

Consider the ith step o f Cholesky factorization where only the lower triangle o f .4 is stored. When

factoring the tth column, there may be contributions from previously factored columns that need to be

accumulated. Formally, any k th row (k > i) is called active if there exists a previously factored column

1(1 < i) such that a u 0. The set o f all active equations for each column i o f .4 is called the wavefront

o f .4, w f,(.4).

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

In terms o f the envelope, the ith wavefront is the set o f rows i th column that are within the envelope

o f the matrix, including the i th row itself. We can also define the ith wavefront in terms o f the general

undirected graph o f .4. In the graph o f .4, the i th wavefront consists o f the vertex t together with the set

o f vertices adjacent to the vertices numbered from I to i. Formally, the »'th wavefront is

wfi(.4) = t / jU ad j({«!,!?•»,... ,u,}).

The vector o f n wavefronts is often summarized into scalar values, such as the maximum wavefront

and mean-square wavefront as defined below:

maxwf(.4) = max {|wf,(.4)|}. (3.1)
l < i <r»

I "
mswf(.4) = - 5 ^ |wf,(.4)|*. (3.2)

1 = 1

There are a class o f solvers called frontal solvers whose performance is determined largely by these

wavefront characteristics. The maximum wavefront size measures the maximum storage needed for a

frontal solver during factorization, while the mean square wavefront measures the number of floating

point operations in the factorization. Duff. Reid, and Erisman [22] discuss the application of wavefront

reducing orderings to frontal factorization.

Finally, we need to show the relationship between the envelope and the wavefront.

O bservation 3.1 The sum o f the wavefronts o f a matrix equals the size o f the envelope, plus n.

n n

^ |w f , (. 4) | = n +- rw j(.4) = n + |env(.4)|.
i = t i = i

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

A 2-D Grid Matrix o f the grid.

• • •
! • • • •

• • • •
i * * • •

5 • • • • •
• * • •• • •• • • • •

i * * • • •
10t •

j
• •

• • • •
• • • • •

• • • •

15}
• • • •

• • • •
• • •

0 5 10 15

t Si ™ , wr,
1 1 0 3
2 1 1 4
3 1 2 4
4 2 2 5
5 2 3 5
6 3 3 5
7 4 3 5
8 4 4 5
9 5 4 5
10 6 4 4
II 7 4 4
12 8 4 4
13 9 4 3
14 1 1 3 3
IS 12 3 2
16 14 2 1
E 46 62

(a) lb) lc)

FIG. 3. Example o f row-widths and wavefronts. A two dimensional mesh and its vertex ordering are
shown in (a), the structure o f the associated matrix is in (b), and a table o f pertinent data is in (c).

We now provide a simple example to illustrate these characteristics we have defined. Figure 3(a)

shows a small two-dimensional grid and Figure 3(b) shows the structure o f its associated matrix .4. Fig

ure 3(c) is a table showing the row-widths and wavefronts o f the matrix .4. From this table, we can

compute the parameters esize(.4) = 46. bvv(.4) = 4. maxwf(.4) = 5. and m swf(.4) as 16.4.

All o f these parameters are sensitive to the nonzero structure and the ordering o f the matrix. If we

numbered the vertices in Figure 3 in a spiral fashion beginning with vertex one and numbering from the

outside towards the inside, the permuted matrix .4' yields esize(.4;) = 59. bw (.4') = 11. m axwf(.4 ') =

7, and m swf(.4') a= 24.8.

We further illustrate the influence o f ordering on envelope and wavefront for a real problem, and using

four real-world orderings. Figure 4. illustrates just how different these orderings are. For the RCM. Sloan,

spectral, and hybrid (spectral with a modified Sloan refinement) orderings we show the nonzero structure

o f a matrix, plot the row widths and wavefront sizes, and tabulate some relevant data. Note that the area

under the wavefront curve is actually larger than the area under the row width curve. However, the row

width varies so wildly, it appears as if we had colored in the area underneath it when, in fact, we only

plotted the top o f it, like we did the wavefront. The wavefront, by comparison, is much less volatile.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

RCM
bw = 2.826

|env | = 2.66 x 107
m axw f = 1,734

m sw f = 1.07 x 10®
cpu time = 3.7 secs

Sloan
bw = 8,280

|env| = 1.60 x 107
m axw f = 1.092

m swf = 3.95 x 105
cpu time = 6.3 secs

|

iII

i

t

!ti
1lIA

(a) (c)
3000

300

2000

1000

2$
• 10*

(b) (d)

Continued on next page . . .

FtC. 4. Structure o f b c ssC k 3 0 with four orderings, (a) is the nonzero structure using the RCM
ordering, (b) is a plot o f the row widths and wavefront sizes fo r the RCM ordering, (c) is the nonzero
structure fo r the Sloan ordering, (d) is the plot o f the row widths and wavefront sizes fo r the Sloan
ordering.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

. . . Continued from previous page.

Spectral
bw = 5,398

|env| = 8.78 x 10“
m axw f = 659

m swf = 1.07 x 105
cpu time = 11.8

Spectral with Sloan Refinement
bw = 6 ,443

|env| = 6.65 x 10®
m axw f = 381

mswf = 5.35 x I O'1
cpu time = 14.8

• to*

 !

i

I

(e) (g)

■ to*

(0 (h)

FIGURE 4 (Continued): (e) is the nonzero structure using the spectral ordering. (0 is a plot o f the row
widths and wavefront sizes for the spectral ordering, (g) is the nonzero structure for the Spectral ordering
after Sloan refinement, (h) is the plot o f the row widths and wavefront sizes for the spectral ordering after
Sloan refinement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8

3.2.2 Model Problems

It is interesting to note that all o f these envelope and wavefront characteristics can be computed for a wide

range o f model problems and orderings. Here we compute them for three types o f rectangular grids, each

with two different orderings. For the purposes of this discussion, we assume an m x n grid with m < n

without loss o f generality. The grid shown in Figure 3(a) is an example o f a grid using a five point stencil

— meaning, that each node depends on itself and its four neighbors (north, south, east and west). A seven

point stencil includes either northeast and southwest or northwest and southeast neighbors, and a nine

point stencil contains all the above.

In this analysis we consider two orderings; vertical and diagonal. In describing both orderings it is

necessary to visualize the grid oriented horizontally. In a vertical ordering, the vertices are numbered by

columns; top to bottom, left to right. A diagonal ordering is the optimal ordering for square, five point

grids. In our case, the diagonal ordering always starts from the node on the top left (northwest) corner

o f the grid, and numbers them immediately below and to the right. This pattern is repeated, numbering

vertices along diagonals running from the bottom left up and to the right. For some rectangular grids, the

detail about direction along the diagonal makes some difference.

To compute all o f these parameters, we need to compute the sum o f the wavefront (J2 |w f,(.4)|)

and sum o f wavefront squared (£ |w f,(.4)|-). For all of these problems, we break up the mesh into

different parts and analyze them individually. Then, we sum the parts back together at the end. We use

the following well-known identities in our analysts.

n n(n + I)
2 (3.3)

i=i
n n(n + l) (2n -I- 1)

6
(3.4)

n

4
(3 S)

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

I

II III

FlG. 5. Domains o f a Vertical Ordering on rectangular 5-point grid.

3.2.2.a Vertical Ordering on 5-point Mesh

We begin with the simplest mesh, and the simplest ordering. Figure 5 shows how we break up the mesh

into different domains. Domain (I) consists o f the first m — 1 vertices, the first vertex has a wavefront o f 3

(two adjacent vertices, plus itself). Each subsequent vertex adds two new vertices to the wavefront, while

removing the previously numbered node. This continues for the first m - I vertices. The m th vertex does

not change the size o f the wavefront, which is m + 1. Domain (II) consists o f the m th vertex, and the

following m (n - 2) vertices. Throughout this domain, the size o f the wavefront is uniformly m + I. The

final m vertices in domain (III), are all in the wavefront when the last vertex o f domain (II) is numbered.

Numbering each vertex in this domain effectively reduces the wavefront by I.

Therefore, we can write the size o f the wavefront for this problem explicitly as

where i?5u stands fora matrix based on a rectangular mesh with a 5-point stencil ordered vertically. These

equations can be easily checked with the square 5-point mesh shown in Figure 3. Using Equation 3.6, we

i + 2 t < m

(3.6)

m n - i + I m(n — !) < / < mn

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

II III

FIG. 6 . Domains o f a Diagonal Ordering on rectangular 5-point grid.

can compute the sum o f the wavefront sizes and the sum o f the wavefront squared.

£ |w f . (R s ,) | =

and

m — i

5 > ,+2>
L«=i

m

m(n —11 rnn

+ 5 3 (m + 1) + y (m n - i + I)
i=rn t = r n (n - 11 +■ 1

7 ! i - rn + 2(m — 1)
Li=i

r m

+ (rn + l) (m n - 2m + I) + E'
.1=1 .

= n(m J + m) - n r + m — 1,

rm -l
^ i w f , (f l 5„)f- = j ; (« + 2)a

. 1 = 1

m(n— I) m n

+ 53 + 1)" + y (rnn - i + 1)*
» = r r* i = r r i (n — I) + l

_ p m - ~ ■) + 4 s < ? - 1) + <(in _ I)

+ (m + l)~(m n - 2m 4- 1)
m

+ E ?
>1=1

1 2 + I m

3.2 J .b Diagonal Ordering on 5-poini Mesh

We are now ready to apply the same technique for a diagonal ordering. In Figure 6. we show a 4 x 9 mesh,

since drawing one that it arbitrarily sized is difficult with a diagonal ordering. We also show in Figure 6

how the separation into domains is different. In this case, domain (I) consists o f the first m (m — l) / 2

vertices, the first vertex has a wavefront o f 3, the next two have a wavefront o f 4 . the next three, S, and

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

so on for the rest of the domain. Like before, domain (II) has a wavefront that is uniformly rn + 1, but

it is smaller, containing only m (n - rn) vertices. The final rn(m + l) /2 vertices in domain (III) have

an unusual pattern o f wavefronts that requires some investigation. The first m — 1 vertices o f this last

domain have a wavefront o f m 4- 1. the next m — I have a wavefront o f m . then m — 2 vertices, each with

a wavefront o f rn - I and so on. The last two vertices have wavefronts o f 2 and 1. respectively.

While it is not so hard to describe the wavefronts o f each vertex using the diagonal ordering. It is

difficult to provide a closed-form equation like we did for the vertical ordering o f a 5-point grid. Luckily,

we are interested in the sum o f the wavefronts and the sum of the squares, which can be written in a

simple form. For the domain (I), we can show that the sum o f the m (m - l) /2 wavefronts is

Similarly, we can show that the sum o f the rn(m + 1) /2 wavefronts for domain (III) is equal to

m— I
£ |v r f .(* «) | = 2 > - + 2).
*=l i=l

r tm

t = n m — rut m + 1 > / ' i+ 1 » = l

Thus, the sum o f the wavefronts is

+• (rn - l)(m + I) + ^ i(i + 1) + I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

II IV

FlC. 7. Domains o f a Vertical Ordering on rectangular 9-point grid.

and the sum o f the wavefront squared is

m — I
J > i + 2)s

L 1 = 1

+

m (n - m)(m + I) '

m — 1

(rn - 1)(m + I)J + ^ *(* + I)" + 1
•=i

m — I m — I rn — I

= nrn(rn + I)*’ + 2 ^ i3 + 6 ^ i ' + 5 ^ i + (rn + + m - L) + 1
1=1 1=0 1=1

rn
- nrnfrn + l) ‘ - — (rn + 5) .

3.2.2.C Vertical Ordering on 9-point Mesh

Next we present the computations for a vertical ordering on a rectangular grid using a 9 point mesh. The

construction is much the same as for a 3 point mesh. For domain (I) the first vertex starts with a wavefront

o f four and each subsequent vertex up to the m - 1st adds an additional 2 vertices, and subtracts the

previous vertex for a net increase o f 1 from the previous wavefront size. The m th vertex, and every

whole multiple up to n - 1. belongs to domain (II); each o f which having a wavefront o f m + 1. The

vertices in domain (III) each have a wavefront o f m + 2. Domain (IV) is exactly like domain (III) o f the

vertically ordered 5-point mesh. Every vertex starts o ff in the wavefront and as they are numbered all

their predecessors are removed. Like the vertical ordering o f a 5 point grid, we can easily write an explicit

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

equation for the size o f the wavefronts for a vertically ordered 9 point grid.

i + 3 < < rn

m + I m < i < rn[n - 1), i m od m = 0

m + 2 rn < i < m (n - 1), t m od m 0

mn - i + I m{n - 1) < i < rnn

Using Equation 3.7, we can compute the sum o f the wavefront sizes and the sum o f the squares,

£ |w f ,(* at,)| :

£ (m n - i + I)
l)+l

'r n - 1

y i + 3(m - 1)

(3.7)

Vn— 1 ’n - i (m - I) (n - I)

£ (i + 3) + £ (m + I) + £ (m + 2)
. <=t . 1 = 1 i = m

L >=i

+
Li=t

rn(m - L)

(m + l)(n - 1) (m + 2)(m - l) (n - 2)

+ 3(m - 1) + [rn + L)(n - I) (m + 2)(m - l) (n - 2)

rn(m 4- I)

= n^rn* + 2m — I) — m 1 — rn.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l v

FIG. 8. Domains o f a Diagonal Ordering on rectangular 9-point grid.

and

' rn — I

£ > ' + 3)2
1 = 1

Vi—I

Y (m + l >"-
Li=l

(m - l l (n - l) mn

+ Y (m + 2)2 + Y <"m - 1 + u 2
i=m _i = m(n - L)+ i

"m — I m — 1 r •

Y , *’ + ® ~ t)
1=1 1=1

(m + L)-(n - I)

r I m
(m + 2)2(m — l)(n - 2) +

W
s*

"2m3 — 3m 2 4- rn , c m (m - 1) , n/
 7.------------ + 6 ------ + 9 (m - I) (rn + l) - (n - I)

(m + 2)"(m - l) (n - 2)
2m 3 + 3 m~ + m

= n (m 3 + 4m 2 + 2m — 3) - ^ (4 m 3 + 12m2 — 13m + 6).

3.2.2.d Diagonal Ordering on 9-point Mesh

Finally, we present a diagonal ordering on a 9-point stencil. Figure 8 shows a 4 x 9 rectangular grid with

a 9-point stencil. It is slightly deformed to put additional space between vertices o f different domains.

This time, we identify six different domains. Furthermore, all vertices in one domain are not exhausted

before beginning the second. We start with domains (I) and (II). The first vertex has a wavefront o f four

vertices. Each tim e we jum p from domain (I) to domain (II). the size o f the wavefront increases by one.

Similarly, each time we jum p from domain (II) domain (I) the wavefront increases by one. Therefore all

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

the wavefront sizes in (I) are even numbers and all the wavefront sizes in domain (II) are odd. The sum

o f the wavefronts for domain (I) is simply + 2). The sum o f the wavefronts for domain (II) is

£1= 7 2 *(2* + 3). All (m - n)(m - 1) vertices in domain (III) have a wavefront o f 2m - I vertices and all

n - rn vertices in domain (IV) have a wavefront o f 2m vertices. Domains (V) and (VI) interplay similarly

as (I) and (II) did, only in this case every time the ordering switches domains, the wavefront reduces by

one. The sum o f the wavefronts for domain (V) is £ ,™ 7l *(2i + 1). The sum of the wavefronts for domain

(VI) is I + 2i.

Putting this all together we get

m - l

£ (2i + 2)
i=i

{n — m)(2m)

rn — l

+
i=l

m— I m —t

(m - l)(n - m)(2m - I)

m — I

l + £ 2i
1=1

Y *'(2 *' + 3)
L *=l

'm—l

Y *(2* + i)
t = l
- I

= 4 Y *' + 8 E *' + £ 2 - (m - l)[2(m - L) - 3]
1=1 <=i i=i

+ (rt - m)[(m - l)(2m - 1) + 2m] + I

= ri(rn~ - rn + I) - ̂ m 1 + rn' - ^m .

and

m - l

£ (2i + 2)2
1 = 1 J L i = i

(rn — l)(rt - m)(2m — I)2 -t- (n - m)(2m)~

Y , «(2* + 3)2
L t =i

+
m— I

1 + Y ‘(2i + I) '
1 = 1

m —1 m - 1

m - l

l + £ >) 2
1=1

. . . _ . . . , n — I

= 8 Y *3 + 24IC ‘2 + l8Y, i+4(fri ■ ~ (m ■ - l) + 3 i2
i= i i=i •=!

+ (n — m)[(m - l) (2m - l)2 + m 2] +- 1

= ri(4m 3 — 4m 2 + 5m — 1) — 2m 4 + 4m 3 — 6m 2 + 3m — 2.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

3.2J.e Summary

Using Observation 3.1 to relate envelope size to the sum of wavefronts. Equation 3.2 which defines the

mean square wavefront, and all the results for our model problems, we can define the esize() and mswf()

for all of our model problems.

esize(fl5„) = n(rn2) - rn2 + m - I

rnsw f(ft5t,) = > , i l / 4 >rrr -f 2m + 1 ----- (- rrr + m -
n 3

7 3 »
3 + m }

eshe(Rna) = / ■* \ 1 j 1 •> i
«("» ') - ~ 7 rn 3 2 6

tn sw f(/iSd) =
1 i

m* + 2m + I — — (m + 5)
2n

esize(fl9„) = n(m 2 + m - I) - m 2

m swf(/?9v) = , , , , 3 1 4 . , , 13 2
rrr + 4 m + 2 ------------- (- r + 4 m — — + —)

rn n 3 3 m

esi/.e(fl9</) = n(2m2 - 2m 4- 1) - ^ m :! + rrr
4
3 m

m sw f(/?9rf)
1 1 ,

4m ‘ - 4m + 5 ------------- (2m - - 4m* + 6m — 3 + —)
m n rn

The behavior o f the seven point stencil is, either like the five point or the nine point depending on the

relationship between the ordering and the extra pair o f neighbors. For example in a vertical ordering (i.e.,

from top to bottom, left to right), if the stencil connects Northeast and Southwest neighbors, the seven

point stencil behaves exactly like the five point grid. Similarly, if the diagonal ordering orders along

the direction o f the diagonal edges, it behaves tike a five point grid. However, if the diagonal edges are

oriented the other way, then the results are the same as a nine point stencil.

The most striking result is that the diagonal ordering is worse than the vertical ordering for 9 point

stencils. Criticism about spectral orderings’ tendency to order rectangular grids with a nine point stencil

along short columns instead o f along the diagonal was an instigating factor into this investigation. We

found the results to be most enlightening.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

3.2.3 History

There is an interesting history o f work done in the envelope/wavefront reducing orderings. Much o f

the work was inspired by frontal solvers which depended critically on the wavefront being minimized.

Early algorithms to reduce the envelope include the King [51], Gibbs-Poole-Stockmeyer [381. and Gibbs-

King [37] algorithms. Currently, the best two heuristics for the envelope/wavefront reduction problem are

a combinatorial algorithm by Sloan [76| and an algebraic algorithm called the spectral ordering [9|. We

present a brief history o f each o f these algorithms in preparation for describing our contributions to the

envelope/wavefront reduction problem.

3.2.3.a King, Gibbs-Poole-Stockmeyer, and Gibbs-King

King [511 wrote one of the earliest algorithms for envelope reduction. His work was an essentially greedy

implementation to minimize the wavefront. K ing's algorithm breaks ties by choosing the vertex that was

active for the longest period o f time (equivalently, the active node with the lowest numbered neighbor).

King was also the first to discuss the importance o f what Sloan calls preactive nodes. King's algorithm

did not have a method for selecting a starting node. Instead he suggests that the user choose several and

keep the ordering with the best characteristics.

Gibbs. Poole, and Stockmeyer [381 tried to simultaneously minimize the bandwidth and the envelope

o f a sparse matrix. To accomplish this, they concentrated primarily on the pseudo-diameter algorithm.

Specifically, they perform some post-processing on the level sets generated at both ends o f the pseudo

diameter to generate a third level set (possibly with multiple vertices in level set L0) with a reduced max

level set. and therefore resulting in a smaller bandwidth. There is an interesting survey article by Gibbs.

Poole, and Stockmeyer [39] including many other envelope reducing ordering algorithms o f the time.

The Gibbs-King [371 algorithm is a combination o f the Gibbs-Poole-Stockmeyer level structure tech

nique combined with numbering vertices on each level according to the King criterion. It is generally

regarded to produce the the best quality ordering o f the three algorithms, though it is the slowest [55].

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

3 J 3 .b Sloan Ordering

Sloan [76| originally introduced his envelope/wavefront reducing ordering algorithm for undirected and

unweighted graphs. The idea o f Sloan's algorithm is to number vertices from one endpoint o f an approx

imate diameter in the graph, choosing the next vertex to number from among the neighbors o f currently

numbered vertices and their neighbors. A vertex o f maximum priority is chosen from this eligible subset

o f vertices; the priority o f a vertex has a '“local” term that attempts to reduce the incremental increase in

the wavefront, and a “global” term that reflects its distance from a second endpoint o f the approximate

diameter.

Duff. Reid, and Scott [26j have extended this algorithm to weighted graphs obtained from finite

element meshes, and have used these orderings for frontal factorization methods. The weighted imple

mentation is faster for finite element meshes when several vertices have common adjacency relationships.

They have also described variants o f the Sloan algorithm that work directly with the elements (rather than

the nodes o f the elements). The Sloan algorithm is a remarkable advance over previously available algo

rithms such as RCM [17], Gibbs-Poole-Stockmeyer [38.55), and Gibbs-King [37,511 algorithms since it

computes smaller envelope and wavefront sizes.

3 J J .c Spectral Ordering

Unlike the rest o f the algorithms that are combinatorial in nature, the spectral algorithm is algebraic, and

hence its good envelope-reduction properties are intriguing. Barnard, Pothen, and Simon [9| described

this spectral algorithm that associates a Laplacian matrix with the given symmetric matrix, computes an

eigenvector corresponding to the smallest positive Laplacian eigenvalue. This eigenvector is also called

the Fiedler vector in recognition o f the pioneering work o f Miroslav Fiedler on the spectral properties o f

the Laplacian [2 8 .29 |. The final permutation is obtained by sorting the components o f the Fiedler vector

in monotonically increasing or decreasing order.

The spectral algorithm has been examined for a wide range o f applications. Juvan and M ohar [48.491

have considered spectral methods for minimizing the p-sum problem (for p > 1), and Paulino et al. [66,

67] have applied spectral orderings to minimize envelope sizes. Additionally, spectral methods have been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

applied successfully in areas such as graph partitioning [45 ,68 ,69 [, the seriation problem [6 |, and DNA

sequencing [41).

George and Pothen [36| analyzed the algorithm theoretically, by considering a related problem called

the 2-sum problem. They showed that minimizing the 2-sum over all permutations is equivalent to a

quadratic assignment problem, in which the trace o f a product of matrices is minimized over the set o f

permutation matrices. This problem is NP-complete: however, lower bounds for the 2-sum could be

obtained by minimizing over the set o f orthogonal and doubly stochastic matrices. (Permutation matrices

satisfy the additional property that their elements are nonnegative; this property is relaxed to obtain a

lower bound.) This technique gave tight lower bounds for the 2-sum for many finite-element problems,

showing that the 2-sums from the spectral ordering were nearly optimal (within a few percent typically).

They also showed that the permutation matrix closest to the orthogonal matrix attaining the lower bound is

obtained (to first order) by permuting the second Laplacian eigenvector in monotonic order. This justifies

the spectral algorithm for minimizing the 2-sum. These authors also showed that a family of graphs with

small (n >) separators has small mean square wavefront (at most 0 (n t+'M). where n is the number o f

vertices in the graph, and the exponent 7 > 1/2 determines the separator size.

While we were working on the envelope/wavefront reduction problem by improving Sloan's algo

rithm. there was independent work by Boman and Hendrickson [13| on the same problem, but using

multi-level heuristics. While their work was an improvement over the original Sloan algorithm, it was not

as successful as our improved algorithm.

3.2.4 Contribution

For the most part, we follow Sloan [76), and Duff, Reid and Scott [26) in our work on the Sloan algorithm.

Our new contributions are the following:

• We show that the use o f a heap instead o f an array to maintain the priorities o f vertices leads to a

lower time complexity, and an implementation that is about four times faster on our test problems.

Sloan had implemented both versions, preferring the array over the heap for the smaller problems

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

he worked with, and had reported results only for the former. Duff, Reid, and Scott had followed

Sloan in this choice.

• Our implementation of the Sloan algorithm for vertex-weighted graphs mimics what the algorithm

would do on the corresponding unweighted graph, unlike the Duff, Reid, and Scott implementation.

Hence we define the key parameters in the algorithm differently, and this results in no degradation

in quality when ordering compressed graphs.

• We examine the weights o f the two terms in the priority function to show that our test problems

fall into two classes with different asymptotic behaviors o f their envelope parameters; by choosing

different weights for these two classes, we reduce the wavefront sizes obtained from the Sloan

algorithm, on the average, to 60% o f the original Sloan algorithm on a set of eighteen test problems.

• Together, the enhancements above enable the Sloan algorithm to compute small envelope and wave-

front sizes fast—the time it needs is in general between two to five times that of the much simpler

RCM algorithm.

• The analysis o f the spectral algorithm suggests that while spectral orderings may also reduce re

lated quantities such as the envelope size and the work in an envelope factorization, they might

be improved further by post-processing with a combinatorial reordering algorithm. We intro

duce a variant o f the Sloan algorithm as a post-processing step; creating a spectral/sioan or al

gebraic/combinatoric hybrid algorithm.

3.2.5 Fast Sloan Ordering

In this section we consider a weighted graph on a set o f multi-vertices and edges, with integer weights

on the multi-vertices. We think o f the weighted graph as being derived from an unweighted graph, and

the weight o f a multi-vertex as the number o f vertices o f the unweighted graph that it represents. The

weighted graphs in our applications are obtained from finite element meshes, where neighboring vertices

with the same adjacency structures are “condensed’' together to form multi-vertices. The weighted graph

could potentially have fewer vertices and many fewer edges than the original unweighted graph in many

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

finite element problems. Duff, Reid, and Scott [261 call the weighted graph the supervariable connectivity

graph. Ashcraft [3| refers to it as the compressed graph, and has used it to speed up the minimum-degree

algorithm, and Wang [79] used it for an efficient nested dissection algorithm.

Sloan’s algorithm [761 is a graph traversal algorithm that has two parts. The first part is the pseudo

diameter algorithm (see Section 3.1) that selects a start vertex a and an end vertex e. The second part

then numbers the vertices, beginning from s. and chooses the next vertex to number from a set o f eligible

vertices by means o f a priority function. Roughly, the priority o f a vertex has a dynamic and static

component: the dynamic component favors a vertex that increases the current wavefront the least, while

the static part favors vertices at the greatest distance from the end vertex e. The computation-intensive part

of the algorithm is maintaining the priorities o f the eligible vertices correctly as vertices are numbered.

As each vertex is numbered all unnumbered neighbors are updated.

3.2.5.a Eligible Vertices

At each step o f the algorithm, vertices are in one o f four mutually exclusive states. Any vertex that has

already been numbered in the algorithm is a numbered vertex. Active vertices are unnumbered vertices

that are adjacent to some numbered vertex. Vertices that are adjacent to active vertices but are neither

active nor numbered are called preactive vertices. All other vertices are inactive. Initially all vertices

are inactive, except for s . which is preactive. Figure 9 shows a small mesh being numbered by the sloan

algorithm. Note the four different states.

At any step k, the sum o f the sizes o f the active verticesis exactly the size o f the wavefront at that step

for the reordered matrix, w f*(P.4PT). where P is the current permutation. Active and preactive vertices

comprise the set o f vertices eligible to be numbered in future steps.

An eligible vertex with the maximum priority is chosen to be numbered next. The priority function

of a vertex i has two components: the increase in the wavefront size if the vertex was numbered next.

incr(i), and the distance from the end vertex. d is t(t , e).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

A lg o rith m 2 (The Sloan algorithm for a vertex-weighted graph.)

I Permutation result | = SloanOrder(const Graph * G.
const Graph::vcrtex s. const Graph::vertex e.
const int w I. const int w2)

{
/ / Initialization

1. int n =G —►sizeO -.//number o f vertices
2. int normfact = [_ dist(s.e) / max,.ec deg(e)J : //normalization factor
3. int priority [n | ; //priority o f each vertex in G
4. statusType status[n | ; //status of each vertex in G

/ / statusf i I is one o f ’inactive’, ’preactive’, ’active'or ’numbered'
5. for i = I to n {
6. status[i | = inactive ;
7. priority! i | = -w 1 * normfact * deg(i) + w2 * dist(i. e);

}
8. status! s | = preactive:

// Main Loop
9. for k = I to n {

10. i = //vertex such that 'priorityfil' is maxofall active or preactive vertices
11. for each j e adj(i) {
12. if ((status! > I = preactive) and

(status! j | = inactive or preactive)) {
/ / y becomes active, T is numbered

13. priority! j | += (G-»vwgt(i) + G—►vwgKj)) * normfact * w I ;
14. status! j | = active:
15. farjieighbors(G. j);
16. } else if ((status! i | = preactive) and (status! j I — active)»{

/ / moves from preactive to numbered
17. priority! j I +=G—►vwgtt i) * normfact * wi:
18. } else if ((status! i | = active) and (status! j I — preactive)> {

/ / ’j ’ moves from preactive to active
19. priority! j | += G-fvwgt(j) * normfact * w I :
20. status! j | = active :
21. far_neighbors(G . j):

} //end if elseif...
} //end for each...

22. result.new2old[k I = i;
23. resu!t.old2new[i [= k;
24. status! > I = numbered ;

} //end fork= I ton ...
} //end SloanOrder

void far_neighbors(Graph* G. Graph:: vertex j)
{

/ / y is newly active, update any interested neighbors
25. for each l e a d j (j) {
26. if (status! I j = inactive) {

status! 1 1 = preactive;
}

27. priority! 1 1 += G->vwgt(j) * normfact * w I ;
} //end for each ...

} //end farjteighbors

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

Preactive

Inactive

FlC. 9. The Sloan algorithm in progress.

3.2.5.b The Priority Function

Our implementation o f the weighted Sloan algorithm on the weighted graph mimics what the original

Sloan algorithm svould do on an unweighted graph, and thus we define the degrees o f the vertices and

incr(i) differently from Duff, Reid, and Scott [26]

We denote by size(i) the integer weight o f a multi-vertex i. The degree o f the multi-vertex i.d eg (i) . is

the sum o f the sizes of its neighboring multi-vertices. Let the current degree o f a vertex i. cdeg(i). denote

the sum o f the sizes o f the neighbors o f i among preactive o r inactive vertices. It can be computed by

subtracting from the degree o f i the sum of the sizes o f its neighbors that are numbered or active. When

an eligible vertex is assigned the next available number, its preactive or inactive neighbors move into the

wavefront. Thus

The size(t) term for a preactive vertex i accounts for the inclusion o f i into the wavefront. (Recall that

the definition o f the wavefront includes the diagonal element.) Initially, incr(i) is deg(i) + size(i) since

nothing is in the wavefront yet.

incr(i) = <
cdeg(t) -f- size(t), if i is preactive

cdeg(i), if i is active

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

The second component o f the priority function. d ist(i, e), measures the distance o f a vertex i from the

end vertex e. This component encourages the numbering o f vertices that are very far from e even at the

expense o f a larger wavefront at the current step. This component is easily computed for all i by a breadth

first search rooted at e. We show cdeg() incr() and d ist() for all eligible vertices in Figure 9.

Denote by P[i) the priority o f an eligible vertex i during a step o f the algorithm. The priority function

used by Sloan, and Duff, Reid and Scott is a linear combination o f two components

P{i) = - H 'i * incr(i) + H'-j * d is t(i.e) .

where 44't and 14% are positive integer weights. At each step, the algorithm numbers next an eligible

vertex i that maximizes this priority function.

The value o f incr(i) ranges from 0 to (A + I) (where A is the maximum degree o f the unweighted

graph G). while d is t(i.e) ranges from 0 to the diameter o f the graph G. We felt it desirable for the two

terms in the priority function to have the same range so that we could work with normalized weights H'i

and 14%. Hence we use the priority function

P(i) = - H ’i * L (dist(« .e)/A)J * incr(i) + 14% * d is t(i ,e) .

If the pseudo-diameter is less than the maximum degree, we set their ratio to one. We discuss the choice

o f the weights later in this section.

3.2A.C The Algorithm

We present in Algorithm 2 our version o f the weighted Sloan algorithm. This modified Sloan algorithm

requires fewer accesses into the data structures representing the graph (or matrix) than the original Sloan

algorithm [76]. The priority updating in the algorithm ensures that incr(j') is correctly maintained as ver

tices become active or preactive. When a vertex i is numbered, its neighbors and possibly their neighbors

need to be examined. Vertex i must be active o r preactive, since it is eligible to be numbered. We illus

trate the updating o f the priorities for only the first case in the algorithm, since the others can be obtained

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

2.5

 esize
bandwidth

— max wavefront
- - mean sqr. wavefront

tn

0.5

diameter/maxdeg = 1t

FlG. 10. Envelope parameters o f b a r t h 5 as a function o f the weights H’i and

similarly. Consider the case when i is preactive and j is inactive or preactive. The multi-vertex i moves

from being preactive to numbered, and hence moves out o f the wavefront, decreasing in cr(j) by size(i),

and thereby increases P(j) by * |_(dist(.s,e)/A) j * size(t). Further, since j becomes active and is

now included in the wavefront, it does not contribute in the future to incr(y). and hence P[j) increases

by IF, * [(d is t(s ,e)/A)J *size(j).

3.2.5.d The Choice of Weights

Sloan [76|. and Duff, Reid and Scott [261 recommend the unnormalized weights W,’l = 2, = I. We

studied the influence of the normalized weights tb'i and W> on the envelope parameters, and found, to

our initial surprise, that the problems we tested fell into two classes.

The first class is exemplified by the b a r t h 5 problem, whose envelope parameters are plotted for

various choice o f weights in Figure 10. The value o f each envelope parameter is scaled with respect to the

value obtained with the unnormalized weights = 1 and W2 = 2 in the Sloan algorithm. Thus this and

the next Figures reveal the improvements obtained by normalizing the weights in the Sloan algorithm.

The envelope parameters are plotted at successive points on the x-axis corresponding to changing the

weight Wi o r W2 by a factor o f two. The ratio o f the pseudo-diameter to maximum degree is 10 for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

20
- t30

18

14

§
2

10

FlG. Ll. Envelope parameters o f £ in a n c e 5 1 2 as a function o f the weights H’t and U V

this problem, and here large values of W'i lead to the smallest envelope size and wavefront sizes. The

normalized weights IT'i = 2 and IT'> = 1 suffice to obtain these values; note the asymptotic behavior o f

the envelope parameters. The bandwidth has a contrarian behavior to the rest o f the parameters, and thus

high values o f lead to small bandwidths for these problems.

The second class is exemplified by the f i n a n c e 5 1 2 problem, whose envelope parameters are plot

ted for various choice o f weights in Figure 11. Again, the value o f each parameter is scaled by the value

obtained by the Sloan algorithm with unnormalized weights H’t = 2. W* = 1. The ratio o f the pseudo-

diameter to maximum degree is 1. Here high values o f lead to small envelope parameters. Note that

the bandwidth follows the same trend as the rest o f the envelope parameters, unlike the first class.

A user needs to experiment with the weights to obtain a near-optimal value o f an envelope parameter

for a new problem, since one does not know a priori which o f the two classes it belongs to. Fortunately,

small integer weights suffice to get good results in our experiments, and hence a set o f good weights can

be selected automatically by computing the envelope parameters with a few different weights.

The results tabulated in Section S .l show that it is possible to reduce the mean square wavefront by

choosing one normalized set o f weights for each problem in Class 1, and another for each problem in

Class 2, rather than the unnormalized weights (W \ = 2, Wo = 1) used by Sloan, and Duff, Reid and

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

Scott. The weights we have used are H’i = 8. W'% = 1 for Class I problems, and W'i = 1, U '2 = 2 for

problems in Class 2. An automatic procedure could compute the envelope parameters for a few sets of

weights, and then choose the ordering with the smaller values.

There are two limiting cases o f the Sloan algorithm.

When Wj = 0, W2 # 0, then the distance from the end vertex e determines the ordering, and the

Sloan algorithm behaves similarly to the Gibbs-Poole-Stockmeyer algorithm [381. The primary difference

between the two is that Sloan 's algorithm does not use the post-processing to improve the width o f the

level sets. Preactive nodes will never be numbered directly in this case. This is different from the case

when H'i is nonzero and W> is much larger than W j. Here, the first term still plays a role in reducing

the envelope parameters. This case is similar in character to the Gibbs-King algorithm, excepting again

for the differences in level sets. The values o f envelope parameters obtained when the ratio H'a/W ’i is

216 are significantly smaller than the values obtained when IVi = 0 and \V2 # 0 . Only neighbors and

second-order neighbors o f the numbered vertices are eligible to numbered at any step, and among these

vertices the first term serves to reduce the local increase in the wavefront when is nonzero.

The second limiting case, when = 0. ^ 0. corresponds to a greedy algorithm in which

vertices are always numbered to reduce the local increase in wavefront. This greedy algorithm does

particularly poorly on Class 2 problems. This case is conceptually similar to King's algorithm for reducing

wavefront [511.

The two classes o f problems differ in the importance o f the first, “ local", term that controls the in

cremental increase in the wavefront relative to the second, “global” , term that emphasizes the numbering

o f vertices far from the end-vertex. When the first term is more important in determining the envelope

parameters, the problem belongs to Class 1, and when the second term is more important, it belongs to

Class 2. We have observed that the first class o f problems represent simpler meshes: e.g., discretization o f

the space surrounding a body, such as an airfoil in the case o f b a r t h 5 . The problems in the second class

arise from finite element meshes o f complex three-dimensional geometrical objects, such as automobile

frames. The f i n a n c e 5 1 2 problem is a linear program consisting o f several subgraphs joined together

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

by a binary tree interconnection. In these problems, it is important to explore several "directions” in the

graph simultaneously to obtain small envelope parameters.

The bandwidth is smaller when larger weights are given to the second term, for both classes o f prob

lems. This is to be expected, since to reduce the bandwidth, we need to decrease, over all edges, the

maximum deviation between the numbers o f the endpoints of an edge.

The first term in the priority function emphasizes vertices with fewer neighbors—a greedy strategy to

reduce total wavefront by picking the minimum available at each step. The second term emphasizes the

need to number vertices farther away from the end vertex, injecting some measure of global information

into the method. Sometimes taking a hit early on (by numbering a vertex with many neighbors, hence

increasing the wavefront size significantly) may benefit in the long run.

Refering again to Figure 9. if both weights W\ and U-> are set to one. then the two highest priority

vertices at this step are "a” and " c '\ Whichever is numbered, the other vertex and "b” will have the highest

priority at the beginning of the next step.

3.2.5.e Effect of Preactive Nodes

The execution time o f the Sloan algorithm is dominated by the size o f the priority queue it must maintain

for ail active and preactive vertices. At first glance, it would seem that the distinction between preactive

and inactive serves only to properly handle the start vertex and initialize the main loop.

While it is true that for many cases a preactive vertex is never numbered — with the mandatory

exception o f the start vertex, it is also true that for many problems preactive nodes are chosen frequently

enough to make their exclusion detrimental to the algorithm. We use a simple example to illustrate why

this is so.

Consider a star-shaped graph with n vertices, where n — I vertices (called points) have but a single

edge to the n th vertex (called the hub). In this case, the length o f the diameter is two, with any two points

sufficing as the start and end vertices.

The Sloan algorithm will naturally number the start vertex, and the wavefront will include the start

vertex and the hub. The algorithm then numbers all the other points, and each one having a wavefront

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

o f that point and the hub. When ail has been numbered except the hub and the end vertex, they can be

numbered in any order without affecting the wavefront.

Consider now a modified Sloan algorithm where nodes are not considered for numbering until they

are active. This hypothetical algorithm would number the start vertex, with the start vertex and the hub in

the wavefront. Then, since the only active vertex is the hub. this hypothetical algorithm would be forced

to number it next. The wavefront at this stage would be n — I . from the newly numbered hub and the

remaining n - 2 points in the star. For each step thereafter, the size o f the wavefront would reduce by one.

Given this illustration, it is clear to see the function that preactive nodes can play. It allows the

algorithm to avoid vertices o f high degree until a large enough number of its low degree neighbors have

been numbered. In the case o f a n - 1 point star, omiting preactive nodes would increase the maximum

wavefront from two to n - 1.

3.2.5.f The Accelerated Implementation

In the Sloan algorithm, the vertices eligible for numbering are kept in a priority queue. Sloan [76| im

plemented the priority queue both as an unordered list in an array and as a binary heap, and found that

the array implementation was faster for his test problems (all with less than 3 .000 vertices). Hence he

reported results from the array implementation only. Duff. Reid, and Scott [26| have followed Sloan in

using the array implementation for the priority queue in the Harwell library routine MC40.

This is an unfortunate accident because the heap implementation is provably better. In [521 we proved

that the heap implementation runs in 0 (ti logrt) time, while the array implementation requires 0 (n l 5)

time for two-dimensional problems, and 0 (n 5/3) time for three-dimensional problems. In practice, we

found even the smallest problems ran faster with a heap.

This difference in running time requirements is experimentally observed as well. In Figure 12 we

compare the times taken by the array and heap implementations o f the Sloan algorithm relative to our

implementation o f the RCM algorithm. The RCM algorithm uses a fast pseudo-diameter algorithm de

scribed by Duff, Reid, and Scott [26]. In a response to our research, Reid and Scott [72] abandoned MC40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

Relative CPU Time wrt RCM
4 5 -t

40-

RCM Norm
35- PseudoDiam

Sloan

30- Fast Sloan

25-

2 0 -

15-

1 0 -

X ' S s * ' ̂

FlC. 12. Relative timing performance o f RCM, ArraySloan, and HeapSloan algorithms.

and implemented MC60 and MC61 according to most o f our research. Nevertheless, they assert that the

array implementation is faster for small problems, (less that 5000 vertices).

For the eighteen matrices in Table 6 , the mean time of the ArraySloan was 11.3 times that o f RCM.

while the median time was 8.2 that o f RCM. However, the mean cost o f the HeapSloan was only 2.5

times o f RCM. with the median cost only 2.3. The greatest improvements are seen for the problems with

greater numbers o f vertices or with higher average degrees.

We have also computed the times taken by MC40B to order these problems, and found them to be

comparable to the times reported here for the ArraySloan implementation, inspite o f the different pro

gramming languages used (Fortran forM C40B and C for ours.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

We emphasize that this change in the data structure for the priority queue has no significant influence

on the quality o f the envelope parameters computed by the algorithm. Minor differences might be seen

due to different tie-breaking strategies.

3.2.6 Complexity Analysis

In this Section we analyze the computational complexity o f the Sloan algorithm using both heap and

array implementations. The analysis has the interesting feature that the time complexity depends on the

maximum wavefront size, a quantity related to the mean square wavefront that the algorithm is seeking to

reduce. Nevertheless, it is possible to get a priori complexity bounds for problems with good separators.

The results clearly show the overwhelming superiority o f the heap implementation; an analysis o f the

complexity o f the Sloan algorithm is not available in earlier published work.

The major computational difference lies in the implementation o f the priority queue (see Sec

tion 3.2.5.0. We call these two implementations ArraySloan and HeapSloan according to the data struc

ture used to implement the priority queue.

For the array implementation, the queue operations i n s e r t () . i n c r e m e n t _ p r i o r i t y () , and

d e l e t e !) are all 0 (1) operations, but the m a x _ p r i o r i t y () operation (finding the vertex with the

maximum priority) is O (m). where m is the size o f the queue. All operations on the binary heap are

O (logm) except m a x _ p r i o r i t y () . which is 0 (1).

To continue with our analysis, we examine Algorithm 2 on page 42. It is immediately clear that the

function f a r _ n e i g h b o r s () (lines 25— 27) is 0 (d eg (j')) for ArraySloan. We can easily bound this by

A = m ax i< j< „(deg (i)). For HeapSloan, f a r _ n e i g h b o r s () for HeapSloan is 0 (A * log m), where

m is the maximum size o f the priority queue. This is because the priority updates require reheaping.

The Sloan function (lines 1-24) has three loops; the initialization loop (lines 5 -7), the outer ordering

loop (lines 9 -24), and the inner ordering loop (lines 11-21). The initialization loop is the same for either

implementation, and is easily seen to require 0 (|£ |) time.

Consider now the ArraySloan implementation. For each step o f the outermost loop starting at line

9. it must find and remove the vertex o f maximum priority, requiring 0 (m) time. The inner loop is

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

executed at most A times. The worst case for the inner loop is when the priority is incremented and the

f a r _ n e i g h b o r s routine is called, and this requires 0 (A) time. Thus the worst case running time for

the ordering loop is 0 (|V '| * (rn + A 2)). For the entire algorithm it is 0 (|V '| * (rn + A 2) 4 - |£ |) .

For the HeapSloan implementation, at each step o f the outermost loop starting at line 9. the algorithm

must delete the vertex o f maximum priority, and then rebuild the heap; this takes O (Iogm) time. The

inner loop is executed at most A times. The worst case for the inner loop is when the priority is incre

mented and the f a r _ n e i g h b o r s function is called. This time is 0 (A * logm). The worst case time

complexity for the ordering loop o f HeapSloan is thus 0 (l ' | * A* * log m). For the entire algorithm it is

0 (|V '| * A 2 * logm + |£ |) .

These bounds can be simplified further. The maximum size o f the queue can be bounded by the

smaller of (1) the product o f the maximum wavefront o f the reordered graph and the maximum degree,

and (2) the number o f vertices n. Then the complexity o f ArraySloan is 0 (| V| * A * m axwf), while the

complexity o f HeapSloan is C?(|V '|*A '*Iog(m axwf*A)). If we consider degree-bounded graphs, as finite

element or finite difference meshes tend to be, then the ArraySloan implementation has time complexity

0(1 V'| * m axw f + |E |) , while the HeapSloan implementation has 0 (|V '| * log(maxwf) -f-1£|).

These bounds have the unsatisfactory property that they depend on the maximum wavefront, a quantity

that the algorithm seeks to compute and to reduce. To eliminate this dependence, we will restrict ourselves

to important classes o f finite element meshes with good separators.

The class o f d-dimensional overlap graphs (where d > 2) whose degrees are bounded includes finite

element graphs with bounded aspect ratios embedded in d dimensions and all planar graphs [621. Overlap

graphs hav eO (n |l*~1>/ ‘<) separators that split the graph into two parts with the ratio o f their sizes at most

(d + L)/(d + 2). Hence the maximum wavefront can be bounded by 0 (n ,[<_1)/ J) for a modified nested

dissection ordering that orders one part first, then the separator, and finally the second part.

It is interesting to note that the wavefront at any step also forms a separator. If we assume that the

maximum wavefront attained by the Sloan ordering is bounded by the size o f the separator, then we can

conclude that the HeapSloan implementation requires 0 (n logn) time while the ArraySloan implemen

tation requires 0 (n l2d~ l^ d) time for a d-dimensional overlap graph. For a planar mesh (d = 2), the

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

ArraySloan implementation requires 0 (n 3/,")-time. while for a three dimensional mesh with bounded

aspect ratios (d = 3), its time complexity is 0 (n 5/ 3).

3.2.7 Sloan Refinement

The hybrid algorithm consists of two steps: first compute the spectral ordering; then use a modification

o f the Sloan algorithm to refine the ordering locally.

To change the Sloan algorithm from one that computes an ordering from scratch to one that refines

a given ordering, we need to modify the selection o f start and end nodes, and the priority function. We

use input ordering in this section to describe the ordering o f the matrix immediately before the Sloan

refinement is performed. In our implementation, this input ordering is the spectral ordering, though the

refining algorithm can work with any input ordering.

The Sloan algorithm requires a start node to begin numbering from, and an end node to compute the

priority function. We choose the start node s to be the first node and the end node e to be the last node in

the input ordering. Hence the burden of finding a good set o f endpoints is placed on the spectral method.

Experience suggests that this is where it should be. The spectral method seems to have a broader and more

consistent view than the local diameter heuristic. This feature alone yields improved envelope parameters

over the Sloan algorithm for most o f our test problems.

The priority function is

P(i) = — Wi * [(n /A)J * incr(i) + \V> * d is t(i.e) - * t.

The first two terms are similar to the priority function o f the Sloan algorithm, except that the normalization

factor has n . the number o f vertices in the numerator, rather than the pseudo-diameter. The latter is not

computed in this context, and this choice makes the first and third term range from 1 to n.

This function is sensitive to the initial ordering through the addition o f a third weight, W3. For

H 3 > 0, higher priority is given to lower numbered vertices in the input ordering. Conversely, for

IT3 < 0, priority is given to higher numbered vertices. This effectively performs the refinement on the

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

reverse input ordering, provided a and e are also reversed. There is some redundancy between weighting

the distance from the end in terms o f the number o f hops (dist(»\ e)) and the distance from the end in

terms of the input ordering (»).

Selection o f the nodes s and e and the new priority function are the only algorithmic modifications

made to the Sloan algorithm. The node selection, node promotion, and priority updating scheme (see

Fig. 2), are unchanged.

The normalization factor in the first term o f the priority function makes the initial influence o f the

first and third terms roughly equal in magnitude when W\ and IF3 are both equal to I. The weight is

usually set to one. This makes it a very weak parameter in the whole algorithm, but small improvements

result when its influence is nonzero. If the component o f the Fiedler vector with the largest absolute

value has the negative sign, we set IF3 = - 1 and swap a and e. Otherwise, we set H 3 = I and use the

nondecreasing ordering o f the Fiedler vector.

For Class I problems, higher values o f II'i can lead to improvements in the envelope parameters over

the choice o f H’i = I. even though it is slight in most cases. For Class 2 problems, use of H 't = I,

U _. = H'i = 2 can lead to improvements as well.

3.2.8 Applications

This section discusses preliminary evidence demonstrating the applicability o f the orderings we gener

ated. In Section 3.2.S.a we describe how a reduction in mean square wavefront directly translates into a

greater reduction in cpu-time in a frontal factorization. We also discuss the impact o f these orderings on

incomplete Cholesky (IC) preconditioned iterative solvers in Section 3.2.8.b. Finally in Section 3.2.8.C

we list other areas where the envelope/wavefront reduction either has been applied or shows promise of

being applied successfully.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table l
Results o f two problems on a CRAY-J90 using MA42. Times reported are in seconds.

Sun SPARC20
Ordering

Time

Cray-J90
Frontal Solve

Time Flops
Initial 0 1106 8.7e+l0
RCM 3.7 1649 1.4e+11

bastkJO Sloan 6.1 989 7.5e+l0
Spectral 11.9 188 I.le+10
Hybrid 14.6 205 l.le+10
Initial 0 2427 2.1e+l 1
RCM 5.0 2233 1.9e+ll

skirt Sloan 8.4 1754 1 4e+ll
Spectral 18.6 979 7.6c-*-10
Hybrid 22.6 980 7.3C+I0

3.2.8.a Frontal Methods

The work in a Cholesky factorization algorithm is

work(.4) = ^ (|wf.(.4.)| + 3) .
■ 1 = 1

Hence a reduction in the mean-square wavefront leads to fewer flops during Cholesky factorization. Duff.

Reid, and Scott [26| have reported that Sloan orderings lead to faster frontal factorization times than RCM

orderings. Barnard. Pothen and Simon [9| have reported similar results when spectral orderings are used.

Two problems were run by Dr. Jennifer Scott on a single processor o f a Cray-J90 using the Harwell

frontal factorization code MA42. The matrix values were generated randomly. (The orderings used were

obtained earlier than the results reported in Appendix A; however, these results suffice to show the general

trends.) The results in Table 1 show a general correlation between mean square wavefronts (proportional

to flops) and factorization times. The spectral ordering enables the factorization to be computed about 5.2

times faster than the Sloan ordering for the b c s s t k 3 0 problem; this ratio is 1.8 for the s k i r t problem.

The hybrid does not improve factorization times over the spectral ordering for these problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

body y-5 IC(O) precond CG

init

rcm

— sin

- - spec

 new

| i o ' :

too 200 300 400
iteration count

500 600 700 800

FlG. 13. Convergence o f b o d y . y - 5 for various orderings using IC(0) preconditioned CG.

bcsstkt7 IC(2) precond CG

init

rcm

— sin

i i o : new

§ 10

too 150 200
iteration count

300250 350 400 450

FIG. 14. Convergence o f b c s s C k l 7fo r various orderings using IC(2) preconditioned CG.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

Table 2
Convergence o f preconditioned CG on b o d y . y - 5 and b c s s t k ! 7 .

RCM
Ordering

Sloan Spectral Hybrid

b o d y .y -5 IIRIIf 3.608 2,598 9.166 7.276
|V | = 18,589 nnz(L) 73.721 73.721 73.721 73.721
|£ | = 55,132 iteration count 756 497 1.203 1.009

Level 0 cpu time 1.103 726 1.715 1.405
flops 6.8e+08 4.5c+08 I. le+09 9.le+08

Level 2 IIRIIf 1.430 885 988 501
nnz(L) 128.854 126.141 128.121 126.319

iteration count 457 231 356 265
cpu time 726 376 564 422

flops S.le+08 2.6e+08 4.0e+08 2.9e+08

b c s s c k l7 IIRIIf 6.5e+08 6.5e+08 7.3e+08 1.9e+09
|V | = 10,97-1 nnz(L) 470.304 473.017 486.524 474.935

|£ | = 208,838 iteration count 422 323 320 179
Level 2 cpu time 1131 894 871 503

flops 1 le+09 9.5e+08 95e+08 5.2e+08

3.2.8.b Incomplete Cholesky Preconditioning

In this section we report preliminary experiments on the influence o f our orderings on preconditioned

conjugate gradients (CG). We precondition CG with an Incomplete Cholesky factorization (IC(&» that

controls k. the level o f the fill introduced.

Since the envelope is small, we confine fill to a limited number o f positions, and hope to capture

more o f the character o f the problem with fewer levels of fill. However, a tighter envelope is only one

o f the factors that affect convergence. For instance, orderings must respect numerical anisotropy for fast

convergence.

Our preliminary results have been mixed. In Table 2 we show information pertaining to two problems

that are representative o f our data. It is worth noting how strongly the norm o f the remainder matrix for a

given ordering is a predictor o f iteration counts. The b o d y . y - 5 problem shows that the Sloan ordering

can be very effective in reducing the iteration count. This problem is a 2-dimensional mesh with an

aspect ratio o f 10~5. In the case o f poor aspect ratios, a weighted Laplacian should be more appropriate

for computing the spectral ordering, but we defer this topic for future research. Duff and M eurant [24]

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

indicate that ordering becomes more significant when the problem becomes more difficult (discontinuous

coefficients, anisotropy, etc.).

Another problem from the Harwell-Boeing collection b c s s t k l 7 did not converge quickly for levels

of fill below two, indicating that it is a difficult problem. The rate o f convergence at two levels o f fill

shows that the new ordering reduces the iteration count by almost half that o f its closest competitor. Since

envelope reduction concentrates fill, it is possible that the benefits of the hybrid ordering are maximized

when more than one level o f fill is allowed.

3.2.8.C Other Promising Applications

The envelope/wavefront reducing ordering problem also has applications that extend beyond the immedi

ate domain of sparse matrix computations.

Work has been done in mapping genomics problems to the envelope/wavefront reduction problem [6|.

In this problem, long strands o f DNA are randomly cut to a manageable size and sequenced. Then

the collection sequences must be reassembled by finding the greatest amount o f overlap in the known

sequences. Spectral methods are particularly useful in this context because they can tolerate some amount

of error in the system.

Sloan's algorithm has also shown some promise in optimizing sparse kernels for cache performance

[80 .70|. The wavefront reducing ordering produced by the Sloan algorithm can increases temporal local

ity o f the data in some sparse matrix computations.

Along a similar vein, these orderings may be useful in spatial databases, particularly for ordering the

large amounts o f data on disk to reduce paging when performing a query. Currently proposed algorithms,

far from ideal [75], are space filling curves (primarily row order, Peano-Hilbert, and Morton/Z-order).

Space filling curves have the property that they enumerate points in n-dimensional space such that if any

two points are close to each other in the enumeration, then they lie close to each other in space. The con

verse. which is what is needed in this context, is decidedly not true. Heuristics for the envelope/wavefront

reduction problem have this distance preserving metric when ordering the vertices in a graph — essen

tially mapping from a higher dimensional space into a one dimensional space.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

3.3 Fill Reduction

Sections 3.3.1—3.3.2 and 3.3.4 describe how fill is created and provide graph models for visualizing and

implementing the heuristics. Each o f these three sections uses Ftgure 15 to reinforce the concepts pre

sented. Section 3.3.3 reviews some known optimality results for the fill reduction problem. Section 3.3.5

provides a brief introduction to the minimum degree algorithm and its derivations. We discuss our com

plexity analysis o f MD and MMD in Section 3.3.6, and show what this means in terms of runtime for

some model problems in Section 3.3.7.

3.3.1 Definition of Fill

Direct methods rely on factoring the symmetric matrix .4 into the product LDL r , where £ is a lower

triangular matrix, and D is a diagonal matrix. The factor L is computed using Cholesky factorization

— a symmetric variant o f Gaussian elimination. The factor L has nonzeros in ail the same positions2 as

the lower triangle o f the original matrix .4, plus additional nonzeros in positions that were zero in .4. but

induced by the factorization. These additional nonzeros are fill elements. The presence of fill increases

both the storage required to hold the factor and the computational work required to generate it. The

amount o f fill created depends entirely on the nonzero structure o f the matrix, and the order in which the

rows/columns are factored.

An example is provided in the first column o f Ftgure 15. showing non-zeros in original positions o f .4

as “ x ” and fill elements as This example incurs two fill elements. The order in which the factorization

takes place, greatly influences the amount o f fill. The matrix .4 is often permuted by rows and columns to

reduce the number o f fill elements, thereby reducing storage and flops required for factorization. Given

the example in Fig. 15, the elimination order { 2 ,6 ,1 ,3 ,4 ,5 } produces only one fill element. This is the

minimum amount o f fill for this example.

2No “accidental” cancellations will occur during factorization if the numerical values in .4 are algebraic indeterminates.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

XX

I X
XXX 5 x
XX X6

[2 Xx
3 « X X
• 4 X

XXX 5 x
X X X 6

pvxx
• 4X

XXX 5 X
X X X 6

5,6

5,6

FlC. 15. Examples o f factorization and fill. For each step, k, in the factorization, there is the
nonzero structure o f the factor, Lk, the associated elimination graph, Gk, and the quotient graph Qk- The
elimination graph consists o f vertices and edges. The quotient graph has edges and two kinds o f vertices,
supemodes (represented by ovals) and enodes (represented by boxed ovals).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

3.3.2 The Elimination Graph

The graph G o f the sparse matrix .A is a graph whose vertices correspond to the columns o f .-I. We label

the vertices 1 . . . n. to correspond to the n columns o f .4. An edge (i . j) connecting vertices i and j in G

exists if and only if atJ is nonzero. By symmetry, aji is also nonzero so the graph is undirected.

The graph model o f symmetric Gaussian elimination was first introduced by Parter [651. A sequence

o f elimination graphs. Gi-. represent the fill created in each step of the factorization. The initial elimination

graph is the graph of the matrix. Go = G(.A). At each step k, let vt be the vertex corresponding to the

k th column o f A to be eliminated. The elimination graph at the next step, G t+ i , is obtained by adding

edges to make all the vertices adjacent to v t pairwise adjacent to each other, and then removing e* and

all edges incident on e*. The inserted edges are fill edges in the elimination graph. This process repeats

until all the vertices are removed from the elimination graph. The example in Fig. 15 illustrates the graph

model o f elimination.

Although the elimination graph is an important conceptual tool, it is not used in modern implementa

tions because the amount o f storage required to represent it can grow during elimination. When a vertex

f t is removed with degree d there are potentially d(d - 1)/2 edges to add. Therefore the storage required

for an elimination graph can grow like the size o f the factor, and cannot be predetermined. In practice a

quotient graph is employed to implicitly represent an elimination graph in the same storage as G(.A).

3.3.3 Known Optimality Results

The Fill Reduction problem is a known NP-complete problem [811 that is o f fundamental importance in

scientific computing. As such, this problem has garnered a great deal o f attention and a large number of

ordering heuristics. Performance guarantees, however, are harder to find.

For ordering algorithms based on Minimum Degree, there is a negative result by Berman and Schnit-

ger [I0{ where for a torus Tn with n = kr vertices where k /4 is a power o f 3, there exists a Multiple

Minimum Degree (MMD) ordering that produces a factor with n log3 4 fill and n 1'510*3 4 arithmetic. The

lower bounds fo ra Tn torus with n = kr vertices is @(n Ign) fill and @ (n1-5) arithmetic. Determining

the worst possible performance for MMD on a torus remains an open problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

For Nested Dissection (ND) algorithms, Agrawal, Klein and Ravi [l | have proven that their poly

nomial nested dissection algorithm guarantees a factor o f size (2 (m in (\/d lo g l n ,m i log3 5 n)) and re

quiring 0 (d lo g 6 n) operations to calculate, where d is the maximum number o f non-zero elements in

any row or column o f the n x n coefficient matrix. They also show that this result is within a factor of

0 (V d log1 n) o f the optimum for fill and a factor o f 0 (d lo g B ri) for operation count. By using a mini

mum node (non-polynomial) separator algorithm, they prove that there exists a nested dissection ordering

with the tighter bounds o f (D(y/dlog2 n) size factor requiring 0 (c /lo g ' n) operations to calculate, where

d is the maximum number o f non-zero elements in any row or column o f the general, symmetric n x n

coefficient matrix.

Tighter bounds have been found for restricted classes o f graphs such as trees [47], planar graphs [57|,

and overlap graphs [62|. All o f these arguments for ND orderings hinge on guarantees o f the partition

imbalance and separator size.

Blair. Heggemes, and Telle [11] consider the problem of taking an arbitrary filled graph G+ of an

original graph G and obtaining a graph M that is both a minimal filled graph o f G and a subgraph of

G+. They report an 0 (/ (e + /)) algorithm that solves this problem and computes the corresponding

elimination ordering, where e is the number of original edges (e = |£ (G) |) and / is the number of fill

edges (|£ (G +)| - |£ (C) |) .

3.3.4 The Quotient Graph

A quotient graph is an implicit representation o f an elimination graph. It is designed specifically for

greedy fill-reducing orderings such as MMD [32,33). Eliminating nodes does not require explicit addition

o f fill edges to the quotient graph, but it does impose an extra level o f indirection to compute certain

quantities such as vertex degree. Thus, the quotient graph is immune to the effects o f fill. This is vital

since the amount o f fill is known only after the ordering step. The quotient graph has two distinct kinds

o f vertices: supemodes and enodes?. A supemode represents a set o f one or more uneliminated columns

o f .4. Similarly, an enode represents a set o f one or more eliminated columns o f .4. The initial graph. £o,

3 Also called "eliminated supemode’’ or "element” elsewhere.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

node reachable set size o f reachable set

© 1 6 7
2 6
3 N/A
4 7
5 6 9 13 12
6 I 2 5 7 9 11 12 13
7 I 6 9 11 13
8 N/A
9 5 6 7 II 12 13
10 N/A
11 6 7 9 1 3
12 5 6 9 12
13 5 6 7 9 12
14 13
15 13
16 13

4
8
5

4
4
5

6

F lC . 16. Example o f a quotient graph. The nodes are represented as circles, and enodes as boxes.
The reachable set o f a node is the union o f the set o f adjacent nodes and the set o f all nodes adjacent to
adjacent enodes.

consists entirely o f supernodes and no enodes; further, each supemode contains one column. Edges are

constructed in the same manner as in the elimination graph. The initial quotient graph. (Jo, is identical to

the initial elimination graph. Go. which can be seen in Figure 15.

When a supemode is eliminated at some step, it is not removed from the quotient graph; instead, the

supemode becomes an enode. Enodes are important because they indirectly represent the fill edges in

the elimination graph4. To demonstrate how. we first define a reachable path in the quotient graph as a

path (i\et,e-.>.. . . ep, j) . where i and j are supemodes in Qk and e i ,e 2, . . . e p are enodes. The number

o f enodes in the path can be zero. We will say that a supemode j is reachable from a supemode i in Qk

if there exists a reachable path from i to j . Similarly i is reachable from j since the path is undirected.

Since the number o f enodes in the path can be zero, adjacency in Qk implies reachability in Qk - Therefore

if two supemodes i , j are reachable in the quotient graph Qk, then the corresponding vertices i , j in the

elimination graph Gk are adjacent in G*.

The reachable set o f a vertex is simply all vertices that are reachable from a vertex, not including

itself. Figure 16 shows a sample quotient graph with the reachable sets and their sizes for each node.

4Where d is the degree o f the vertex in the elimination graph.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

For the purposes o f this discussion we leave the reachable set o f an enode undefined. Conceptually the

reachable set o f a supemode s in the quotient graph is identical to the adjacency set o f s in the elimination

graph. Thus the quotient graph is an implicit representation o f an elimination graph.

In practice, the quotient graph is aggressively optimized; all non-essential enodes, supemodes, and

edges are deleted. Since we are only interested in paths through enodes. if two enodes are adjacent they

are amalgamated into one. So in practice, the number o f enodes in all reachable paths is limited to either

zero or one. Alternatively, one can state that, in practice, the reachable set o f a supemode is the union of

its adjacent supemodes and all supemodes adjacent to its adjacent enodes. This amalgamation process is

one way how some enodes come to represent more than their original eliminated column.

Supernodes are also amalgamated but with a different rationale. Two supemodes are indistinguishable

if their reachable sets (including themselves) are identical. When this occurs, all but one o f the indistin

guishable supernodes can be removed from the graph. The remaining supemode keeps a list o f all the

columns o f the supemodes compressed into it. When the remaining supernode is eliminated and becomes

an enode, all its columns can be eliminated together. The search for indistinguishable supernodes can be

done at the beginning o f the algorithm, before any supernodes are eliminated using graph compression [31.

More supernodes become indistinguishable as elimination proceeds. An exhaustive search for indistin

guishable supemodes during elimination is prohibitively expensive, so it is often limited to supemodes

with identical adjacency sets (assuming a self-edge) instead o f identical reachable sets.

Edges between supernodes can also be removed in certain instances during factorization. When a

pair o f adjacent supemodes share a common enode. they are reachable through both the shared edge and

the shared enode. In this case, the shared edge can be safely removed as it is redundant. This not only

improves storage and speed, but allows tighter approximations to supemode degree as well.

Going once more to Fig. IS, we consider now the quotient graph. Initially, the elimination graph

and quotient graph are identical. After the elimination o f column I. we see that supemode L is now an

enode. Note that unlike the elimination graph, no edge was added between supemodes 3 and 4 since they

are reachable through enode 1. After the elimination o f column 2, we have actually removed an edge

between supemodes S and 6 . This was done because the edge was redundant; supemode S is reachable

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 17. Quotient Graph Transformation in Detail. In this figure we show the transformation o f a
quotient graph between steps 2 and 3 o f Figure 15. We start with an updated quotient graph (a). Next,
we eliminate supernode 3, which causes it to form an enode that absorbs all adjacent enodes (b). Now
the edge between supemodes 4 and 5 is redundant since they are reachable through the new enode 3.
so the edge is removed (c). Finally, supernodes 5 and 6 are indistinguishable and merged into a single
supemode.

from 6 through enode 2. The transformation after eliminating supemode 3 involves several steps which

are shown in Figure 17. First, supemode 3 becomes an enode and absorbs enode I (including its edge

to supemode 4). Now enode 3 is adjacent to supemodes 4, 5 and 6. Next, the edge between supemodes

4 and 5 is redundant and can be removed. At this point 4. 3. and 6 are indistinguishable. However,

since we cannot afford an exhaustive search, a quick search (by looking for identical adjacency lists) finds

only supemodes 5 and 6 so they are merged to supemode {5.6}. The rest of the transformations are

not as complicated. When supemode 4 is eliminated, it becomes an enode and absorbs enode 3. Finally

supemode {5,6} is eliminated. The relative order between columns 5 and 6 at this point (and between

any columns within a supemode) has no effect on fill.

3.3.5 Greedy Fill-Reducing Heuristics

The simplest heuristic for computing a greedy fill-reducing ordering is to repeatedly select and remove

a supemode from the quotient graph having minimum degree. One could implement a greedy heuristic

that computed the minimum till induced by eliminating each supemode. but it is too expensive in prac

tice [731. The degree o f a supemode puts an upper bound on the amount o f hll that could be induced by

its elimination.

Since updating the quotient graph and recomputing vertex degrees is so expensive, a common opti

mization is to use Minimum Degree with a lazy update. This is possible because when a supemode is

eliminated, only its neighbors have been changed. Therefore, i f one can find a large, independent set o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Algorithm 3 (The Multiple Minimum Deg .e algorithm defined in terms o f a Quotient Graph.)

1. Jfc«-0
2. while (k < n) {
3. Let m be the m inim um known degree, d e g (x) . o f all x 6 Qk-
4. while m is still the m inim um known degree o f all x € Qk {
5. C hoose supem ode xj, such that d e g (x k) = m
6. for all o f the p colum ns represented by supem ode x* {
7. N um ber colum ns (k + l) . . . (k + p).

}
8. Form enode e* from supem ode i k and all adjacent enodes.
9. for all supem odes x adjacent to {
10. Label d e g (x) as “unknown.”

)
11. k *- k + p

}
12. for all supem odes x w here d e g (x) is unknow n {
13. U pdate lists o f adjacent supem odes and enodes o f x.
14. C heck for various Q uoticntG raph optim izations.
15. C om pute d e g (x).

}
}

supernodes of minimal degree, they can all be eliminated before updating the quotient graph. This is the

Multiple Minimum Degree Algorithm [58|. We show the Multiple Minimum Degree algorithm defined

in terms o f a quotient graph in Fig. 3.

Another recent optimization is to compute only the approximate degree o f a supemode instead o f its

exact degree. This Approximate Minimum Degree (AMD) algorithm [2] can do faster degree computa

tions. but disallows multiple elimination in order to obtain tighter bounds on the approximate degrees.

The MMD algorithm in Algorithm 3 could be changed to an AMD algorithm with the following modifi

cations: I) the inner while loop in line 4 would be executed exactly once for each iteration o f the outer

loop and 2) the quotient graph optimizations and degree computations would be different (faster).

These two algorithms. MMD and AMD are the most different o f all the fill-reducing orderings imple

mented in Spmdle. All the others use either the MMD or AMD subsystems and simply replace the degree

computation with a more robust (and expensive) heuristic such as “minimum increase in neighbor degree”

or “modified minimum deficiency”. Table 3 shows a list o f algorithms and references for further study.

There are a list o f standard features in modem implementations that requires introduction. For more

detailed information, refer to the survey paper by George and Liu [34].

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

Table 3
Several Greedy Fill-Reducing Heuristics.

Abbreviation Algorithm Name Primary Reference
MMD Multiple Minimum Degree Liu [58|
AMD Approximate Minimum Degree Amestoy, Davis and Duff [2|
MMDF Modified Minimum Deficiency Ng and Raghavan [641
MMMD Modified Multiple Minimum Degree Ng and Raghavan [64]
AMF Approximate Minimum Fill Rothberg [731
AMMF Approximate Minimum Mean Local Fill Rothberg and Eisenstat [741
AMIND Approximate Minimum Increase in Rothberg and Eisenstat [74 j

Neighbor Degree

• Multiple Elimination [58|. Lazy update o f the graph. When a vertex is eliminated from the

elimination graph, the entire graph does not change, only the neighbors o f the newly eliminated

vertex. Multiple elimination eliminates an independent set o f vertices o f minimal degree before

updating the elimination graph.

• Mass Elimination [35|. When eliminating a vertex t/*. there is often a subset o f vertices adjacent

to Vk that can be eliminated immediately after i/* with no additional till, and saving additional

elimination graph updates.

• Indistinguishable Nodes. Related to mass elimination. If at some step, k , in the elimination pro

cess two vertices c, ,v s 6 G k are adjacent, but otherwise have identical adjacency lists, we call them

indistinguishable nodes (see also Definition 2.5). Furthermore, if two nodes are indistinguishable

in G k, they remain indistinguishable in G k+l ■ Since they are indistinguishable, their degrees are

identical, saving a degree computation for one o f them. Furthermore, once one node is eliminated,

the other indistinguishable nodes can be eliminated immediately afterward via mass elimination.

• Taken together, mass elimination and indistinguishable nodes offer an important advantage. We

can group nodes into supemodes and need to compute the degree and update the elimination graph

only once for each supemode. The size o f each supemode must be stored to accurately compute

the degree.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

• Incomplete Degree Update [27]. Given two nodes, v,, vj in G h. where the set o f adjacent vertices

o f Vi is properly contained by Vj then uj is said to be outmatched by ut. The outmatched vertex

need not have its degree computed again until c* is eliminated.

• Quotient Graph [32|. Emulates an elimination graph in a fixed amount of storage through an extra

level o f indirection through enodes. Quotient graphs can have the same interface as an elimination

graph, but must handle internal data differently.

Instead o f removing an eliminated vertex, a quotient graph relabels the vertex as an enode. Any

edges between two vertices that are members of the same enode are redundant and can be removed.

To compute the degree of a vertex in the elimination graph, a quotient graph must compute the size

o f its reachable set. The reachable set o f a vertex in a quotient graph is simply the size o f the set o f

all vertices directly adjacent through an edge, or a members o f a common enode.

• Element Absorption [251. Element absorption is to enodes. what indistinguishable nodes are to

vertices. Since a quotient graph provides a compact representation o f an elimination graph by

storing enodes instead o f till edges, one can merge any two adjacent enodes into a superenode.

• External Degree [58|. Given a minimum degree algorithm which takes advantage o f supemodes.

the degree o f a supemode need not include its own weight. The intuition is that all the vertices in a

supernode are already an enode and so will not induce any new fill.

• Precompression [3|. Additional savings can be made if the graph is compressed before performing

the minimum degree ordering. Precompressing the graph is a standard technique employed by

many ordering and partitioning algorithms, the earliest reference to this technique is Duff. Reid,

and Scott [26|.

• Approximate Update [2 .40]. Instead o f computing the degree o f each supemode exactly, simply

compute an upper bound. This can be done in a multiple elimination setting, but it double counts

any supemode that is reachable through two different elimination paths [40]. Amestoy, Davis, and

Duff [2] were able to tighten this bound by double counting only supemodes that are reachable

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

through two different elimination paths, neither o f which being though the most recently formed

enode. This added restriction also prevents the code from using multiple elimination.

• Alternatives to M inimizing Vertex Degree [64 .73 ,74]. Most recent work focused on improving

the quality o f the ordering by eliminating supernodes on a more accurate basis than degree. Many

o f these modifications are also cited in Table 3.

AMFscorejfc(i)

AM M Fscoret(i)

(tf- - d) - (er - c)
2

(d2 - d) - (q2 - q)
2 * wgtfc(i)

AMINDscorej.(i) = — ^ ? ^ ----- — — d * w gtfc(i).

M M DFscoret(i) = dr - d - p - 2 * d * wgt4(i).

MMMDscore*(i) = 2 d - max w gt(e).
e€eiulj(«)

where

d = degA.(i) - w gtt (i),

c = max |e | - w gtk(i).
e€eailj|,(i)

q = ek - Wgt*(/),

P = ^ 2 w gt{ v f - w gt(c).
«6 sadj(eadj(i)) \sadj(fc)

3.3.6 Asymptotic Complexity Analysis

Modem greedy fill reducing ordering algorithms have very sophisticated implementations. They are,

therefore, difficult to analyze for asymptotic complexity. Some work has been done for AMD [2], but

until now, MD and M M D have escaped analysis.

In this section, we analyze the most expensive loops in MD, MMD and AMD. While the degree o f a

vertex can be computed in these loops, there is also significant work being done to update the quotient

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

graph. The prevailing notion holds that the degree computation is the most expensive part o f the algorithm.

The truth is that the degree computation is asymptotically o f the same order as the quotient graph update.

When these two processes are totally divorced from each other, it is the quotient graph update that requires

more time than the degree computation because it includes several lower order terms as well.

First, we cover some basic properties that are needed for the analysis. Then we derive the asymptotic

bounds which are somewhat complicated. To give these bounds more meaning, we compute them for

certain model problems in Section 3.3.7.

3 J.6.a Properties of a Quotient Graph

The quotient graph is a powerful and complicated data structure. It has many properties that need ex

planation and quantification before we can attempt a thorough analysis o f the MD, MMD. and AMD

algorithms.

Consider the state diagram in Figure 18 which shows the lifecycle o f a quotient graph. In this dis

cussion. any transition along an “elim inatesupem ode" edge is an elimination step, or simply a step. Any

series o f transitions from a valid state to a semi-valid state and then back to a valid state is a stage o f

elimination. A stage can involve multiple elimination steps. In the case o f single elimination, such as MD

or AMD. then each stage has exactly one elimination step.

When the quotient graph is in a “valid” state, the internal adjacency lists o f each supemode and enode

is known, and the priorities o f each supernode can be established by traversing these adjacency lists.

When any supemode is eliminated, the quotient graph enters into a “semi-valid” state. Upon elimi

nation. the reachable set o f the eliminated supemode becomes the supemode adjacency list o f the newly

formed enode. Although the eliminated supemode has become an enode and its adjacency lists have

been updated, the adjacency lists o f all its neighbors have not been touched. Indeed, one could not even

accurately compute the degree o f any o f these supemodes until their adjacency lists are updated, hence

they become ineligible for elimination for the remainder o f this elimination stage. In multiple elimina

tion algorithms, subsequent supemodes in the quotient graph can be eliminated as long as they were not

rendered ineligible by a neighbor's elimination earlier in this stage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

constructor()

(^ ~ Valid

eliminate_supemode()

m f

C Semi-Valid j

 ^ False
eliminate _supernode()

update!)

▼

II uSupemodes == 0

True

< S >
FlC. 18. State Diagram o f a Quotient Graph.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

When the quotient graph is updated, it actually updates the adjacency lists of all the ineligible supem

odes and performs additional optimizations such as supemode amalgamation, outmatching, etc. All the

remaining supemodes have their adjacency list completely defined and become eligible for elimination.

Therefore the quotient graph returns to a valid state.

When the quotient graph has no remaining supemodes after updating, then the elimination order is

completely defined and can be harvested from the otherwise empty graph class.

In this section, we use i for any node in the quotient graph (supemode or enode). k for the supemode

eliminated at the k th step, s to denote supemodes in general, e forenodes in general, and r for supemodes

in the reachable set o f k. Thus, one can infer that in the elimination ordering v; rr(e) < k < n (r),x (s).

To keep our illustrations simple and clear, we chose the input ordering of A to be the elimination ordering

(as in Figure 15). Although this is certainly never the case in practice, by making z (i) = i for our

examples, we can drop the rr(-) notation entirely for the rest o f this document.

Careful distinctions must be made between adjacency in the quotient graph (adjg(<)). and adjacency

in the corresponding elimination graph (adjc (i) or simply ad j(i)). Adjacency in the quotient graph is the

union of the supernode adjacency (sadj(i)), and enode adjacency (eadj(i)). Since supemodes and enodes

are unique to the quotient graph, the Q can be omitted. Whenever we are talking about the adjacency at a

particular timestep k, we will use the graph subscripted at the k lh step (Gk or Qk)•

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

At the time that the quotient graph is transitioning to a valid state and k is the most recently eliminated

supemode. the following are invariant.

r e a c h e s) = a d j Cfc(s) , (3.8)

a d j e (t) = s a d j e (i) U e a d j e (i) , (3.9)

|a d j efc(s) | < |a d j ffo(s) | , (3.10)

|e a d j a (e) | = 0, (3.11)

|s a d jg t (e) | < |s a d j C i tu |(e) |? (3.12)

|ad jc ;(.s) | < (3.13)

|s a d j e (e) | < | I . , e|. (3.14)

Equation 3.8 restates that the reachable set of a quotient graph is the same as the adjacency set in the

elimination graph. Equation 3.9 is the definition o f adjacency on a quotient graph.

Equation 3.10 states that the size o f the adjacency lists o f any supemode s for all timesteps until it is

eliminated is a strictly non-increasing function. This is true because there is no quotient graph transfor

mation that involves adding edges to supemodes. Edges can change type from supemode adjacency to

an enode adjacency when the adjacent supemode is eliminated. Edges are removed in any one o f three

cases: (1) because indistinguishable supemodes are amalgamated. (2) because the edges become redun

dant when adjacent supemodes are adjacent to a common enode, or (3) because the edges that used to

point to some enodes are no longer valid because the enodes were absorbed by a newly formed enode.

This newly formed enode is also adjacent, though it is likely to be listed (incorrectly) as an adjacent

supernode.

We can make a similar assertion about the the size o f the adjacency set o f an enode. For the case

o f enodes. however, we can be more precise. Recall that when an enode is formed, it absorbs all o f its

adjacent enodes. Therefore, the enode adjacency o f an enode is always zero as we show in Equation 3.11.

We assert in Equation 3.12 that the size o f the supemode adjacency list o f an enode is also bounded by its

size when the supemode is created. After an enode is formed, there are no quotient graph transformations

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

that add additional edges to an existing enode. Edges are only removed from enodes when indistinguish

able supemodes are detected and amalgamated. Enodes themselves can o f course be absorbed into larger

enodes, but that only happens when a new enode is created.;

Equation 3.13 states that the adjacency list o f a supemode in the quotient graph is bounded by the

corresponding column in .4. If we prohibit precompression, Qo(») = -4.,s for all s. This becomes a

inequality when we allow precompression, and it holds for all timesteps until the supemode is eliminated

by virtue o f Equation 3.10.

Equation 3.11 holds for all timesteps k after the enode e is formed until some timestep r when a

reachable node o f e is eliminated and e ceases to exist. If we disable supernode amalgamation and

precompression it is easy to show that |sadj^_ (e)| = |L .,e |. Thus the inequality in Equation 3 .11 holds

when using amalgamation, precompression, and Equation 3.12.

Lines 13-15 in Algorithm 3 show the update phase for the quotient graph and the reprioritizing of all

the vertices adjacent to recently eliminated vertices in the elimination graph. If the algorithm is a single

elimination scheme such as MD or AMD. then this set o f vertices is exactly the reachable set of the most

recently formed enode in the quotient graph. If the algorithm is a multiple elimination scheme, this set o f

updated vertices will be the union o f all reachable sets o f all enodes formed in the last elimination stage.

The way that the quotient graph updates itself and reprioritizes supemodes differs between approx

imate degree updates (which are necessarily single elimination algorithms) and exact degree updates

(which may be single or multiple elimination schemes). To bound the performance o f these algorithms,

we show the parts o f the quotient graph update subroutines that are the most expensive asymptotically.

They have also been confirmed to be most expensive experimentally.

3.3.6.b Minimum Degree

We start with simplest case, a single elimination exact minimum degree ordering (called Minimum De

gree). The update set in line I o f Algorithm 4 is exactly the reachable set o f the supemode that was

eliminated since the last update. We start with a quotient graph that is in a state where an enode has

already been formed by eliminating a supemode and amalgamating any adjacent enodes. All supemodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

ALGORITHM 4 (The most expensive loop in the MD and MMD update process.)

I. for each supemode r in the update set {
2. tim estam p «— nextStam pO ; / / get value larger than any in visited
3. visited! r I *— tim e stam p ; //prevent visiting self
4. degree! p | <— 0 ; / / no self weight, external degree
5. for each enode e in e a d j (r) {

// consider principal enodes, removing non-principal ones
6. while (e # parent! e)) { / / while e is not principal
7. e a d j (r) «— e a c lj(r) \ e ; H remove e from eadjfri
8. e <— parentt e) ; // advance to parent enode

)

9. e a d j (r) <— e a d j (r) U e ; // write back principal enode

// visit each adj snode once, and add to degree
10. if (visited! e | < tim e s tam p) {

/ / if not yet visited. . .
i 1. visited! e | <— tim estam p ; / / it is now
1 2 . for each snode s in s a d j(e) {
13. if (visited! * I < tim estam p) {
14. visited! I *— tim estam p :
;5 . degree! r 1«— degree! r I + weight! ■'* I :

}
}

}
16. for each snode s in s a d j (r) {

/ / visit each principal unvisited adj snode once
17. if ((visited! .* | < tim estam p) and (parentt s) = s)) {
18. visited! s)« — tim estam p ;
19. degree! r | <— degree + weight! s I :
20. } a l e e { / / i f a is already visited or not principal
21. s a d j (r) «— s a d j (r) \ s ; // remove it

}
//NOTE: i f s is nan-principal, its parent is alreadv in sadj(r)

}
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

reachable to the old supemode. however, have yet to be updated. The same holds true for any supem

odes that were adjacent to one or more o f the amalgamated enodes. This process includes: (I) removing

any old adjacent enodes that have been merged into the newest one, (2) removing adjacent snodes that

are already reachable though an enode, and (3) removing the newest enode from the old snode list, and

computing the external degree o f the node.

We proceed now with a line by line examination o f the algorithm. The outermost loop (lines 1-22)

iterates over the set o f all supemodes in the quotient graph that need to be updated. Since all adjacency

lists are unordered, a timestamping mechanism is used to prevent double visiting. This involves using

a value t im e s ta m p (line 2) that is larger than any value found in the array v i s i t e d (line 3). Since

no index is used at the same time for enodes and supemodes. we can use the v i s i t e d array for both

without fear o f collisions.

Now looping over all the adjacent enodes (lines 5-15). we perform two tasks. First we remove any

non-principal enodes in the adjacency lists and replace them with the principal enode (lines 6-9). To

see why this is necessary, consider a three node quotient graph with two supemodes i . j and one enode

e.. Furthermore assume there are two edges (i.e) and (r . j) . Now we eliminate supemode ». which we

transform into an enode that absorbs the adjacency list o f e. Now it is time to update. The new enode

e has an edge to supernode j , but j has an edge to a now non-existent enode e. To correct this, j must

replace this with an edge to the enode that absorbed e. namely j .

Each time we produce a principal enode adjacent to a supemode in the update set. we insure that we

examine its list o f adjacent supemodes only once (lines 10-12). The purpose o f this is twofold. First, we

want to timestamp all supernodes reachable through an enode (line 14) to strip off redundant edges later

(line 21). Second, we want to compute the size o f the reachable set o f supemode r (line 15) which is also

the degree o f r in the elimination graph. Note that we marked the updated supemode as visited in line 3

to prevent revisiting it through an adjacent enode.

The final inner loop (tines 16-21) iterates over the set o f adjacent supemodes o f each updated su

pemode. If the adjacent supemode has not already been visited through an enode (lines 10-11). if it is

not really a newly formed enode (which would have been visited and flagged in line 11), and i f it is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

principal supemode, then we mark it as visited and add its weight to the degree o f the updated supemode.

Otherwise, the supernode found can be discarded.

Note that there is no need to follow parent pointers with compressed supemodes like there is with

amalgamated enodes. Recall that supemodes are only compressed if they are indistinguishable, meaning

that, among other things, they have identical neighbors. Therefore if i is a supemode that is being updated

and it has in its adjacency list an edge to a supemode j that is compressed into another supemode fc, then

we know that j and k must both have an edge to i and that t must also have an edge to k. The edge to j

can then simply be discarded.

Working from the innermost loops out. lines 12-15 are C?(|sadj(e)|). The cost o f the loop that ad

vances through parent pointers o f enodes (lines 6- 8) can be restricted to one by not forming the elimina

tion trees explicitly during the elimination, but afterwards. In this case a minimal representation called the

front tree [58| will keep this loop from repeating more than a constant number o f iterations. The encom

passing loop over all principal enodes (lines 5-15) is therefore C H S ,c e.-uij(ri lsatU(e)D- The subsequent

loop (lines 16-21) is C?(|sadj(r)|).

The time taken for the MD algorithm is therefore

where np is the number o f principal supemodes eliminated. Except for pathological cases in which no

supemodes are indistinguishable throughout the elimination. np « n.

3 J.6.c Multiple Minimum Degree

The time taken for the MMD algorithm is related to MD. We can use the same algorithm and analysis

presented from Figure 4. The difference is that the update is performed only after a set o f independent

supemodes o f low (or minimum) degree has been eliminated. Hence the complexity is

O ^ 5 1 (lsadi (r) l + H |sad j(e)|
*=1 rgsadj(fc) e€enilj(r)

(3.15)

5 1 5 1 lsadK e)l
r€Ufc6 Kj sadj(fc) e € ead j(r)

(3.16)

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

where n h is the height o f the front tree (which is related to a supernodal elimination forest). A', is the set

o f newly eliminated nodes at the j th step, and r is the reachable set o f the newly eliminated snodes.

Comparing Equations 3.15 and 3.16, we can see why MMD should outperform MD. Even though

both are stuck with a triply nested loop (lines I2-L5. Figure 4), MMD updates less often. Unless the

resulting elimination forest is a simple path, ri/, < np. The second sum in Equation 3.16 is the union of

all supernodes reachable from any supernode eliminated at that stage.

3J.6.d Approximate Minimum Degree

The Approximate Minimum Degree (AMD) ordering avoids the triply nested loop inherent in exact de

gree computations. It does this by computing an upper bound on the size o f the reachable set. Assume

the weight o f an enode is defined to be the sum o f the weights of its adjacent supemodes. The size o f

the reachable set o f any vertex could never be more than the sum o f the weights o f its adjacent supem

odes and enodes. Indeed, it could be quite less [40], What makes the bound so loose is the fact that the

same supemode could be reachable through several different enodes, yet should only be counted once.

Amestoy. Davis, and Duff [2| tightened this bound by making all supernodes reachable through the most

recently formed enode counted only once. Alt other supemodes that do not share an edge with the most

recently formed enode may be double counted. The downside is that the quotient graph needs to be up

dated after every elimination, thereby preventing AMD from employing multiple elimination. However,

since the only nodes that need to be updated are the ones adjacent to the most recently formed enode, the

approximation does well in practice.

The AMD algorithm uses intermediate values that are essentially set differences. Instead of summing

the weights o f all adjacent supemodes and enodes, AMD sums the weights o f all supemodes and the

“set-diffs” o f all enodes.

setDiff[e j = <
£ ,e * u ij(e)we*ghtl s l if e = k,

(3.17)

£*€{sadj(e)\sadj(Jfc)) weight[s] if e ^ k,

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

A l g o r i t h m 5 (The most expensive loop in the AMD update process)

/ / /. compute the setDiff’s
1. timestamp = nextStamp() ;
2. k = most recent eliminated node ;
3. for each supemode r in sadj(Ar) {
4. if (parent! r) £ r) {
5. sadj(fc) <— sadj(fc) \ r :

} else if (visited! r I < tim estam p) {
6. visited! r \ *— tim estam p;
7 for each enode e in e a d j(r) {

//get value larger than any in visited

1/ I f r is not principal. . .
/ / remove it
//else i f r has not been visited .
/ / it is now.

8 .
9.

10.

I I .

// consider principal enodes. removing non-principal ones
while (e # parent! e)) {

e a t l j(r) <— e a d j (r) \ e ;
e i— parent! e) ;

}
e a d j(r) <— e a d j (r) U e ;

/ / while e is not principal
/ / remove e from eadj(r)
/ / advance to parent enode

/ / write back principal enode

// compute setdiff for enodes
12. i l i e ^ k) {
13. if (visited! e | < tim estam p) {
14. visited! e I «— tim estam p :
15. sctDiff[e | i— weight! e | — weight! r 11

| else {
16. setDiffl e | i— setD iffl t | — w eight! r | :

\
»

}

)

/ / 2. compute degree and hashvalues for indistinguishable node detection
17. for each supem ode r in sadj(A:) {
18. approx.degree! r | <— weight! k \ - weight! r I ;
19. hashval <— 0 :
20. for each enode e in eadj(r) {
21. i f (e # J t) {
22. if! setDiffl e 1 = 0){
23. weight! e | = 0 :
24. eadj(r) <— eadj(r) \ e :
25. } else if (setDiffl e | > 0 > {
26. approx.degree[r \ <— approx.degree[r | + setDiffl e | :
27. hashval <— hashval + e :

}
}

>
28. for each supemode s in sadj(r) {
29. if (visited!.« I < timestamp) {
30. approx.degree[r 1«— approx.degree[r] + weight! * I ;
31. hashval <— hashval + s ;

}
}

32. sorter.insert! hashval, r) ;
}

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 0

where k is the most recently formed enode. This is still an upper bound on the actual degree of a supem

ode, but it is useful in practice.

The quotient graph update for the approximate degree algorithms is very different than for exact

degree. We present the most expensive parts o f the update procedure in Algorithm 5. As we did with MD

and MMD, we will go through a line by line explanation o f this algorithm, then compute its asymptotic

complexity.

We start by generating a timestamp for this update, and noting the most recently formed enode

(lines 1-2). The first main loop (lines 3-16) computes the setDiff parameter for all enodes adjacent

to a node that needs updating. It also removes non-principal supemodes (lines 4-5) and enodes (lines 8-

11). The first time an enode that is not the most recently formed one is encountered (lines 12-13), it is

timestamped and its setD iff is initialized to its weight minus the weight o f the snode that is adjacent to

both it and the most recently formed enode (line 15). Every time we revisit that enode through another

principal supemode. we subtract the weight o f that supemode from its setDiff (line 16).

Now at line 17 o f Algorithm 5. the setDiff values have been computed, and we are set to compute

the approximate degrees o f all the supemodes adjacent to the newest enode. k (lines 17-34). In this loop,

we also take the liberty o f computing a hash value that will be used later for detecting indistinguishable

supernodes. The degree is initialized to the weight o f the newest enode minus the weight of the supemode

to be updated (tine 18). The supemode is necessarily adjacent to the enode otherwise it would not need

updating. Furthermore, we are actually computing the external degree, which does not include the weight

o f the vertex itself. The hash value is simply the sum o f all adjacent supemodes and enodes. so it is

initialized to zero (line 9). As with exact degree updates, we are testing for indistinguishability in the

quotient graph, which is not as strong as indistinguishability in the elimination graph.

The first o f the two inner loops (lines 20-28) iterates over the enodes adjacent to the supemode we're

updating. If the enode is an edge back to the most recently formed, we have already added its contribution

to the degree, and can safely skip it (lines 21-22). If the setDiff for this enode is non-negative, then we

add its contribution to the degree and the hash value (lines 23-25). If. however, the setDiff is zero, then

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

this enode has no adjacent supemodes that are not also adjacent through the newest enode. In this case

the enode itself can be removed.

This feature, which is unique to the AMD implementations, may be helpful in limited cases. For

example, look back at Figure 15 on page 60. Looking at step 3. we see that vertices 4. 5 and 6 are

indistinguishable in G j, but the corresponding supemodes in are not. This is because enode 2 is

adjacent to supemodes 5 and 6. With the AMD algorithm as presented in Algorithm 5, the quotient graph

would remove enode 2 and supernodes 4 .5 . and 6 would be detected as indistinguishable.

Continuing with our discussion o f the quotient graph update for approximate degree algorithms in

Algorithm 5. we iterate over the adjacent supemodes and add their contributions to the degree and hash

value (lines 29-32). Then the supemode-hash value pair is inserted into a sorting mechanism for later use

(line 33) and the approximate degree is stored as well (line 34).

As to the complexity o f the algorithm, we will examine only the second loop of Algorithm 5 (lines 17-

34). The first inner loop (lines 20-28) is obviously 0 (|e a d j(r) |) , and the second 0 (|s a d j(r) |) . Using

Equation 3.9. we can show that one iteration o f the outer loop runs in 0 (|a d jCk(r) |) time. The time taken

for the AMD algorithm is therefore

3.3.7 Model Problems

The most complicated aspects about combinatorial ordering algorithms such as the minimum priority

family and Sloan [52] is that the asymptotic complexity depends on the quality o f the result. These

minimum priority algorithms are very sensitive to tie breaking, and the model problems start will all

nodes having the same degree. Therefore, we must assume a “perfect” tie-breaking strategy that MD.

MMD. and AMDail follow.

° £ E
\ t = 1 rgsniljffc)

(3.18)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

3.3.7.a Ring

Assume the graph o f a matrix is a simple ring o f n = 2‘ vertices. Then at any time, the |ad jg (t) | o f

any supemode or enode in the quotient graph is at most two. Therefore, we can bound the supemode

adjacency and enode adjacency by two. We assume the elimination order where we circle the ring and

eliminate every second supemode encountered. This ordering is the best case for multiple elimination.

We also note that the ring is a pathological case where no supemodes are indistinguishable at any time in

the ordering.

Note that the complexity is linear in all cases. This is because the supemode and enode adjacencies

are bounded by constants. MD is the most expensive, as expected, and MMD is faster because it only

M D(ring)
r€sadj(Jfc) c€ead j(r |

M M D(ring) I I Y |sadj(e)|
J = I r £ U w € * j siu!j(k) e 6 eat I j I r)

\
Y Y 4 ^ (4,,) = °{n)

J = l re U |,sK K.nljl*) /

Y Y iad^ (r)i
k=l rgsatljffc)

AMD(ring)

rgsadj(fc)

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

updates a supemode after both its left and right neighbors have been eliminated. AMD. on the other hand,

is also faster than MD in this case because

|ad jffl>(r) | = |e a d j(r)U sa d j(r) | = 2

< ^ 2 |sadj(e)| = 4.
f€ e a tlj(r)

3.3.7.b Torus

Assume a graph o f a standard five-point stencil on a torus with n = 2Jl vertices. Using an optimal tie-

breaking strategy, the adjacency set o f a supemode is bounded by four, but the same cannot be said for

the supemode adjacency o f an enode. Luckily, when using supemode amalgamation, we can bound the

principal supemode adjacency o f an enode by eight in this case.

To illustrate why the supemode adjacency o f an enode in a torus is bounded by eight when using an

optimal tie-breaking strategy, we show a series o f modified views o f quotient graphs in Figure 19. In this

figure, supemodes are represented as filled circles, enodes as empty squares, and edges are not drawn.

Instead, the edges are implied by a supemode being “near to” an enode. Lines in this modified view

denote the extent o f an enode’s reach. Therefore in Figure 19 we draw an enode in space, bounded by a

lines. All supemodes that are on the boundary line, are adjacent to that enode in the quotient graph.

Figure 19.1 represents the situation after the first mass o f elimination o f MMD. in which half o f

the supemodes have been eliminated. At this stage, each enode has exactly four adjacent supemodes.

Each supemode has an external degree (sum o f the weights o f the reachable set. minus self weight) o f

eight. Remember that for 2-D illustration o f a torus, the boundaries wrap around. After the second mass

elimination, as shown in Figure 19.2, another full fourth o f the remaining supemodes are eliminated.

Now each enode has eight adjacent supemodes. The external degree o f the supemodes now depends on

whether they are adjacent to two enodes, or four. Each enode is similar to a finite-element panel with the

supemode either being on the com er o r side o f the panel. The external degree for supemodes on the side

o f the panel (adjacent to two enodes) in Figure 19.2 is I I , the external degree for com er supemodes is

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

higher at 15. Figure 19.3a shows the graph after a maximal independent set o f side supernodes has been

eliminated. It would appear that the size o f the sadj o f the enodes has increased beyond eight.

Consider the enode at coordinates (5,5) in Figure 19.3a. It has three supernodes located at coordi

nates (5.4). (6.5). and (7,6) that it shares exclusively with the enode at (7,3). At this point, these three

supemodes are indistinguishable from each other (Figure 19.3b) and can be compressed into a single

representative supemode (Figure 19.3c). After compression, we see that each enode in Figure 19.3c is

adjacent to no more than eight supemodes. Now we compute the external degree o f all the supemodes.

The com er supernodes have external degree 3 1 (1 4 uncompressed supemodes, plus 6 compressed su

pemodes o f weight 3, minus self weight). The uncompressed edge supemodes have external degree of

19 (8 uncompressed supemodes, plus four compressed supemodes o f weight 3. minus self weight). The

compressed supemodes have the minimum external degree of 13 (10 uncompressed supemodes. plus two

compressed supemodes o f weight 3, minus self weight o f 3) and so a maximal independent set o f them is

chosen for the next mass elimination.

The process repeats in Figures I9 .4a-I9 .5c and will continue to do so until there are only two enodes

left (Figure 19.6). At this point, every supemode remaining is indistinguishable from every other, so they

are all compressed into one supernode and eliminated in the very next step.

A similar analytical tactic was used by Berman and Schnitger [10| to prove bounds on the size o f the

factor when using a minimum degree algorithm. Whereas we chose an optimal tie-breaking strategy for

computing bounds for execution time o f the algorithm, they chose one that grew the cliques in the factor to

be very large. Because o f the quotient graph and supemode amalgamation, the asymptotic complexity o f

the ordering algorithms is affected more by the number o f adjacent cliques than the size of these cliques.

Now that we have verified that for a quotient graph o f a 2 -0 torus with an optimal tie-breaking strategy

|sad j(e)| < 8 and |ead j(s)| < 4. we are ready to compute the bounds for MD, MMD and AMD.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

Continued on next p a g e . . .

FlG. 19. The Quotient Graph while eliminating a 16 x 16 torus. These are modified views o f
the quotient graph where lines denote boundaries o f an enode's connectivity. (I) After the first mass
elimination, (2) after the second mass elimination, (3a) after the third, (3b) highlighting indistinguishable
nodes, (3c) after indistinguishable nodes are compressed into a supemode.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

. . . Continued from previous page.

(4a)

I » ♦ * * » I * I* II IS II I* i»

(5a)

I I II it II it N II

(4b)

v \
X / s

\ \
(5b)

ii » it n

\

(4c)

I* II l| ■> M I* II

\
\

\

\

(5c)

(6)

FIGURE 19 (Continued): Similarly for (4a). (4b), (4c). (5a), (5b) and (5c). At (6), there are only two
enodes remaining, all supemodes are adjacent to both, so they are all compressed to a single supemode.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M D (torus) = (Y Y i lsadj (e)
^k — { r€sadj(&) e € e a d j(r)

' r.

E E E 8
I r£sadj(&) e £ e a d j(r)

f n >

E E 4<«
1 r€»adi(&)

< ^ 8 x 4 x 8 j
< (h x 8 x 4 x 8) = '256n = 0{n).

M M D (torus) = | ^ 5 Z X * |sad j(f) |
r f E U f c j K ^ i u I j l k) r * € e i i d j (r)

E E E 8
W= 1 r6 u * « K J '*adj(fc) r g e a d j(r)

E E 4 x 8
^ / = I r * = i j * € K ; !KuIj(fr»

(
n 3 3 3 ^

i + s n + \6 n + y>n + 'r 6 Ufc6^ sad^ * ^

(32 x (^ + 3n — ~p)^

(32 x j n) = 88n = 0 (n) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

88

AMD (torus) = J £ 5 1 la<% „ (r)l
y fe= l r€sndj(&)

= [51 51 |e a d j(r)U sa d j(r) |
\ f c = l r€sn tlj(t |

£ (t E J
Vfc=sl r€3adj(fc)

£ { i\k=i
8 x 4 = (32n) = 0 {n).

Now consider the elimination o f the first n /2 supernodes in the quotient graph of a torus. Then we

know

M D ? (to rus) < (£ 51 (51 |sadj(e)| J J . (3.19)
I r€«u lj(fc) \ r € c n t l j (r) J J

Since we also know that for the first n /2 supernodes the size of the supernode adjacency and enode

adjacency is exactly 4. we can simplify Equation 3.19 to

M D ${torus) < ^ x 4 x 4 x 4 = 32n. (3.20)

For multiple minimum degree, since the first n /2 supemodes form an independent set, they can all

be eliminated before the first quotient graph update. Therefore the outer sum in Equation 3.16 has but a

single term.

M M D f < (E £ Z lsadi(e) l) (3.21)
\j= t rgU k eK ^S iu Ijtt) e€eac tj(r) /

< 1 x ^ x 4 x 4 = 8n . (3.22)

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Finally, the running time for the first n /2 supemodes for AMDis

n /2

AMD 5 (to rus) < 1 ^ E . latiic;fc (r >l (3.23)
fc= l r£sadj(fc)

< ^ x 4 x 4 = 8n. (3.24)

3.3.8 Simplification

For all our model problems, we see that the bounds are linear. This is mainly due to the fact that the

models were chosen specifically because we could bound the size o f the supemode and enode adjacencies

by small constants. We suspect that this is true for whole classes of graphs such as planar graphs, though

there is no known proof at this time to support our conjecture that quotient graphs preserves planarity.

Before discussing these results, we want to simplify the notation in Equations 3.15, 3.16, and 3.18

which are reproduced below.

We consider first the AMDbound. The term inside the sums adjek(r) term represents the cost per

reachable node updated. Using Equations 3.10 and 3.13, we know that |adjgk(r) | < |.4 ..r |. Furthermore

we observe that (ignoring the effects o f precompression and supemode amalgamation) the double sum

H * = i !£ r€ s a d j (/ t) simply sums “H nonzero entries L t,r- Therefore, we can reverse the order o f the

summation show that

fc=t r€sadj(fc) r = l

This equation becomes a strict equality if precompression and supemode amalgamation are disabled. This

is also captured in the observation (again assuming no precompression or supemode amalgamation) that

o (E E (isadJ(r)i +• E isad-Ke)i
\ f c = l r6»adj(fc) \ r e e u d j(r l

a \ E E E
\J — • reU i^K ^sncljl*! rg e u d jln /

El ladiek(r)l] •
\ k = l r€»adj(fc))

MMD

n

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

each reachable supemode r is updated a number o f times equal to the number o f nonzeros in £ r-„. A

simplified bound for AMDcan be written as

This is identical to the bound reported by Amestoy. Davis, and Duff [2].

Unfortunately, applying this same technique does not remove all o f the summations from the bounds

for MD and MMD. In fact, this technique makes little sense for VIMD since several vertices adjacent

to r can be eliminated with r only being updated once. From the matrix point o f view, each reachable

supemode is updated at most the number o f nonzeros in Lr,„ and most likely much less so.

It is obvious that MMD is faster than MD and that AMDis faster than MD. The relationship between

MMD and AMDtakes some explaining. When there are no independent sets o f vertices o f minimal degree.

MMD can perform as badly as MD. However, every time L .,k i has two or more entries on the same row.

MMD performs only one update. Under optimal conditions MMD approaches AMD. When examining

the elimination of the first n/2 supem odes in the torus, we were able to show that MMD is as fast as

AMD. We will show experimentally later, that the first few iterations MMD can actually go faster than

AMD. most likely because AMD has a larger hidden constant in the asymptotic analysis.

3.3.9 Contribution

The fill reduction problem is so ingrained in sparse matrix computations, that every person who ever

solved a sparse linear system o f equations probably used an algorithm like MMD. or some equivalent.

The user base is easily in the tens o f thousands. This problem has been actively research for the past 20

years. The number o f papers published on this subject is easily in the hundreds.

We are the first to prove a detailed complexity analysis for MD, MMD, and AMD. We are also the

first to point out that, contrary to what is in literature, the quotient graph update is more time consuming

than computing the degrees o f the supemodes.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

In Section 4.3.3 we show how this insight into the differing characteristics o f MMD and AMD lead

us to implement a till reducing poly algorithm. In Section 5.2.3 we show some preliminary results from

this polymorphic algorithm.

3.4 Summary

It is one thing to implement an algorithm and demonstrate that it works well. It is quite another to analyze

it and know how it works and why it works well. In our research, we prefer the latter.

For the Sloan algorithm, we were able to reduce the asymptotic complexity from 0 (n r' ,:t) for 3-D

meshes with good separators to 0 { n log n). We non-dimensionalized the parameter space and identified

a previously unreported behavior o f the algorithm: the class- l/class-2 phenomenon. We were also able to

generalize the algorithm from a reordering algorithm to one that refined an existing ordering.

Greedy fill reducing ordering algorithms have been thoroughly examined for over 20 years. Yet.

we were the first to analyze the complexity o f these algorithms and definitively rank their asymptotic

behavior. We also correct the "common wisdom” that computing the degree is the most time-consuming

part o f the algorithm: analytically as well as experimentally. Our research also shows that MMD may be

asymptotically slower than AMD. though there are cases — such as the beginning o f the elimination —

where MMD is faster in practice. This vein o f research leads us to develop polyalgorithms that switch the

exact algorithm dynamically.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

4. SOFTWARE

We were initially attracted to object-oriented software from personal experience; our procedural codes

failed to scale well with increasing layers of complexity. All o f our work in the wavefront reduction

problem was originally done in ANSI C [52|. Subsequently, we retrained ourselves in object-oriented

programming, C++. and Java, then abandoned all the previous code and started from scratch.

Our firm foundation in state-of-art algorithms put us on track to build first class software, but that

result is not guaranteed. The transformation from algorithm to software is neither automated nor easy,

especially considering the high goals we set for ourselves back in Section 2.2.

We start by listing what resources were used in developing this software in Section 4 . 1 The basic

inheritance hierarchy is explained in Section 4.2. Section 4.3 highlights some o f the more attractive (and

complex) features of the software. We learned some hard, but practical, lessons in building this software.

Some o f these are discussed in Section 4.4.

4.1 Resources Used

Our primary computing platform was Sun workstations running Solaris 2.6. Recently we have had in

creasing access to WindowsNT and Linux computers. Because we skirted on the cutting edge with the

Standard Template Library (STL), most o f the early code was developed using the GNU C++ compiler

and the Silicon Graphics implementation o f STL1. Later, we moved to the EGCS com piler which even

tually included STL. STL is now a part o f the standard C++ standard library [78].

Managing the codebase is done with a collection o f shell scripts, peri scripts, an extensive makefile

setup inspired by PETSc, and RCS. Jam/MR1 was investigated as an alternative to makefiles, but was then

rejected because it lacked stability at the time. Debugging was done with Purify4 and an excellent free

graphical front end to GDB called DDD5.

lh t t p : / / www. s g i . c o m /T e c h / STL.
-EGCS was originally an experimental offshoot from the GNU compiler. The EGCS compiler has now superseded the GNU

compiler and is officially GNU C++ version 2.95. See h t t p : / / e g c s . c y g n u s . com for mote information.
Jh t t p : / / w w w .p e r f o r c e .c o m / j a m / j a m .h tm l
4h t t p : / / www. r a t i o n a X . c o m / p r o d u c t s /p u r l fy ju n lx
5h t t p : / / www.c s - t u . b s . d e / s o £ t e c h / d d d

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.per
http://www.cs-tu.bs.de/so%c2%a3tech/ddd

93

Unit and regression testing was done with a lot o f print statements and the UNIX d i f f command. It

was semi-automated by shell scripts and makefiles. Documentation was generated using d o c+ + 5, a free

package that creates DTgX or HTML documentation from commands imbedded in header comments.

Spmife was designed and implemented without any object modeling tools or an integrated develop

ment environment. With the exception of the underlying operating system the only non-free software

used was Purify. While there are several free or “open source" tools available, they are not all high quality

pieces o f software. A carpenter can build a house with just a hammer and a saw. but it goes much faster

with power tools. The same applies to software development and the piecemeal way in which a collection

o f free development tools was assembled.

4.2 Design

The very first partition in our problem space was to make a distinction between data structures and algo

rithms. Data structures are a structured collection o f information that can be valid, invalid, stored on disk,

queried or modified. Algorithms were computational engines that were hooked up to inputs, configured

to perform a service, run. queried for results, and possibly reset for another run. An algorithm does not

contain any data o f its own, and though it certainly has state while the software is running, it has no need

preserve its state after its execution is complete.

The glue that allows us to attach data structures to algorithms are iterator classes. The interaction

between data structures, algorithms, and iterators in our code is very similar to the way it is done in the

Standard Template Library (STL) [63.77].

We will discuss data structure, algorithm, and iterator classes shortly, but first we need to discuss the

abstract base class o f all data structure and algorithm classes: the S p i n d l e B a s e C l a s s .

4.2.1 Base Class and Meta Data

At the highest level of the inheritance hierarchy is an abstract base class called S p ind leB aseC lass.

Being the parent class of both the A lgorithm and D a ta S tru c tu re classes, this class has no real

6h c tp : / /w w w . z i b . d e / V i s u a I / so £ e w a re /d o c + +

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

class ClassMetaData
{
public:

const char * className
const size.t classSize ;
int nCreated ;
int nDestroyed
ClassMetaData * parentMetaData ;
SpindleBaseClass * (*p£n.CreateInstance()) ;
bool isDerivedFrom(const ClassMetaData * p) const

F ig . 20. Interface to the C lassM etaD a ca class.

equivalent in the physical world. Its use is limited to providing services for purely software related

reasons: instance counting, unique identification number service, access to class meta data7, providing

a safe runtime cast down the inheritance hierarchy8, instantiation by name, and other functionality to be

used later to support object persistence. Some of these features have been outdated by recent additions to

the C++ standard, but since compiler acceptance is slow and piecemeal we have not been eager to eject

these features entirely from the code.

We begin with the interface to the C la s s M e ta D a c a class in Figure 20. Exactly one instance o f

this class exists for each child o f S p i n d le B a s e C la s s . In turn. S p i n d l e B a s e C l a s s has a virtual

function that returns a pointer to its C la s s M e ta D a c a (see Figure 21). Therefore, for any child o f

S p i n d l e B a s e C l a s s — without knowing its exact type — we can access a string representation o f

its exact type, the size o f the concrete type, the number of instances o f that type created and destroyed,

access to its parent meta data, and access to the default constructor for that type.

The S p i n d l e B a s e C l a s s provides a minimal interface that generates unique numbers for each

instance, standardizes error information9, provides meta data, dumps state information (to be used only

as last resort), provides safe dynamic casting, and allows empty instances to be created on the fly.

7This was prior to standard C++ defining Run Time Type Infomation (RTTI).
‘ This was prior to standard C++ defining d y n a m ic -c a s t< T > .
‘’This is an experimental Feature.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

rclass SpindleBaseClass
{
protected:
const int idNumber ;
SpindleError * error;

public:
int queryIDNumber() const;
const SpindleError * queryErrorO const;
virtual const ClassMetaData * getMetaData() const ;
virtual void dump! FILE * fp) const ;
static SpindleBaseClass * dynamicCast(SpindleBaseClass * object) ;
static const SpindleBaseClass *
dynamicCast(const SpindleBaseClass * object) ;

static SpindleBaseClass * createlnstancet) ;

The last method in Figure 21 is not so interesting by itself. But. when it is accessed through the

C l a s s M e t a D a t a : : p f n . c r e a t e l n s t a n c e and a registry class indexes all instances o f C l a s s

M e ta D a ta by string name, we can effectively instantiate by name at run time. This infrastructure was

designed with the intent o f moving to persistent objects in parallel computing. Unfortunately, we have

not had the opportunity to actively exploit this capability in a parallel setting.

4.2.2 Data Structures and Object Persistence

The data structures implemented in Spmdfe are limited to bucket sorters, forests (collections o f trees),

graphs, heaps, maps, and matrices. Some are not particularly complex, less than 500 lines o f code. Others

are exceedingly complex; the Quo t i e n t G r a p h class is well over 2500 lines o f code. All o f them inherit

(directly or indirectly) from the Da t a S t r u e C u re class.

In this section, we will explain the features o f the D a t a S t r u c t u r e class, list all the classes that

inherit from it. show the sourcecode for a small driver that exercises the functionality inherited from

S p i n d l e B a s e C l a s s . and a program that demonstrates Spmdte’s persistence mechanism.

J

F ig . 21. Interface to the S p in d le B a s e C la s s class.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

class DataStructure : public SpindleBaseClass
{
protected:

enurn { INVALID, EMPTY, UNKNOWN, VALID } currentState ;

public:
virtual void reset() ;
virtual void validate() ,-
bool isValidO const { return currentState == VALID ,- }
static SpindleBaseClass * createlnstance() const ;

virtual void loadObjectt SpindleArchivea ar i ,-
virtual void storeObjectt SpindleArchivefc ar) const ;

4.2.2.a The D a taS tru c tu re Class

We show the interface to the D a t a S t r u c t u r e class in Figure 22. This class provides two major services

to all its descendants: it completes the services needed to implement object persistence, and it detines a

four-state scheme and transitions between those states that all data structures obey. Table 4 shows the

transition table between states.

S p rite 's data structures are built on the premise o f split-phase construction. It does not assume that a

data structure (or any class for that matter) is ready for use once the constructor is completed. Instead, it

allows the data structure to be incrementally defined. Users can set the size of a G ra p h , then provide the

adjacency lists, then add the vertex weights, etc.

The second phase o f this construction is a call to v a l i d a t e () . Exactly what constitutes a valid

state depends on the data structure itself. The P e rm u ta t io n M a p class for instance, need only verify

that all the integers from 0 to n — 1 are represented in a permutation vector o f length n. Our G ra p h needs

to check that the adjacency list o f each vertex is sorted and that there are no duplicated edges.

Once a data structure is in a known valid state, that state is intended to be maintained throughout the

rest o f the execution. Spindle provides a large number o f c o n s t member functions that access the data

structure without changing its state. Many n o n -c o n s t functions will preserve the known valid state o f

the data structure as long as no error was encountered.

}<•

FIG. 22. Interface to the D a ta S t r u c tu r e class.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

Ta b le 4
Transition table fo r the Da t a S t r u c t class

Method Initial Final
Invoked State State Comment
default constructor" N/A EMPTY
constructor with arguments* N/A VALID

INVALID
if method succeeds
if method fails

EMPTY EMPTY
reset() UNKNOWN EMPTY

VALID EMPTY
INVALID EMPTY
EMPTY UNKNOWN

INVALID
if method succeeds
if method fails

UNKNOWN UNKNOWN if method succeeds
setX(X& x)r INVALID if method fails

VALID UNKNOWN
INVALID

if method succeeds
if method fails

INVALID INVALID Error. Must reset!) from INVALID
EMPTY EMPTY Error. Nothing to validate.

UNKNOWN VALID if method succeeds
validate!) INVALID if method fails

VALID VALID Error. Already known VALID
INVALID INVALID Error. Must reset!) from INVALID
EMPTY UNKNOWN

other non-const methods UNKNOWN UNKNOWN
VALID UNKNOWN
INVALID INVALID Error. Must reset!) from INVALID
EMPTY EMPTY

other const methods'4 UNKNOWN UNKNOWN
VALID VALID
INVALID INVALID Error. Must reset!) from INVALID

“ Invokes resell).
'Typically provided For convenience. Invokes reset!), s e t . . . () For each argument, and ihen validate!).
r Where “X" is die type o f the argument begin supplied.
‘'Remember, const member functions should not change the state of the object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

4 JJ.b Descendants of D a taS tru c tu re

Here we list, briefly classes that either descend from D a t a S t r u c t u r e or are otherwise strongly related

in some way. The list o f classes is grouped according to a functionality.

• Maps. Generally mapping from the set o f integers [0 . . . n] to another set o f integers [0 . . . mj. All

maps provide two representations, one for the forward mapping and one for the reverse mapping.

- P e rm u ta t io n M a p . Encapsulates a one-to-one and onto mapping. Provides o ld 2 n e w

and/or n e w 2 o ld .

- C o m p re s s io n M a p . Encapsulates an onto, but not one-to-one mapping. Provides forward

and reverse mappings f i n e 2 c o a r s e and c o a r s e 2 f i n e .

- S ca t: te rM a p Encapsulates a one-to-one, but not onto mapping. Provides l o c 2 g l o b and/or

g lo b 2 1 o c (local to global and global to local).

• Forests — A collection o f I or more trees.

- G e n e r i c F o r e s t . Provides a generic collection o f trees. Can be created from simple array

o f parent pointers. Allows grafting and pruning o f trees. Provides a generic iterator as well as

preorder and postorder iterators that are full STL i n p u t . i t e r a t o r s .

- E l i m i n a t i o n F o r e s t . Inherits from G e n e r i c F o r e s t and implements a data structure

commonly used in direct methods. It can be created from a G r a p h or a (G rap h , P e r m u ta

t io n M a p) pair.

• Graph classes

- G ra p h B a s e . More like a parent s t r u c t than a parent class, this defines a generic layout

for adjacency lists in all graphs. Base classes like this are used to break cyclic dependencies

between different classes.

• G ra p h . Simple adjacency graph. May or may not have vertex weights and edge weights.

Provides const random access iterators over the adjacency list o f each vertex. Inherits from

D a t a S t r u c t u r e and G ra p h B a s e .

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

- Q u o t ie n tG r a p h . Custom data structure for generating fill reducing orderings.

• Matrix classes

- M a t r ix B a s e . More like a parent s t r u c t than a parent class, this defines a generic layout

for sparse matrices. Base classes like this are used to break cyclic dependencies between

different classes.

- M a t r i x . General sparse matrix. Has very little functionality since Spindle is essentially a

library o f graph algorithms. Inherits from D a t a S t r u c t u r e and M a tr ix B a s e .

• Misc

- B u c k e t S o r t e r . Sorts m items by n buckets, where m > n. Augmented to support removal

o f any item in any bucket by name in 0 (1) time.

- B in a ry H e a p . Augmented to locate any item in the heap by name in 0 (1) time.

• Utils — These classes are a actually just a collection o f static methods. They allow us to group

related functions, and keep from weighing down data structure classes unnecessarily. Utils do

not inherit from D a t a S t r u c t u r e because they have no state o f their own and cannot even be

instantiated.

- M a p U t i l s . A collection o f static member functions to do map manipulations such as: cre

ating an uncompressed permutation from a P e r m u ta t io n M a p on a compressed G ra p h .

- M a t r i x t J t i l s . A collection o f Matrix manipulation utilities such as: i s S y n u n e t r i c .

i s T r i a n g u l a r , m a k e D ia g o n a l s E x p l i c i t , m a k e T r a n s p o s e , etc.

It is interesting to note that even something as conceptually simple as a sparse matrix is implemented

as a collection o f classes; in this case, six (S p i n d l e B a s e C l a s s , M e ta D a ta , D a t a S t r u c t u r e .

M a t r ix B a s e , M a t r ix , and M a t r i x U t i l s) not including iterators. This was not how the software

was designed originally. It grew into this structure for very specific reasons. The reasoning behind

the separation between M a t r i x and M a t r i x B a s e is discussed in Section 4.3.1. The reason for the

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

separation between M a t r ix and M a t r i x U t i l s was that the latter is rarely used. We put it in a separate

class to cut down on complexity and feature bloat.

Utility classes like this are especially useful when the operation bridges two or more data structures

that otherwise should be independent o f each other. For instance, the M a p U ti ls class above can take

a P e r m u ta t io n M a p o f a compressed graph and its associated C o m p re s s io n M a p to compute a per

mutation on the larger uncompressed graph. Logically, we could have made this functionality a method

o f either map class, but then that class would be dependent on the other. Instead we created a separate

utilities class to handle map transformations.

4.2J.C Example: Using a ParmuCationMap

In Figure 23 we show a program that exercises some of the functionality that the P e rm u ta t io n M a p

class inherits from S p i n d l e S a s e C l a s s . This simple program does not perform any particularly useful

function other than to provide a starting point for other programs.

One item we have not described yet is the S p in d le S y s t e m class (line 2). This is a complicated

class that performs useful functions for the computer scientist. It directs where trace, warning, and error

messages are directed. It also manages a registry of all objects derived from S p i n d l e B a s e C l a s s

and their meta data. Sphtdfe is designed to allow only one instance o f the registry to be created and it

is guaranteed to be initialized in any compilation unit in which S p i n d le S y s t e m is included. The

mechanism for this is similar to the way that c i n and c o u t are instances o f i s . t r e a m and o s t r e a m ,

and are instantiated wherever i o s t r e a m . h is included in the source code [60.61). In line 10, we direct

the registry to print out all C la s s M e ta D a ta classes to standard out just before its destruction.

Moving on with our explanation o f Figure 23. we create a PermutationMap in lines 11-17. We

get the meta data from the registry in line 18. even though we could just as easily get it directly from the

class instance. In line 22, we create a second PermutationMap instance, though it is never validated.

At the end o f the code, when the SpindleSystem is being cleaned up, it destroys the registry

which, in turn, prints out the ClassMetaData for the SpindleBaseClass. DataStructure,

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

and P e rm u ta t io n M a p classes, their respective sizes, the number o f instances created and destroyed,

and the name o f their parent classes.

4.2.2.d Example: PermutationMap as a Persistent Object

Far more interesting than showing how to access the meta data o f an object is to demonstrate its persis

tence. In Figures 24 and 25, we have two programs. The first program creates a permutation, displays

it to the screen, and then packs it into a SpindleArchive, which in this case saves it to a file. The

second program opens the file and attaches an SpindleArchive class to it. Then we extract some

class from the archive through a pointer to SpindleBaseClass. The second program safely casts the

pointer back to its concrete type, prints out the internal state of the permutation, and then prints out the

contents o f the class registry. The outputs o f the two programs should be identical.

In principle, the archive could be attached to any type o f data stream: a pipe to another process, a

TCP/IP socket, an MPI communicator, etc. This framework allows us to construct instances without

knowing their exact type a priori. It also allows easy migration of data structures in and out o f processes.

We intended to use this extensively as we grew into parallel applications in the future. Unfortunately,

we have not had enough opportunity to explore this fully at this time. Furthermore, aspects o f this frame

work have been usurped by new features in the C-h - standard as well as component technologies such as

EJB. DCOM, and CORBA. W hether or not this functionality should be maintained through later revisions

is unclear at this time.

4.2.3 Algorithms as Engines

Typically new object-oriented programmers convert their data structures into classes and bundle all o f the

associated functions into class methods. In principle this is a good start, but it is not a blanket solution

for all cases. We have stumbled across many a debate as to whether the ordering algorithm belongs as a

method o f the Matrix class o r the PermutationMap class. In fact, it belongs in neither.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. If include <iostreaxn>
2. If include “spindle/SpindleSystem.h"
3. #include “spindle/PermutationMap.h"

4. using namespace std;
5. If ifdef SPINDLE_USE_NAMESPACES
6. using namespace SPINDLE_NAMESPACE;
7. tfendif

8. tfdefine REGISTRY SpindleSystem::registry()

9. mainO {
10. REGISTRY.setDumpOnDestroy(stdout);

11. const int perm_array[] = {3, 4, 2 , 0, 1);
12. PermutationMap perm(5);
13. perm.getOld2New().import(perm_array, 5);
14. perm.validate();
15. if (! perm.isValidl)) {
16. cerr << “Permutation not valid I" « endl;
17. exit(-1 >;

)

13. const ClassMetaData' metaData = REGISTRY.findClass("PermutationMap")

19. cout << "Size of PermutationMap class = "
<< sizeof(PermutationMap) « endl;

20. cout << "According to the registry it is = •
<< metaData->classSize « endl;

21. cout << “This perm object is serial If = *
<< perm.queryIDNumber() << endl;

22. PermutationMap perm2(8);
23. cout << “perm2 is “ « ((perm2.isValid()) ? ““ : “not “)

<< “valid." << endl;
24. cout << "The second PermutationMap object has serial lf“

<< perm2 .querylDNumber () « endl;

}

FIG. 23. Example o f P erm u ta tio n M a p

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

1. ftinclude <iostream>
2. ftinclude "spindle/SpindleSystem.h"
3. ^include "spindle/PermutationMap.h“
4. ftinclude "spindle/SpindleArchive.h“
5. tfinclude "spindle/SpindleFile.h"

6. using namespace std ;
7. tfifdef SPINDLE_USE_NAMESPACES
8. using namespace SPINDLE_NAMESPACE;
7. (fendif

8. const int perm_array[] = { 3, 4, 2, 0, 1 };

9. mainO (

// create a new permutation
12. PermutationMap ' perm = new PermutationMap(5);
13. perm->getNew201d().import! perm_array, 5);
14. perm->validate();
15. if (! perm->isValid()) (
16. cerr << "Error validating original perm." << endl;
17. exit! -1);

}

18. perm->dump(stdout); // display its contents

19. SpindleFile outputFile! "temp.out", "w"); // create a file
20. SpindleArchive archive! &outputFile, // create an archive

SpindleArchive::store | SpindleArchive::noByteSwap);

21. archive << perm ; // set the object into the archive.

22. delete perm ; // delete the original object
}

FlC. 24 . Object persistence o f P e r m u ta tio n M a p , part / . This piece o f software produces an
instance o f a P e r m u ta t io n M a p class, and puts it in an archive.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

1. It include <iostream>
2. ftinclude "spindle/SpindleSystem. h"
3. Itinclude "spindle/PermutationMap.h"
4. Itinclude ‘spindle/SpindleArchive.h"
5. Itinclude "spindle/SpindleFile.h"

6. using namespace std ;
7. Itifdef SPINDLE_USE.NAMESPACES
8. using namespace SPINDLE_NAMESPACE;
7. Itendif

8. const int perm_array[] = { 3 , 4, 2,0, 1 };

9. mainO {
10. SpindleBaseClass * object = 0 ;
11. SpindlePile inputFile! "temp.out", "r">; // create file
12. SpindleArchive archive! &inputFile, // create archive

SpindleArchive:: load | SpindleArchive: :noByteSwap

13. archive >> object; // extract an object from the archive

// check if we retrieved the object
14. if (object == 0) {
15. cerr << "Did not retrieve object." << endl ;
16. exit(-1) ;

}

// check if it can be safely cast as a PermutationMap
17. PermutationMap* perm = PermutationMap::dynamicCast(object);
18. if (perm == 0) {
19. cerr << "Dynamic cast failed." << endl ;
20. exit! -1);

}

// check if the content of the PermutationMap is valid.
21. perm->validate () ,-
22. if (!perm->isValid()) {
23. cerr « “Validation of new perm failed." << endl ;
24. exit! -1);

}

25. perm->dump(stdout) ,- // print out contents,
// (should be same as first run)

26. delete perm;
)

FIG. 25 . Object persistence o f P e r m u ta tio n M a p : part 2. This program finds the archive file
created by the previous program. extracts the objects contained therein, identifies it, and uses it.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

rclass SpindleAlgorithm : public SpindleBaseClass
{
protected:
enum { INVALID, EMPTY, READY, DONE } currentState ;

public:
virtual void reset() ;
virtual void execute)) ,-
bool isValidO const { return currentState != INVALID ,- }
bool isEmptyO const { return currentState == EMPTY ,- }
bool isReadyO const { return currentState == READY ; J
bool isDoneO const { return currentState == DONE ; }

FlG. 26. Interface to the S p in d le A lg o r i th m class.

There are many ordering algorithms, many o f them very complex. It is one thing to group simple

transformations, such as matrix transpose, into a utilities class; quite another for a complicated algorithm

like Sloan or minimum degree.

These algorithms have states o f their own. They can be executed several times with varying parameters

over the same data. There can be all kinds of special cases and complexity that can be hidden from the

user inside an intelligent class. There can also be methods to open up all kinds o f details and nuances that

only advanced users might be interested in.

Complicated algorithms are classes in their own right. We will soon see that just as some data struc

tures are implemented by combining several classes, so to are our algorithm classes.

4.2.3.a The S p in d le A lg o r ith m Class

The S p i n d l e A l g o r i t h m class is an ancestor o f ail heavy-duty algorithm classes in Spindfe. Like the

D a t a S t r u c t u r e class, the S p in d le A lg o r i th m c la s s delines a four-state scheme that all algorithms

adhere to. although their semantics are slightly different.

The four states defined by S p i n d l e A l g o r i t h m are; EMPTY, READY, DONE, and INVALID. Data

structures allow a split-phase setup and then work very hard to insure they remain in a valid state. Algo

rithms also allow incremental specifications until they have sufficient inputs to generate an output. Even

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

Table 5
Transition table fo r the S p i n d l e A l g o r i thm class

Method
Invoked

Initial
State

Final
State Comment

default constructor" N/A EMPTY

other constructor* N/A
EMPTY if not enough to execute
READY if enough info to execute
INVALID if method faiIs

reset()

EMPTY EMPTY
READY EMPTY
DONE EMPTY
INVALID EMPTY

setX(X& x)‘
enableXO

EMPTY
EMPTY if still not enough to execute
READY if now has enough to execute
INVAL ID if method fai Is

READY READY if method succeeds
INVALID if method fails

DONE READY if method succeeds
INVALID if method fails

INVALID INVALID Error. Must reset!) from INVALID

execute!)

EMPTY EMPTY Error. No data to execute on.

READY VALID if algorithm succeeds
INVALID if algorithm fails

DONE DONE Error. Already known VALID
INVALID INVALID Error. Must reset!) from INVALID

other n o n -c o n s t methods

EMPTY
EMPTY if still not enough to execute
READY if now has enough to execute
INVALID if method fails

READY READY

DONE
READY if can execute again
DONE if cannot execute again
INVALID if method fails

INVALID INVALID Error. Must reset!) from INVALID

other c o n s t methods'*

EMPTY EMPTY
READY READY
DONE DONE
INVALID INVALID Error. Must reset!) from INVALID

‘'Invokes resell).
‘’’typically provided for convenience. Invokes reset!), and s e t . . . I) for each argument.
r Whete “X” is the type o f the argument begin supplied.
‘‘Remember, c o n s t member functions should not change (he state o f the object

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

when they can generate an output, it does not necessarily mean that they should. There might, after all. be

additional specifications or details to be set and we do not want to restrict the user to have to enter them in

any particular order. When the user is ready, a call to e x e c u t e () will signal the S p i n d l e A l g o r i t h m

to execute.

If the run is a success, then it is up to the user to ask for whatever output the algorithm is prepared

to generate. After running a MMD ordering, one user may ask for a P e r m u ta t io n M a p object, another

may have use for the E l i m i n a t i o n F o r e s t . and yet another may be interested in diagnostic statistics.

As long as the algorithm is in its DONE state, all these outputs are available upon request. Or a user may

set a new parameter thereby restoring the algorithm to the READY state. At this point, the algorithm can

be executed on the modified input.

In short, these algorithm classes become computational engines or services. The ability to construct

an empty instance, set parameters and inputs individually, execute, and examine the results upon request,

are very similar in flavor to event driven graphical user interfaces and even CGI driven web pages. In

these web pages, the user typically requests an empty page, makes selections, types entries, sets input,

then presses a button typically labeled “Submit” . All the inputs are then packaged and sent to the server

which parses them, performs some operation, and then presents the user with some feedback as to whether

the transaction was successful or not. and whether the user would like to examine the results in any greater

detail.

The concept o f algorithms as engines that provide services is a point o f view echoed by the component

based software community. We did not happen across component based technology until very recently.

Nevertheless, we feel that the similarities are not purely coincidental.

4.2 J.b Descendants of SpindlaAlgoritha

As Spindle is a library o f ordering algorithms, it is not surprising to And that most o f the largest and most

complicated classes are the ordering algorithm classes. There are also supporting classes that perform

tasks required by the ordering algorithms. We list all the descendants o f S p i n d l e A l g o r i t h m below:

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

• Support. Though not really ordering algorithms themselves, these classes provide important ser

vices to the ordering algorithms.

- BreadthFirstSearch. Given a graph and a starting point, this algorithm traverses the

graph by generating level structures. This implementation can abort the algorithm if the width

of level structure is beyond the user specified tolerance (implements short-circuiting strategy

for PseudoDiameter). This class allows specification o f multiple root nodes should the

user prefer a breadth-first-search from a set o f vertices. Alternatively, this implementation

also can be restricted to consider only vertices in the same subdomain o f a partitioned graph.

- G ra p h C o m p re s s o r . Given an adjacency graph, this class will compute the number of

vertices in the compressed graph. Then, if the user requests, it will generate a compressed,

vertex weighted G ra p h class and C o m p re ss io n M ap from the uncompressed vertices to the

compressed vertices. This class is used by the O r d e r in g A lg o r i t h m class.

- PseudoDiameter. This class implements the algorithm discussed in Section 3 .1. Must be

run for each connected component of the graph. It can be set to observe domain restrictions

on a partitioned graph. It also relies on a separate class derived from ShinkingStrategy

to restrict the number o f candidates examined. We explain this in detail in Section 4.3.2.

- S y m b o l i c F a c t o r i z a t i o n . This descendant o f S p i n d l e A l g o r i t h m implements the

first half o f the factoring operation in Figure 2. Given a G ra p h or a G r a p h and either

a P e rm u ta t io n M a p o r an E l i m i n a t i o n F o r e s t , this class computes the E l im in a

t i o n F o r e s t (if not supplied) and then generates a Perm u c a t io n M ap that is a proper

post order o f the E l i m i n a t i o n F o r e s t . It then calculates the amount o f storage required

to store the factor as well as the amount o f work required to compute it.

• Ordering Algorithms.

- OrderingAlgorithm. Derived from SpindleAlgorithm, this class is the parent o f all

the other ordering classes. It provides a uniform interface for all ordering algorithms. It also

handles precompression o f the input graph and mapping the permutation o f the compressed

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

graph back to the uncompressed graph. Therefore, all derived classes need only concentrate

on the compressed graph. Users can control when graph compression is actually used by

setting a tolerance for the ratio o f vertices in the compressed graph to vertices in the original

graph. When this ratio is close to one. there may be little or no benefit to actually creating a

second graph instance.

- RCMEngine. Derived from OrderingAlgorithm. this class will automatically run the

RCM algorithm on each connected component of the input graph. It can also be set to restrict

the ordering within subdomains o f a partitioned system.

- S lo a n E n g in e . Also derived from O r d e r in g A lg o r i t h m . this class will automatically

compute a Sloan ordering on each connected component of the input graph. By default, it

will perform two orderings, one with "Class I" and one with “Class 2" weighting strategies

(see Section 3.2.5.d). and automatically choose the best result for each connected component.

Alternatively, the user can specify what class o f weights should be used, whether they be

normalized or not. individual weights, or even the global function to employ other than the

one provided; the distance from the endpoint.

Like RCM. it can also be set to restrict the ordering within subdomains o f a partitioned system.

This algorithm class can also be set to refine an existing ordering whether it be an explicit

permutation or the implicit ordering o f the input graph. It also allows the user to explicitly set

the start node, end node, or both in lieu o f the P s e u d o D ia m e te r class. Furthermore, whole

sets o f start and/or end nodes can be specified. There is also a mechanism to ensure that end

vertices are guaranteed to be numbered last.

- MinPriorityEngine. This class inherits from OrderingAlgorithm and implements

a collection o f greedy, fill-reducing ordering algorithms. It allows single o r multiple elimina

tion with exact updates, o r single elimination with approximate updates. As these algorithms

tend to be sensitive to input orderings, this class allows the user to randomize the graph before

performing the ordering, o r set a specific permutation. It sets a tolerance for when heavily con

nected vertices are removed and numbered last, even before the ordering begins. It can even

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

recreate a bug in GENMMD where vertices adjacent to an enode have their degree artificially

inflated by one (not recommended).

4.2 J .c Algorithms in Action

Figure 27 is a minimal driver for the different ordering algorithms in Spmdfe. Lines 1-3 simply lay out the

arrays that will be used to create our G ra p h class (line 11).

T h e O p t io n D a ta b a s e d a s s o n line5 is a convenient class to handle configuration details. It defines

an “option" as a flag and zero or more associated arguments. The flag and arguments are all stored as

strings, but the O p t i o n D a ta b a s e provides methods that safely extract ints, floats and the like from the

string representation. In line 6. we pass it the command line arguments, but we skip a r g v [0] since its

always the name o f the program being executed and does not provide any useful information to the class.

The O p t io n D a ta b a s e class also can be queried if options exist. We can see from line 6 o f Fig

ure 27 that the query can be a string o f logically or'ed possibilities. Lines 7-10 simply print out useage

information if its queried, or if no minimize option is specified.

In lines 11-13. we create a graph class to perform an ordering on and insure it is valid. In lines 14-

20 we create an instance of an ordering algorithm based on the user's commandline option and pass the

newly created object to a pointer to the parent class O r d e r i n g A l g o r i t h m . If the user did not provide

a valid argument on the command line, lines 20-22 print an error message and exit.

The rest o f the code in Figure 27 is almost self explanatory. We give the ordering algorithm a graph

to operate on (line 24), run the algorithm (line 26), gain access to the resulting permutation (line 28) and

print its contents to the screen.

4.2.4 Iterators

Separating the data structures from algorithms is extremely beneficial in creating modular code. Creating

a usable interface whereby modules can interact efficiently is difficult. The best compromise we found

was to use iterator classes. The algorithms assume that iterators have a certain interface for traversing a

set o f data, and the data structures implement iterators specific to their implementation.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

// includes go here
ft include ...

II
1. const int nvtxs = 9 ;
2. const int adjhead[} = {0,2,5,7,11,14,16,19,21};
3. const int adjlistll = {1,3,0,2,4,1,5,1,3,5,7,2,4,8,3,7,4.6.8,5,7};

4. int main(int argc, const char * argvU) {

5. OptionDatabase db;
6. db. loadCommandLineOptions (argc - 1 , argv + 1) ,-
7. i£ (db.hasOption("h|help|?“) || (fdb.hasOption<"minimize"))) {
8. cout << "Usage « argv[0 1

« " -minimize [fill | env | w£ | bw |“ « endl ;
9. exit (0) ,-

}

10. Graph mesh3x3(9, adjhead, adjlist);
11. mesh3x3.validate();
12. assert! mesh3x3.isValid!) };

13. OrderingAlgorithm * order;
14. if (db.hasOption! "minimize", "fill")) {
15. order = new MinPriorityEngine() ;
16. } else if (db.hasOption! "minimize", "env|wf")) {
17. order = new SloanEngine!) ,-
18. } else if 1 db.hasOption! "minimize", "bw")) {
19. order = new RCMEngine!) ;
20. } else {
21. cout << "Error: Invalid argument to minimize"

<< db.getOption("minimize") << endl;
22. exit! -1);

}
23. assert! order->isEmpty());

24. order->setGraph(& mesh3x3),-
25. assert! order->isReady());

26 . order->execute();
27. assert! order->isDone());

28. const PermutationMap * result = order->getPermutation();
29. assert! result->isValid());
30. result->dump< stdout);

31. delete order;
32. return 0;

FlG. 27. Example: Algorithms in action. This is a minimal use o f the ordering algorithms. They
have a lot o f options to trigger before invoking e x e c u t e O -

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

bool isAdjacentl const Graphs g, int i, int j) const
{ '

£or(int k = g.adjHeadfil ; k < g.adjHead[i+l]; ++k) {
if (g.adjList[kl == j) {
return true;

}
}
return false;

___ j

FlG. 28. A C-like function that directly accesses a Graph's data

It is important to question if iterator classes are really necessary in our case. The algorithms in Spmdfe

operate on a graph or a matrix, they are not as general as algorithms provided in STL [77] like s o r t ()

which operates on vectors, lists, and deques. On the other hand, we are designing for flexibility. While

Spmdfe in its original incarnation performs orderings on just G ra p h classes, we wanted to allow for more

classes later. Indeed we see indications of this happening in Section 6. Although this iterator paradigm

was successful in many cases, we also discuss where they were misapplied and dragged performance

significantly in Section 4.4.1.

4.2.4.a Definition of an Iterator.

An iterator is closely associated with a particular container class, usually a “friend” class, that enables

traversing items in the container without revealing its underlying storage mechanism.

Assume, for example, that the list o f all edges in a Graph are in the array a d j L i s t [] and that a

second array a d jH e a d [] stores the beginning index into a d j L i s t [] for each vertex in the graph.

Then to check if vertex i is adjacent to vertex j , we could simply run through the arrays as in Figure 28.

This design has several flaws. The function assumes the layout o f data in the G ra p h class and accesses

it directly. Consider now a different approach where the G ra p h class creates an iterator. Conventionally,

the iterator classes mimic the functionality o f a pointer accessing an array. The dereference operator,

o p e r a t o r * () , is overloaded to access the current item in the container, and the increment operator,

o p e r a t o r * * ()) . advances the iterator to the next item in the container. Rewriting our function in

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

f b o o l i s A d j a c e n t (c o n s t G r a p h & g , i n t i

{
, i n t j) c o n s

f o r (G r a p h : : a d j . i t e r a t o r i t = g . a d j - b e g i n (i) ;
i t != g . a d j . e n d t i) ; + + i t) {

i f (* i t == j) {
r e t u r n t r u e ;

}
}
r e t u r n f a l s e ;

J

FtG. 29. A C++ global function using Graph: utdjJterator

Figure 28. we define G r a p h : : a d j - b e g i n (i n t) to create an iterator pointing to the beginning of the

adjacency list o f a specified vertex and G r a p h : : a d j . e n d (i n t) to return an iterator pointing to the

end of the list10. This new implementation is presented in Figure 29.

The benefit o f the iterator approach is that the function is A d j a c e n t () no longer assumes how the

data inside G ra p h is laid out. If it is indeed sequential as it was in the previous example, then the iterator

could be simply a c y p e d e f ’ed i n t * . However, the adjacency lists could be stored in a red-black tree

for faster insertions and deletions. In this case, the example using iterators still applies since it assumes a

suitable iterator class is provided.

4.2.4.b Application o f Iterators.

Iterators provide a kind o f “compile-time" polymorphism. They allow a level o f abstraction between

the data structure and the algorithm, but the concrete implementation is determined at compile time. This

allows the compiler to inline function calls (often through several levels) and get very good performance11.

There were a few difficulties in applying this technique to our problems. The most complicated aspect

was that all STL containers are one-dimensional constructs. Most o f our data structures — matrices

and graphs — are two dimensional. This was not a serious problem since we. as programmers, tend to

10Actually, it points to one past the end—a standard C++ convention.
11 C++ cannot inline virtual functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

linearize things anyway. In the example o f iterators before, for instance, we simply used iterator to iterate

over the set o f vertices adjacent to a particular vertex.

4.3 Features

The features provided in Sphtdle are a direct result o f the design principles we enumerated in Section 2.2.

In this section, we give examples o f particularly useful features that were implemented for usability,

flexibility, and extensibility in the code.

4.3.1 Multiple File Formats: A case for multiple inheritance

An important problem that we often run into is sharing problems with other researchers. Whenever

we agree to generate some solutions for a client (either academia or industry) we often And that we

must adapt our code to a new file format. There have been attempts to standardize sparse matrix file

formats, most notably the Harwell-Boeing Format [23|, and the Matrix Market format [12|. However, it

is unreasonable to expect clients to restrict themselves to a small choice of formats. Understanding the

nature o f this problem and applying object-oriented techniques are good exercises in preparation for the

harder problems ahead.

The easiest way to handle sparse matrix I/O is to have a matrix class with two member functions:

one to write a particular format and another to read that format. This is a simple solution, but it has a

scalability problem. First, as the number o f formats increase, the number of member functions grows and

the matrix class becomes more and more cumbersome. Second, if separate matrix classes are needed then

all o f the I/O functions must be replicated for each class.

4 J .l.a The Chicken and Egg Problem

One could reasonably create a M a t r i x class and a M a t r i x F i l e class for each matrix file format.

Unfortunately the resulting problem is determining which creates which. One would expect to create a

matrix from a file, but it also makes sense to create a file from the matrix. See, for example, the class

header files in Figure 30.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

/ / Mairix.h '
(♦include "MatrixFile.h"

class Matrix
{
public:
Matrix) MatrixFileS)
/ / . . .

};

//MatrixFile.h
(♦include "Matrix.h"

class MatrixFile
{
public:
MatrixFile) Matrixfc)
/ / . . .

FlG. 30. Example: cyclic dependency between classes.

Such a design induces a cyclic dependency between the two objects, which is bad. Cyclic dependen

cies can have a dramatic effect on the cost of maintaining code, especially if there are concrete classes

inheriting from the cyclic dependency [54. pg. 224). This is exactly the case here, since the intention is

to abstract away the differences between different file formats.

A solution is to escalate the commonality between the two classes. This has the advantage that the

dependencies are made acyclic, the downside is that an additional class is introduced for purely "computer

science” reasons that has no physical counterpart. We will call this class MatrixBase which is the direct

ancestor o f both the Matrix and MatrixFile classes. The latter two are shown in their improved form

in Figure 31.

Now we can derive various matrix file formats from M a t r i x F i l e independent from the internal

computer representation o f the Matrix. We will show later that the benefits compound when considering

matrix to graph and graph to matrix conversions.

/ / Mat rix.h (second /rv)
(♦include “MatrixBase.h"

class Matrix
: public MatrixBase

{
public:
Matrix) MatrixBase&)
/ / . . .

//MatrixFile.h (second try) >
#include "MatrixBase.h"

class MatrixFile
: public MatrixBase

{
public:
MatrixFile) MatrixBasefc) ;

/ / . . .

b

FlG. 3 1. Example: removing cyclic dependencies by ecalation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

4 J .l.b Navigating Layers o f Abstraction

It is important to understand that abstractions involved around the construct we call a "matrix" come from

different levels and have different purposes. To define a class M a t r i x and possibly many subclasses,

care must be taken to capture the abstraction correctly. It is hard to give a formula for designing a set o f

classes to implement an abstract concept. However, when the abstraction is captured just right, using it in

the code is natural and intuitive. Good designs often open new possibilities that had not been considered.

For the matrix object, we have identified at least two dimensions o f abstraction that are essentially

independent, one from the mathematical point o f view, one from the computer science point o f view.

Along the first dimension, the mathematical one, a matrix can be sparse, dense, banded, triangular,

symmetric, rectangular, real or complex, rank deficient or have full rank. etc. From a mathematical point

o f view, all o f these words describe a property o f the matrix.

From a computer science point o f view, there are different ways that these 2-D constructs are mapped

out into computer memory which is iself one dimensional. Primarily, matrices must be set in either row-

major or column-major order, though diagonally arranged data has been used in some cases. For sparse

matrices, indices can start counting from zero or one. Layout is further complicated by block structures,

graph compression, etc.

The critical question is: in all the specifications of matrix listed above, which ones are specializa

tions o f a matrix and which ones are attributes? The answer to this question directs which concepts are

implemented by subclassing and which are implemented as fields inside the class.

The answer also depends on how the class(es) will be used. Rarely will a programmer find a need

to implement separate classes for full rank and rank deficient matrices, but it is also not obvious that a

programmer must implement sparse and dense matrices as separate classes either. Matlab uses the same

structure for sparse and dense matrices and allows conversion between the two. On the other hand, PETSc

has both sparse and dense matrices subclassed from their abstract M at base class.

A third dimension o f complexity comes from matrix file formats, which can be either a text or binary

file, and more generally, a pipe, socket connection, or other forms o f I/O streams. In particular, even if the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

matrix is symmetric, and the storage is explicit, it may still be implicit — meaning only the lower/upper

triangle is stored — to conserve disk-space/banwidth/etc.

4 J .l.c Final Layout

Our major concern was to have a flexible extensible system for getting matrices in many different formats

in and out of our programs at runtime. We discuss in this section how we finally organized our solution.

The inheritance hierarchy of the subsystem is shown in Fig. 32.

First we made non-abstract base classes GraphBase and MatrixBase which define a general

layout for the data. From these, we derive Graph and Matrix classes which provide the public acces

sor/mutator functions, each provide constructors from both GraphBase and MatrixBase. Further

more, Graph and Matrix classes also inherit from the DataStructure class which gives it generic

data structure state, error reporting functionality, and all the other features described in Section 4.2.2. This

way, both can construct from each other without the cyclic dependencies.

The final important piece before fitting together the entire puzzle is a D a c a S tre a m class. This

abstract base class has no ancestors and does all o f its I /O using the C style F I L E pointers. We chose

this C-style of I/O because, although it lacks the type-safety o f C++ style i o s t r e a m . it does allow us to

do I/O through files, pipes, and sockets. These features have unfortunately not been included in the C++

standard.

If we try to open a file with a " , g z " suffix, the file object inherits from the DataStream class the

functionality to open a FILE pointer that is in fact a pipe to the output o f gunzip12. The DataStream

class is therefore responsible for opening and closing the file, uncompressing if necessary, opening or

closing the pipe, or the socket, etc. but is an abstract class because it doesn't know what to do with the

FILE once it’s initialized. This class also provides the error handling services that are typical with file

UO.

To understand how all these partial classes come together to do I/O for a sparse matrix format, consider

adding a new format to the library, a Matrix Market file. To be able to read this format, we create a class

n T h e“ .g z " suffix indicates a file that is compressed with the GNU zip utility (g z ip) and can be uncompressed by its comple
ment. g u n z ip .

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

MatrixMarketFile which inherits from MatrixBase and DataStream. This new class needs to

implement two constructors based on MatrixBase or GraphBase and two virtual functions: read (

FILE *) and write! FILE *) (in practice, it also implements many more accessor/modifier

methods specific to the Matrix Market format). Now. we can read a Matrix Market file, and create

instances o f either Graph or Matrix (or any other class that uses a MatrixBase in its constructor).

Furthermore, from any class that inherits from MatrixBase or GraphBase we can write the object in

Matrix Market format. A graph-based file format, for instance Chaco [44| can be created using a similar

inheritance hierarchy based on GraphBase.

4.3.2 Extensibile Pseudo-Diameter

As we saw in Section 3.1.3 even simple algorithms like the pseudo-diameter computation are under con

stant improvement. Good software needs to be aware o f this fact and allow for it to be easily adapted —

lest it become obsolete.

To implement the many different shrinking strategies and allow for the subsequent development of

new ones, we created a separate homomorphic inheritance hierarchy just to implement shrinking strate

gies. The abstract base class S h r i n k i n g S t r a t e g y , defines two vectors of (vertex, degree) pairs, a

function that takes an array o f vertices and a c o n s t G ra p h pointer and packs the (vertex.degree) pairs

into one o f the vectors, and a pure virtual function that copies a subset o f (vertex, degree) pairs from the

first vector to the second. Concrete classes derived from S h r i n k i n g S t r a t e g y , must define exactly

how (vertex, degree) pairs from the first vector are chosen for the second.

Spindle's P s e u d o D ia m e te r class has a pointer to the abstract base class S h r i n k i n g S t r a t e g y

and has no knowledge which derived class is actually being used. In fact, we were able to implement the

more aggressive shrinking strategies o f Reid and Scott [72] without modifying any o f the existing code.

It turns out that this design is an instance o f the Strategy Pattern [30. pg. 3 IS]. We show the relation

ships between the classes in Figure 33 This important design pattern offers several benefits. It provides

a more efficient and more extensible alternative to long chains o f conditional statements for selecting

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

[Object]

MatmMarkctFormat Matrix
Matrix(GraphBase* g b);
Matrix! MatrixBase* m b);

UserDeflncdForniat Graph
Graph(GraphBase* g b);
Graph! MatrixBase* m b);

MatrixBase
int nrows;
int ncols;
double * data
int • col j> tr
int * row idx;

GraphBase
intnvtxs;
int * vtx_weight;
int • edge_weight;
int * adj_head;
int • a d jjis t;

ChacoFormat
ChacoFonnat(GraphBase* gb);
ChacoFormat(MatrixBase* m b);
virtual read(FILE * fp);
virtual write(FILE • fp);

Harwell BocingFormat
HarweIlBocingFormat(GraphBase* gb);
HarwellBoeingFonnat(MatrixBase& mb);
virtual read(FILE * f p);
virtual write(FILE * f p);

DataStream
FILE * fp;
opcn(const char * command, const char * m ode);
virtual readf FILE *fp)=‘0;
virtual writef FILE fp)-0;

FIG. 32. Inheritance hierarchy fo r multiple matrixformats. A fragment o f the inheritance hierarchy
highlighting how multiplefile formats are implemented and extended. To add an additionalformat, simply
inherit from D a ta S tr e a m and one o f G r a p h B a s e or M a tr ix B a s e . Then implement the two pure
virtual methods inherited from D a ta S tr e a m .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

r ■> PriarityStratagy
PriorityStxatagy* s; p r i o r i t i z e ! 1 -0
run()

UscrOtfincd

p r io r it ir a () ; p r io r it ix a ();
• • •

prioci.ti.xa ();
.

FlG. 33. The Strategy Pattern. Applied in this case to shrinking strategies for the pseudo-diameter
algorithm.

desired behavior. It allows new strategies to be implemented without changing any code in the P s e u d o -

D ia m e te r class. It is also more attractive than overriding a member function o f the P s e u d o D ia m e te r

class directly because of the its overall complexity.

4.3.3 Polymorphic Fill-Reducing Orderings

One example where object-oriented implementation had substantial payoffs in terms of extensibility was

in our ability to construct polymorphic fill reducing orderings. Recall from Table 3 that there are several

different types o f greedy algorithms, many o f which are quite recent. In fact, there is no known library

containing all o f these algorithms, besides Spindle. While some o f these heuristics are related, others —

particularly MMD and AMD — are radically different in the ways that degree is computed, the underlying

graph is updated, and what optimizations are allowed and disallowed. Fundamentally, MMD allows

lazy update o f the quotient graph by allowing multiple vertices to be removed between each update.

AMD doesn’t require as much work per graph update, but the graph must be updated after every node is

eliminated.

We wanted to use the Strategy Pattern [30, pg. 3 IS] again as we did in Section 4.3.2, but this time

the design was more complicated. The P s e u d o D ia m e te r class did not know or care about the way the

set o f candidate vertices was reduced. The M i n P r i o r i t y E n g i n e did not know the formula used to

compute the vertices’ priority, but it does need to know if the strategy allows the lazy update mechanism

o f MMD or if it needs a single elimination scheme to compute the tight approximate degrees.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

MiaPriorityEflgtee
r PriomySnitcgy •» .

PriontyQueuc *pq;
QuotittUGrapb *q g;

virtual bool useApprox UpdattsO • 0:
virtual vw dpnonta tf) - 0;

Hybrid

virtual bool uacAppfotupdUed) }
(return fe te ;)

virtual boot uscApproaupibta()
(return true ;}

virtual bool mcApproiUpdattsOv
virtual vwd p n o n iac t);

AMMF
AMRfDMMDr

virtual vow poon m t ();virtual voul pnonb ie();

FlC. 34. An augmented Strategy Pattern. Used to implement a family o f greedy, fill reducing algorithms.

We created a complete framework for the entire family o f minimum-degree like algorithms, but it

required an additional virtual function. See Figure 34 for the inheritance and composition relationships.

In this arrangement, the class M in im u m P r io r i ty E n g in e (which we will call E n g in e for short) is

an algorithm that is given a graph, repeatedly selects the node o f minimum priority, eliminates it from

the graph, and then updates the graph adding appropriate till edges when necessary. The catch is that it

has no idea how to determine the priority o f the vertices. It must rely on a P r i o r i t y S t r a c e g y class

(S t r a t e g y for short), or more specifically, a specialized descendant o f the s t r a t e g y .

We listed the benefits o f the Strategy Pattern earlier in Section 4.3.2. but there are potential drawbacks

for using this pattern. There is an increased number o f classes in the library, one for each ordering

algorithm. This is not a major concern, though users should be insulated from this by reasonable defaults

being provided. Another possible concern is the communication overhead. The calling interface must be

identical for all the strategies, though individual types may not need all the information provided. There

is a potential for algorithmic overhead in the decoupling between Engine and Strategy. In our case, the

engine could query the strategy once for each vertex that needs to be evaluated, though the virtual-function

call overhead would become high. Alternatively, the engine might request all vertices in the remaining

graph Gk to be re-prioritized after each node is eliminated. This may result in too much work being done

inside the Strategy. Luckily, with all these algorithms the only nodes whose priority changes are the ones

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

QuotientGraph B ucketSorter M inPriorityStrategy
a " query NNodes()

prioritize(ALL_NODES)

adj_begin(vtx) —
adj_end(vtx)

injert(vtx, priority)

lingleElim - iiSingleEliramatioaRequired()

allowMultipleEIimination(! singleEIim)

FIG. 35. Interaction o f initializing the ordering.

adjacent to the most recently eliminated node. The Q u o t i e n t G r a p h keeps track o f this information

since it must prevent a node with an unknown (or invalid) priority from being eliminated. In other words,

a vertex cannot be eliminated if any of its neighbors have been eliminated since the last quotient graph

update.

For the entire framework to implement MMD. a class must be derived from the S t r a t e g y abstract

base class and override the pure virtual member function c o m p u t e P r i o r i t y . The E n g in e is respon

sible for maintaining the graph and a priority queue o f vertices. It selects the vertex o f minimum priority,

removes it from the queue and eliminates it from the Q u o t i e n t G r a p h . The priority o f all the neighbors

o f the most recently eliminated node is changed, so they too are removed from the priority queue for the

time being. When there are no longer any vertices in the priority queue o f the same minimum degree as

the first vertex eliminated from this stage, the E n g in e updates the graph, and gives a list o f all vertices

adjacent to newly eliminated ones to the M M D S tra teg y class. This class, in turn, computes the new

priority o f the vertices and inserts them into the priority queue.

To make this setup efficient, we use a B u c k e t S o r t e r class to implement the priority queue and a

Q u o t i e n tG r a p h class to implement the series o f graphs during elimination. The interaction o f these

four major objects is shown in Fig. 36. We hide the details o f how single elimination and multiple

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Quoticntfiraph BuckctSorter MinPriorityStrategy

done 3 uAUE!imiiuucd()

SINGLE or MULTIFLE ELIMINATION

updale(ArecomputeNodcs, AmcrgcdNi

Oso
•9 rcroovc(mcrgcdNodcs)

o
pnonuzct rccomputcNodca)

adj_begin(vtx)
adj_end(vtx)

n*ert(vtx, priority

FlG. 36. Interaction o f the ordering.

elimination are handled. This too is determined by a simple query to the S t r a t e g y class. When the

Q u o t i e n t G r a p h is updated, it performs various types o f compression which may remove additional

vertices or modify the list of vertices that need their priority recomputed. When it calls the S t r a t e g y

to compute the priorities, it provides a const reference to the Q u o t i e n tG r a p h for it to explore the

data-structure without fear o f side-effects. and the B u c k e t S o r t e r to insert the vertices in.

We mention that infomation from the S t r a t e g y must also propagate to the Q u o t i e n tG r a p h as

it is required to behave in slightly different ways when updating for single elimination ordering algo

rithms (e.g., AMD) and multiple elimination algorithms (e.g., MMD). Thus the E n g in e must query the

S t r a t e g y what type is required and set the Q u o t i e n tG r a p h to behave accordingly. This is han

dled in the first phase o f the e x e c u t e () function that is overridden from the E n g in e ’s parent class,

S p i n d l e A l g o r i t h m . The interaction o f the objects in this phase is shown in Fig. 35.

4.4 Balancing Features with Performance

There is a very real danger o f adding too many features into a piece o f software. Just because some

feature can be added, does not imply that it should be added. Excessively feature-laden software can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

QuotientGraph BuckctSorter MinPriorityStrategy
rtcomputcNodcs - 0 ;

bucfcctlD - guetyMinNoncniptyBuctat)

node - removeFromBuckct(buckctID)

elimiiuteSupcmodc(node)

nodeLut - gctRcachScl(node)

tecompuieNodcs -*■** node List

FlG. 37. Interaction o f eliminating vertices during ordering.

actually inhibit flexibility and extensibility as the components become to large and unwieldy for the user

to shape to their specific purposes. Feature-laden software also tends to become excessively complex and

increasingly inefficient.

4.4.1 Judicious Application of Iterators

One disappointing endeavor was to provide an iterator class to traverse the reachable set o f the Q uo

t i e n t G r a p h class. Although we were successful in implementing such a class, its performance was so

poor, that its general use was abandoned. This caused an increase in the difficulty o f implementing the

various minimum priority strategies. Here we explain why this idea looked good on paper, why it didn't

work well in practice, and why this problem is unavoidable.

Ideally, one would like to provide a class that iterates over the reachable set so that the priority com

putation can be implemented cleanly. In the sample code below, this class is t y p e d e f 'e d inside the

Q u o t i e n t G r a p h class as r e a c h - i t e r a t o r . We add the additional detail that there may be a weight

associated with each vertex, so degree computation sums the weights o f the nodes in the reachable s e t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

Algorithm 6 (Computing degree using the reachable set iterator.)
void M inim um D egree::prioritize(const Q G raph& g . L ist& I.

PriorityQueue& pq)

{
fort L isi::iterator it = l.bcginO; it != l.end(); ■*-+«) {

int i = *it;
int degree = 0;
fort Q C rap h ::reach .itera to rj = g .reach .beg in (i);

j != g .reach .end(i); + + j) {
degree += g.gctNodeW eightt * j)

}
pq.inserU degree, i):

\

In fact, we were able to implement such an interface. But there is a hidden overhead that causes

this implementation to be too expensive. The definition o f a reachable set is the union o f several non-

disjoint subsets. Therefore the iterator must test at each iteration if there are any more items in the current

set. if there are any more sets, and some internal mechanism to prevent double visiting the same node

in different sets. Referring again to Fig. 16 note that the reachable set need not be traversed in sorted

order (as presented here), but it cannot allow the same vertex to be counted twice through two different

enodes. Furthermore the reachable set does not include the node itself. The most effective way to prevent

"double-visiting" is to maintain an array o f length equal to the number o f nodes in the graph and flag the

appropriate entry when a node is "visited."

The R e a c h S e t l t e r class requires privileged access to the Q u o t i e n t G r a p h class though friend

ship. Since the Q u o t i e n tG r a p h has two adjacency lists per node, the iterator over the reachable set is

a bit more complicated. Most o f the details are not difficult. However the increment operator becomes

excessively tedious. The problem is that the increment operator must re-determine its state at each call

. . . Is it already at the end? Are there more nodes in the current list? Are there more enodes in the enode

list? Once there is a next node located, has it been marked? If so go back to the beginning.

There is a way to evaluate the reachable set manually by iterating over sets o f adjacent nodes and

enodes o f the quotient graph manually. This is shown in Algorithm 7 which is functionally equivalent to

the code in Algorithm 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

Algorithm 7 (Computing degree without using the reachable set iterators.)
void M inim um D egree::prioritize(const QGraph& g. L ist& I.

P riorityQ ueueft pq)

{
fort L ist::iterator it = l.beginO: it != I.endt): + + i t) {

int i = *it:
int degree = 0;
int m y-stam p = nextS tam p(): / / get new timestamp
g. visited! i I = m y ^ tam p ; //Mark myself visited
fort Q C raph::enode.iterato r e = g .enode.begin(i):

e != g .enode .end(i); ++e) {
int enode = *e: // for all adjacent enodes
for(Q G raph ::node.ite ra to r j = g .node.bcgin(e);

j != g .cnode .end(e): + + j) {
int adj = *j; / / for all adjacent nodes
if (visited(adj I i my .stam p) {

/ / if not already visited, mark it and add to degree
visited! adj j = my .stam p;
degree + = g.gctNodeW cighK a d j);

}
}

pq. insert! degree, i);

}
}

The lesson learned here is to be judicious in the use o f fancy techniques. The coding benefits of using

a reachable set iterator are far outweighed by the speed increase o f manually running through adjacency

lists. Note that the latter scheme makes the critical assumption that every node has a “self-edge" to

itself in the list o f adjacent enodes. This convenient assumption also increases coupling between the

Q u o t i e n tG r a p h class and the descendants o f the M i n i m u m P r i o r i t y S t r a t e g y class.

4.5 Summary

There is no conflict between object-oriented design and scientific computing. It is true that some object

oriented techniques lead to performance losses but a careful design leads to scientific computing software

that is much easier to understand and use. For successful implementations, it is crucial to understand

which techniques are appropriate for what circumstances. Neither encapsulation nor inheritance neces

sarily slows down programs, unless a virtual function is used.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

Good design requires tradeoffs. There is no perfect solution unless we are talking about pedagogical

problems in books. Real life applications have many constraints, most o f the time conflicting.

Decoupling is a perfect example. It can introduce overheads since objects have to communicate

through well defined interfaces. On the other hand, decoupling localizes potential code changes and

increases flexibility. All our algorithms are aware that our G ra p h class is implemented as a sorted

adjacency list13. We could have implemented our algorithms to not assume unordered adjacency lists, but

this would have impacted the performance o f some o f our algorithms. The tradeoffs between flexibility

and efficiency are determined by the interface.

l3The adjacency lists of a Q u o t ie n tG r a p h are an exception, they are not sorted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

5. RESULTS

This section tabulates all the experimental results we obtained by running our software. Results on the

envelope/wavefront reduction problem are presented first in Section 5.1. followed by results for the fill

reducing heuristics in Section 5.2.

5.1 Envelope/Wavefront Reduction

We describe in Section 5.1.1 how we chose the computational parameters in the hybrid algorithm. In

Section 5.1.2 we discuss the relative reductions in envelope size and wavefront o f eighteen test problems

obtained from RCM. Sloan, spectral, and hybrid algorithms.

5.1.1 Spectral Orderings from Chaco

We use the SymmLQ/RQI option in Chaco [44| to obtain the Fiedler vector, which is sorted to produce

the spectral ordering. Chaco takes a multilevel approach, coarsening the grid until it has less than some

user specified number o f vertices (1000 seems to be sufficient). Then it computes the Fiedler vector on the

coarse grid, orthogonalizing only for eigenvectors corresponding to small eigenvalues. Then the coarse

grid is refined back to the original grid and the eigenvector is refined using Rayleigh Quotient Iteration

(RQI). This refinement is the dominant cost o f the whole process. During the coarsening, we compute

generalized eigenvectors o f the weighted Laplacians of the coarse graphs from the equation A r = ADx.

where D is the diagonal matrix o f vertex weights. This feature, obtained by turning on the parameter

MAKE_VWGTS, speeds up the eigenvector computation substantially.

Two other parameters, EIGEN_TOLERANCE and COARSE_NLEVEL_RQI. control how accurately

eigenvectors are com puted and how many levels o f graph refinement occur before the approximate eigen

vector is refined using RQI, respectively. We set the value o f EIGEN_TOLERANCE to 10-3, and it

was very effective in reducing cpu-time. Even in the case where this tolerance induces misconver-

gences, the spectral ordering is still good and the hybrid ordering even better for most problems. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

Ta b le 6
Eighteen test problems fo r wavefront reduction. For the three problems that compressed well, their

compressed versions are also shown.

Problem \v\ | £ | class C om m ent
1 ban h 6.691 19.748 1
2 barth4 6.019 17.473 1 2-D C FD problem s
3 barth5 15.606 45.878 1
4 shuttle .eddy 10.429 46.585 1
5 copter 1 17.222 96.921 1
6 copter2 55.476 352.238 I
7 ford l 18.728 41.424 2 3-D structural problem s
S ford2 100.196 222.246 2
9 skirt 45.361 1.268.228 2
0 nasasrb 54.870 1.311.227 2

II com m anche.dual 7.920 11.880 1
12 tandem -vtx 18.454 117.448 I 3-D C FD problem s
13 tandem -dual 84.069 183.212 t
14 onera-dual 85.567 116.817 I
15 bcsstk30 28.924 1.007.284 i 3-D stiffness m atrix
16 pdslO 16.558 66.550 1
17 financc256 37.376 130.560 -> linear program s
18 finances 12 74.752 261.120 2

19 caik irt 14.944 160.461 2 com pressed sk irt
20 c.nasasrb 24.953 275.796 2 com pressed nasasrb
21 c.bcssik30 9.289 111.442 ■> com pressed bcsstk30

COARSE_NLEVEL_RQI parameter didn 't have much effect, so we used the program's default value of

2 .

5.1.2 Comparison of Algorithms

We consider five ordering algorithms RCM. Sloan with unnormalized weights Wi = 2, W2 = I. Sloan

with normalized weights (H*i = 8, = 1 for problems in Class 1. and = 1. W2 — 2 for prob

lems in Class 2). spectral, and hybrid (normalized weights = \V2 = tF:t = 1 for Class I problems,

ff’i = 1, = W2 = 2 for Class 2 problems). When we refer to the Sloan algorithm without men

tioning the weights, we mean the algorithm with normalized weights. We have compared the quality and

time requirements o f these algorithms on eighteen problems (see Table 6). The problems are chosen to

represent a variety o f application areas: structural analysis, fluid dynamics, and linear programs from

stochastic optimization and multicommodity flows. The complete set o f results are shown in Tables 7 - 11.

The values for all the orderings are normalized to RCM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

Ta b l e 7
Mean square Wavefront sizes fo r various algorithms relative to RCM. The numbers in parentheses

after the values fo r the normalized Sloan algorithm show the class o f each problem (See Section 3).

m sw f norm alized by RCM
Problem RCM Sloan FastSloan spectral hybrid

1 barth I.26e4 .48 .43 .43 .30
2 barth4 1.6le4 .40 .21 .20 .15
3 barth5 5.08e4 .56 .18 .18 .14
4 shuttle 5.84e3 60 .60 1.0 .65
5 copter 1 2.84e5 .71 .45 .74 .53
6 coptcr2 2.26e6 39 .27 .28 .16
7 Turd I 2.65e4 .67 .67 .48 .39
8 ford2 3.74e5 .51 .51 .44 .33
9 skirt 1.1 Ie6 57 .50 .44 .37
0 nasasrb I.65e5 .74 .75 .99 .71

II com m anche.dual 6.73c3 .60 .34 .37 .23
12 tandem .vtx 8.28e5 .16 12 .14 .10
13 tandem , dual I.96e6 53 .28 .14 .11
14 oncra-dual 4.86e6 .44 .21 .09 .07
15 bcsstk30 I.07e6 .37 .30 .10 .05
16 pdslO 3.66c6 .20 .13 .75 .15
17 tinance256 9.38c5 .04 .04 .07 .04
18 Iinancc5 l2 5.79e5 .05 .06 .14 .05
19 c_skirt .46 .51 .39
20 c-nasasrb .68 1.8 .75
21 c_bcsstk30 .26 .13 .06

Initially we discuss the results on the uncompressed graphs, since most o f the graphs in our test

collection did not gain much from compression. We discuss later in this section the three problems that

exhibited good gains from compression.

The envelope parameters and times reported in the tables are normalized with respect to the values

obtained from RCM. For the Sloan algorithm, two sets o f values are reported: the first is from the unnor

malized weights = 2, IF . = 1, and the second from the normalized weights for Class I and Class 2

problems. The normalized Sloan algorithm is labeled by the column FastSloan in Table 7. The results for

the compressed problems are indicated by the last three rows.

The Sloan algorithm with the normalized weights reduces the mean-square wavefront on average to

23% o f that o f RCM ; when unnormalized weights are used in the Sloan algorithm, the mean square

wavefront is 36% o f that o f RCM. (Henceforth, a performance figure should be interpreted to be the

average value for the problems in the test collection; we shall not state this explicitly.) The hybrid reduces

mean-square wavefront to 14% o f that o f RCM, and to 60% o f that o f (normalized) Sloan. The hybrid

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

T a b l e 8
Maximum wavefroiu sizes relative to the RCM algorithm.

m axw f norm alized by RCM
Problem RCM Sloan FastSloan spectral hybrid

1 barth 164 .66 .65 .64 .53
i barth4 204 .60 .42 .37 .34
3 barth5 351 .77 .44 .42 .39
4 shuttle 167 .85 .66 1.30 .67
5 copter I 797 .84 .58 .65 .57
6 copter2 2.447 .58 .49 .43 .32
7 ford I 223 .86 .86 .96 .78
8 ford2 884 .74 .78 .91 .76
9 skirt 1.745 .65 .84 .65 .57
0 nasasrb 840 .73 .91 1.20 .86

II com m anche.dual ISO .83 .55 .55 .44
12 tandem -vtx 1.489 .38 30 .29 .25
13 tandem -dual 2.008 .72 .55 .34 .30
14 onera.dual 3.096 .67 .45 .34 .30
13 bcsstk30 1.734 .63 .64 .38 .22
16 pdstO 2.996 .48 40 1.00 .28
17 Iinance256 1.437 .22 .22 .30 .21
18 tinancc5 l2 879 .28 .32 .85 .49
19 c-skirt .67 .68 .54
20 e .nasasrb .71 2.3 .78
21 c .bcsstk30 .52 .40 .23

algorithm computes the smallest mean square wavefront for all but three o f the eighteen problems. Note

that even for the problems where the spectral algorithm does poorly relative to the Sloan algorithm, the

post-processing enables the hybrid algorithm to compute relatively small wavefronts. In general, the

spectral and Sloan algorithms tend to vie for second place with RCM finishing fourth.

These algorithms also yield smaller maximum wavefront sizes than RCM. The normalized Sloan

algorithm yields values about 52% o f RCM, while the hybrid computes values about 38% o f RCM. Thus

these algorithms lead to reduced storage requirements for frontal factorization methods.

The results for the envelope size are similar. The hybrid, on average, reduces the envelope size to 37%

o f that o f the RCM ordering, and to 73% o f that o f the normalized Sloan algorithm.

The Sloan, spectral, and the hybrid algorithms all reduce the wavefront size and envelope size at the

expense o f increased bandwidth. This is expected for the Sloan algorithm since Figures 10 and 11 show

that the weights yielding small wavefront sizes are quite different from the weights for small bandwidth.

It is also not surprising for the spectral and the hybrid algorithms since their objective functions, 2-sum

(for spectral, see [36]) and wave front size (for the hybrid) differ from the bandwidth.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

T a b l e 9
Envelope sizes relative to RCM.

|e n t/(.4) | norm alized by RCM
Problem RCM Sloan FastSloan spectral hybrid

1 barth 7.01e5 .69 .66 .66 .55
2 barth4 7.03e5 .64 .47 .46 .40
3 barth5 3.26e6 .75 .43 .44 .39
4 shuttle 7.09e5 .81 .82 1.00 .85
5 copter 1 8.62e6 .84 .68 .89 .74
6 copter2 7.55e7 .63 .53 .56 .43
7 ford! 2.90c6 .31 .30 .68 .61
8 ford2 5.72e7 .71 .71 .65 .56
9 skirt 4 .42e7 .77 .72 .70 .63
0 nasasrb 2.06e7 .89 .88 .99 .87

11 com m anchc.dual 5.90c5 .73 .59 .61 .47
12 tandem -vtx l.53e7 .42 .37 .40 .34
13 tandenudual 1.22e8 .72 .54 .39 .34
14 onera-dual l.71e8 .66 .46 31 27
15 bcsstk30 2.66e7 .60 .53 33 .25
16 pdslO 2.95e7 .41 .34 .32 .38
17 linance256 3.26c7 .20 .22 .28 20
18 linance512 5.55e7 .21 .25 .34 20
19 c .sk irt .70 .74 .65
20 c-nasasrb .86 1.10 .89
21 c.bcsstk30 .52 38 .26

Table 10
Bandwidths relative to RCM.

bandwidth norm alized by RCM
Problem RCM Sloan FastSloan spectral hybrid

1 barth 199 2.93 4.53 1.76 4.15
2 barth4 218 5.02 7.04 2.64 7.39
3 barth5 373 3.44 8.91 1.96 5.19
4 shuttle 238 3.50 3.39 2.66 4.05
5 copter 1 932 3.80 7.34 1.02 7.82
6 copter2 2.975 4.05 11.4 1.89 8.39
7 fordl 258 7 .67 6.91 12.0 12.0
8 ford2 963 7.06 12.1 5.75 8.04
9 skirt 2.070 9 .37 3 .66 2.13 2.15
0 nasasrb 881 5.82 5 .83 4 .1 7 5.57

11 com m anche.dual 155 9.94 15.9 2.52 8.15
12 tandenuvtx 1.847 2.35 3 .56 1.39 2.29
13 tandem -dual 2.199 3.55 9 .0 7 2.92 4.72
14 onenudual 3.478 8 .93 11.3 2.08 3.19
15 bcsstk30 2.826 5.60 5.11 1.91 2.28
16 pdslO 4.235 3.59 3 .7 7 1.87 3.58
17 finance256 2.014 4.41 4.11 2.49 2.44
18 ftnance512 1.306 3.26 2.88 2 .84 2.38
19 c-skirt 6 .0 7 3 .19 3.16
20 c_nasasrb 5.81 6 .8 3 4.72
21 c_bcsstk30 4 .02 2 .05 2.03

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

T a b l e 11
CPU times relative to the RCM algorithm.

bandw idth norm alized by RCM
Problem R C M fast sloan spectral hybrid

1 barth .13 1.9 10. 11.
2 barth4 .05 3.4 18. 20.
3 barth5 .16 2.7 19. 21.
4 shuttle .12 2 .7 15. 17.
5 copter I .13 4.7 25. 28.
6 copter2 .88 3.0 18. 20.
7 ford 1 .30 1.7 12. 13.
S ford2 1.1 2 .7 19. 21.
9 skirt 5.0 1.7 3 .7 4.5
0 nasasrb 3.3 2.3 8.5 9 .7

II com m anche.dua! .07 2.1 19. 19.
12 tandem -vtx .27 2.7 14. 16.
13 tandem .dual 1.4 2.2 14. 15.
14 onera.dual 1.2 2.3 15. 15.
15 bcsstk30 3.7 1.7 3.2 4.0
16 pdslO .35 2.1 36. 37.
17 (inance256 .51 2.4 16. 18.
18 Rnance5l2 1.0 2.3 17. 18.
19 c.sk irt 33 .69 .91
20 c .nasasrb .49 1.8 2.3
21 c.bcsslk30 .34 .56 .74

Oti these test problems, our efficient implementation o f the Sloan algorithm requires on average only

2.1 times that o f the time taken by the RCM algorithm. The hybrid algorithm requires about 5.0 times the

time taken by the Sloan algorithm on the average. This ratio is always greater than one. since the hybrid

algorithm uses second step o f the Sloan algorithm (numbering the vertices) to refine the spectral ordering,

and the eigenvector computation is much more expensive than the first step o f the Sloan algorithm (the

pseudo-diameter computation). We believe that these time requirements are small for the applications

that we consider: preconditioned iterative methods and frontal solvers.

S .U .a Gains from Compressed Graphs

As discussed in Section 3.2.4. the use o f the supervariable connectivity graph [26] (called the compressed

graph by Ashcraft [3]) can lead to further gain in the execution times o f the algorithms. Only three of

the problems, s k i r t , n a s a s r b , b c s s t k 3 0 , compressed well. This is because many o f the multi-

component finite element problems in our test set had only one node representing the multiple degrees

o f freedom at that node. The compression feature is an important part o f many software packages for

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

solving PDE’s, since it results in reduced running times and storage overheads, and our results also show

impressive gains from compression.

Three problems in our test set compressed well: s k i r t , n a s a s r b . and b c s s t k 3 0 . Results for

these problems are shown in the last three rows o f each table. The numbers o f multivertices and edges

in the compressed graphs are also shown. For these three problems, compression speeds up the Sloan

algorithm on average by a factor o f nearly 5. and the hybrid algorithm by a factor of 4.6.

Compression improves the quality o f the Sloan algorithm for these three problems, and does not have

much impact on the hybrid algorithm. This improved quality o f the compressed Sloan algorithm follows

from our choice o f parameters in the compressed algorithm to correspond exactly to their values in the

uncompressed graph. However, on n a s a s r b , the spectral envelope parameters deteriorate upon com

pression. We do not know the reason for this, but it could be due to the poorer quality o f the eigenvector

computed for the weighted problem. In any case, the compressed hybrid algorithm recoups most o f this

deterioration.

5.2 Polymorphic Minimum Fill

In Section 5.2.1 we compare the quality and runtime o f Spittdfe against other implementations that are

publicly available. We compare different heuristics derived from P r i o r i ty S t r a t e g y in Section 5.2.2.

In Section 5.2.3 we examine how these different heuristics behave in more detail by switching the heuristic

in the middle o f the computation and examining how the behavior changes. Finally in Section 5.2.4. we

react to recent work by Bornstein [I4 |, who reports that state-of-art minimum degree algorithms perform

poorly compared to state-of-art nested dissection algorithms.

Our test set is listed in Table 12. The matrices are ordered in increasing size o f the factor using

VtMD ordering. Each number reported is the average o f 11 runs with different seeds in the random

number generator. All the software was compiled with the EGCS com pilers1 which is a publicly available

experimental branch o f the GNU compilers -.

1 httpV/w ww.cygnus.com
2http'7/www.gnu.org

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.gnu.org

135

Table 12
Test Set fo r Fill Reducing Orderings. The test set is sorted bv increasing work to factor for Spmdfe's

MMD.

Problem iV'i i £ |
1 commanche 7.920 11.880
2 banh4 6.019 17.473
3 barth 6.691 19.748
4 bcsslk34 588 10.415
5 ford I 18.728 41.424
6 ken 13 28.632 6 6 5 8 6
7 barth5 15.606 45.878
S shuulc.eddy 10.429 46 585
9 bcssik3K 8.032 173.714

to bcsstk!8 11.948 68571
II bcsstk23 3.134 21.022
12 bcsstkl6 4.884 142.747
13 bcsstklS 3.948 56.934
14 bcsslk17 10.974 208.838
15 pwt 36,519 144.794
16 ford2 100.196 222.246
17 crystkOI 4.875 155508
18 btsslk35 30.237 709.963
19 m se10848 10.848 609.465
20 bcsstk37 25.503 557.737
21 msc23052 23.052 565.881
22 bcsslk36 23.052 560.044
23 bcsstk30 28.924 1.007.284
24 tandem.vix 18.454 117.448
25 pdslO 16558 6 6 5 5 0
26 bcsstk32 44.609 985.046
27 struct3 53.570 560.062
28 copter 1 17.222 96.921
29 bcsstk33 8.738 291583
30 struct4 4.350 116.724
31 bcsstk3l 35588 572.914
32 crystk02 13.965 4 7 7509
33 nasasrb 54.870 1511.227
34 skin 45561 1 5 6 8 5 2 8
35 tandem.dual 94.069 183.212
36 onenudual 8 5 567 166.817
37 copter2 55.476 352538
38 crystk03 24.696 863541
39 3dtube 4 5 5 3 0 1584.144
40 cfdl 70.656 878.854
41 gearbox 153.746 4.463529
42 cfd2 123.440 1.482529

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

5.2.1 Comparing Implementations

While these algorithms are conceptually simple, they are very challenging to implement and to optimize.

There are a few publicly available implementations o f MMD and AMD. The original implementation of

MMD by Liu [58| is called GENMMD. One o f the original implementations o f AMD is AMDBAR by

Amestoy. Davis and Duff [2|. This is a publicly released version, there is another version that is included

with the Harwell Sparse Library. The newer algorithms by Ng and Raghavan [64] and Rothberg and

Eisenstat [74] were reported by modifying each o f the two implementations above; neither group has

released their modified versions.

A third implementation o f multiple minimum degree that we compare against is written by Ashcraft

and extracted from a much larger body of software. The component we use, MSMD (Multi-Stage Min

imum Degree) is designed to work in multiple stages — commonly as the degenerate case in a nested

dissection ordering. It was originally released in SMOOTH [5] and later in a larger project with several

contributes called SPOOLES [4]. This implementation by Ashcraft is the closest to our own in spirit. It is

an object based design, though implemented in C. None of the implementations mentioned above imple

ment all the heuristics provided in Spindle, though SPOOLES does have MMD and a variety o f alternate

settings that, in effect, implement AMD with weaker approximations.

We compare the performance of GENMMD. AMDBAR. SPOOLES, and Spmdfe in Tables 13 and 14.

Table 13 focuses on relative performance o f Multiple Minimum Degree (MMD) implementations. All

numbers are normalized by the corresponding value o f Spindle's MMD. We list the relative size o f the

factor (storage), the amount o f computational work required to compute the factor (work), and the time re

quired to compute the ordering. This information is tabulated for Approximate Minimum Degree (AMD)

in Table L4.

GENMMD is over 500 lines Fortran77 code with four subroutines, and 30+ goto statements. It is

optimized in terms o f speed as well as memory requirements. The same array is used to maintain several

distinct linked lists at the same time. For SPOOLES, we set it to do multiple elimination, precompress

the graph, do compression o f 2-adjacent supemodes at each elimination step, and exact quotient graph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

T a b l e 13

Compararison o f MMD implementations: GENMMD and SPOOLES vs. Spindle. For each imple
mentation, we present the size o f the factor, the amount o f work required to compute the numerical values
in the factor, and the lime taken to generate the ordering.

problem CENM M D/Spindle SPOOLES/Spindle
size work time size work time

1 commanche 1.00 .97 .23 1.03 1.04 .62
2 barth4 .99 98 .27 1.01 1.00 .77
3 barth .99 .97 .31 1.01 99 .72
4 bcss(k34 t.0 0 1.01 .75 1.0*1 1.08 1.50
5 ford! t.0 0 .99 .37 1.02 I 04 .70
6 ken 13 1.00 1.00 1.57 1.02 1.01 1.46
7 barth 1.00 1.01 .34 1.00 97 .71
8 shuttle.eddy 1.01 1.04 .37 1.01 1.01 .78
9 bcsslk38 1.03 1.07 1.02 1.03 1.09 2.36

10 bcsslkI8 1.01 1.02 .34 1.06 1 16 .58
II bcsstk23 .99 .96 .39 1.01 1.01 .39
12 bcsstk l6 .98 .96 .98 1.00 .99 3.37
13 bcsstkl5 1.00 1.00 .37 99 .97 .50
14 bcsstk l7 1.03 1.06 .89 1.06 1.16 2.57
15 pwt 1.00 1.01 .53 1.03 1.07 .85
16 t'ord2 1.01 1.05 .67 1.06 1.17 .90
17 crystkOI .97 .93 .97 .98 .95 3.40
18 bcsstk35 1.01 1.00 2.14 1.01 99 7.16
19 m sc!0848 1.02 1.04 1.5*1 1.02 1.03 6.18
20 bcsstk37 1.00 .99 I I I 1.02 1.03 5.09
21 msc23052 1.01 1.02 1.90 1.02 1.05 8.13
22 bcsstk36 1.02 1.02 1.88 1.02 1.05 7.6*1
23 bcsstk30 1.03 1.07 1.45 1.0-1 1.08 3.46
24 tandem-vtx 1.00 .99 .39 1.03 1.09 .65
25 pdslO .99 .99 .78 1.04 1.02 .07
26 bcsstk32 1.00 .96 1.80 1.00 .98 4.01
27 strucG 1.00 .99 .92 1.05 1.09 1.38
28 copter 1 1.00 .99 .31 .97 .95 .46
29 bcsstk33 .99 .97 .57 1.01 1.02 1.51
30 struct4 1.05 t . l l .22 1.0*1 1.10 .21
31 bcsstk31 1.04 1.07 1.00 1.08 1.19 1.86
32 crystk02 .98 .95 1.15 .98 .95 3.41
33 nasasrb 1.00 1.01 1.66 1.14 1.52 2.55
34 skirt 1.01 1.01 1.74 1.04 1.07 3.70
35 tandertudual .99 .95 .86 1.05 1.09 .70
36 onera-dual 1.00 1.00 .8*1 1.05 1.08 .68
37 copter2 1.01 1.01 .60 1.01 1.02 .64
38 cryslk03 1.00 1.00 1.16 1.00 1.00 3.11
39 3d tube 1.00 1.02 1.61 1.00 1.01 3.25
40 cfd l 1.00 1.00 .42 .98 .94 .41
41 gearbox 1.01 1.02 2 .67 1.01 1.03 3.50
42 cfd2 1.00 .99 .57 .99 .98 .48
geom etric mean 1.00 1.00 .i i 1.02 1.08 1.36
mean t.0 0 1.01 .95 1.02 1.08 2.20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

Table 14
Comparison o f AMD Implementations: AMDBAR and SPOOLES vs. Spindle. For each implementa

tion. we present the size o f the factor, the amount o f work required to compute the numerical values in the
factor, and the time taken to generate the ordering.

problem AMDBAR/Spindle SPOOLES/Spindle
size work time size work time

1 commanche 1.00 .99 .10 1.05 1.09 .31
2 barth4 .99 98 .14 1.02 1.02 17
3 barth 1.00 1.01 12 1.02 1.02 .41
4 bcsstk34 .99 .98 .33 1.03 1.07 1.11
5 ford I 1.00 1.02 .18 1.03 1.06 .10
6 ken 13 1.00 1.01 .30 1.00 96 2.52
7 barth5 1.00 1.00 .19 1.01 1.00 16
8 shuttle.eddy 1.00 1.00 .18 1.02 1.02 .56
0 bcsstk38 1.01 1.01 .34 1.01 1.02 2.03

10 bcsstkIS 1.00 1.00 .21 1.16 2 .08 65
11 bcsstk23 1.00 1.01 .24 1.03 1.07 73
12 bcsstkl6 .99 .98 .34 1.01 1.01 2.16
13 bcsstkl5 1.01 1.03 .30 1.01 1.03 1.1!
14 bcsstkl7 1.01 1 .0 1 .32 1.15 1.30 1.50
15 pwt .99 .96 .37 1.02 1.00 57
16 ford2 .99 .96 11.46 1.04 1.07 .52
17 crystkOl .96 .91 .40 .99 98 2 11
18 bcsstk35 .99 .88 54 1.00 .99 2.38
19 m sc10848 1.01 1.04 .59 1.00 .99 1 16
20 bcsslk37 1.00 .99 .52 .99 98 2 11
21 msc23052 1.00 1.00 .53 1.01 1.03 2 .87
22 bcsstk36 1.01 1.04 .51 1.00 1.01 2 .59
23 bcsstk30 1.01 1.02 .59 1.02 1.04 2.80
24 tandem .vtx 1.01 1.03 .32 1.04 1.09 70
25 pdsIO .99 .98 .38 1.01 1.00 1.04
26 bcsstk32 1.00 1.00 .59 1.01 1.01 2.00
27 struct3 1.00 1.02 .45 1.04 1.07 92
28 copter 1 1.01 1.03 .26 1.01 1.03 .58
29 bcsstk33 1.00 .99 .39 1.00 1.01 2.06
30 struct4 .99 .96 .44 1.04 1.07 1.91
31 bcsstk3I 1.01 1.02 .54 1.02 1.00 1.-18
32 crystk02 .97 .94 .52 .99 .98 2.68
33 nasasrb 1.00 1.00 .66 1.03 1.09 1.87
34 skirt 1.01 1.01 .65 1.04 1.08 2.23
35 tandem-dual 1.00 .99 .42 1.05 1.08 .58
36 onera.dual 1.02 1.04 .38 1.06 1 .10 .54
37 copter2 1.02 1.05 .49 1.03 1.06 .72
38 crystk03 .98 .95 .58 .99 .98 2.41
39 3dtube .98 .96 .79 .98 .95 2.50
40 cfdl .99 .97 .71 .99 .96 1.07
41 gearbox 1.01 1.03 25.84 1.03 1.10 2 .27
42 cfd2 1.01 1.02 17.91 1.00 .99 1.78
geometric mean 1.00 1.00 .50 1.03 1.05 1.24
mean 1.00 1.00 2.41 1.03 1.06 1.54

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

updates. The quality o f the result between GENMMD, SPOOLES, and Spindle is very close. The dif

ference between them could easily be discrepancies in how tie breaking is handled inside each code. In

every case where Spindle's MMD is faster than GENMMD. it is because Spindle's MMD precompresses

the graph and GENMMD does not. Spindle is generally slower than GENMMD and for this test set

SPOOLES is slightly slower than Spindle's MMD. An interesting exception is for the problem number

17, pdsIO. Both the GENMMD and Spindle's MMD implementations take a significant amount o f time to

compute the ordering, especially considering the size o f the problem, but SPOOLES seems to not suffer.

We will investigate this problem in some detail in Section 5.2.3.

AMDBAR is also over 500 lines o f Fortran77 code with 30+ goto statements and is organized into

a single subroutine. Because AMD can do more aggressive graph compression at each elimination step,

precompression is not an issue and AMDBAR soundly beats Spindle's AMD in execution time. There are,

however, three exceptional cases where AMDBAR runs significantly slower than Spindle's AMD: ford2.

gearbox, and cfd2. Looking at the unnormalized data and the size o f the problems involved, it is clear

that AMDBAR is taking an inordinate amount o f time to compute the orderings for these problems. We

have not taken the time to understand why AMDBAR has difficulty in these instances. Because o f the

structure o f the AMDBAR code, common analysis techniques, such as running a basic block profiler is

not immediately helpful. In terms o f quality, because AMD does not rely on independent sets o f vertices

it appears to not be as sensitive to tie breaking. The quality o f the results in the AMDBAR and Spindle's

AMD implementations are very close. To set SPOOLES on an equal footing, we set it to do single

elimination, do approximate quotient graph updates, and aggressive graph compressions at each step.

This is the closest setting to an AMD ordering, the quality o f the results for SPOOLES at these settings is

slightly inferior to AMDBAR and Spindle's AMD.

5.2.2 Different Algorithms within Spindle

The following three Tables 15-17 compare the storage, work and execution time for a collection o f differ

ent heuristics derived from the P r i o r i t y S t r a t e g y class. We chose to compare the MMD and AMD

implementations as well as the algorithms proposed by Rothberg and Eisenstat [74] Minimum Mean Fill

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

(MMF) and Minimum Increase in Neighbor Degree (MIND), both the MMD based and AMD based

versions. The data for the different heuristics is normalized by the results o f the MMD ordering.

For this test set, we see that the quality o f the results from MMD and AMD are very close. We also

see that AMMF is better than MMF but that AMIND is slightly worse than MIND. This is consistent with

results reported by Rothberg and Eisenstat [74], Comparing the times in Table 17 we see that AMD has a

definite advantage over MMD and that the overheads in computing (ill o r increase in neighbor degree is

on par with the results reported in [74|.

Considering Table 17 in detail, kenl3. shows that multiple elimination strategies tend to perform 2.3-3

times faster than corresponding approximate elimination strategies. Conversely for pdsIO, the multiple

elimination strategies take a large amount of time and the corresponding approximate elimination strate

gies are over 23 times faster. Interestingly, ken!3 and pdsIO are not very different in size and both come

from multi-commodity flow problems.

To better illustrate the behaviors of these algorithms on these problems, see Figure 38. For each plot,

the bottom line is the cumulative number o f supemodes that are eliminated, the top line is the sum o f

the first line plus the number remaining supemodes in the quotient graph. The bottom line is strictly

increasing since there is always at least one supemode eliminated at each step. The top line is non

increasing; decreasing only when indistinguishable supemodes are detected and removed. The horizontal

axis is cpu time since each elimination stage has a different update cost.

Figures 38a and 38b show the pdsIO problem for MMD and AMD respectively. Figures 38c and 38d

show the same for the ken 13 test matrix. In both cases, MMD is faster in the beginning, however, we can

see in the case o f pdsIO that the rate of convergence between the two lines slows drastically where AMD

does not.

To investigate why these algorithms behave so differently on these two different problems, we exercise

an additional feature from using the Strategy Pattern in our design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 15
Storage requirements fo r factors using various fill-reducing orderings.

Problem
size

M M D AMD MMF
normalized by MMD

AM MF MIND AMIND MMMD
1 commanchc 76.127 .99 .37 .38 .97 .98 .98
2 banh4 115.987 .99 .95 .94 .94 .95 .96
3 barth 111.781 .98 .95 .97 .98 .98 .98
4 bcsstk34 46,573 .98 .91 .87 .88 .84 .88
5 ford) 315.851 .99 .98 .98 .97 .98 .98
6 ken 13 344.355 1.02 1.00 1.01 1.02 1.01 .98
7 barth5 374.285 .99 .94 .94 .95 .94 .99
8 shuttle.eddy 381 .568 1.00 .93 .92 .93 94 .95
9 bcsstk38 733.484 1.00 1.02 .93 .98 .96 .95

10 bcsstkIS 632.545 1.00 .96 .90 .92 .92 .92
11 bcsstk23 462.048 .98 .88 .84 .87 .88 .93
12 bcsstkl6 754.298 .98 .96 .94 .86 .91 1.00
13 bcsslklS 655.977 1.00 .96 .89 .92 .90 .96
14 bcsstkl7 1.106.613 1.00 .97 .95 .96 1.00 93
15 pwt 1.757.057 1.01 .97 .96 .96 .97 .96
16 ford2 2.408.562 1.01 .93 .94 .93 .95 .97
17 crystkO 1 1.089.378 1.01 .98 .99 .87 94 96
18 bcsstk35 2.730.331 1.00 .98 .99 .98 1.00 .90
19 m sc10848 1.979.471 1.00 1.13 1.08 .97 .97 .98
20 bcsstk37 2.820.230 1.00 .98 .96 .98 .99 1.00
21 msc23052 2.725.581 1.00 1.00 .99 .99 .99 .97
22 bcsstk36 2.737.589 1.00 .99 .99 .98 .99 .98
23 bcsstk30 3.739.015 1.00 .91 .93 .91 .93 .98
24 tandem.vtx 2.634.154 .98 .79 .79 .8-1 .85 .95
25 pdsIO 1.627.376 97 .97 .96 .94 .94 .89
26 bcsstk32 5.215.869 .98 .95 .93 .94 .95 1.00
27 struct3 5.342.841 99 1.08 .94 .96 .96 .95
28 copter 1 2.478.886 .97 .8-1 .82 .88 .85 .87
29 bcsstk33 2.666.854 .99 .94 .90 .85 .96 .95
30 struct4 2.237.851 1.01 .84 .78 .81 .83 .91
31 bcsstk31 5.134.592 1.01 .91 .85 .92 .88 .85
32 crystk02 6.170.998 1.00 .87 .90 .81 .92 .97
33 nasasrb I2.5 t5 .804 .99 .93 .8-1 .95 .92 .83
34 skirt 10.807.462 .99 .95 .93 .89 .91 .93
35 tandenudual 11.400.057 .98 .75 .75 .80 .81 .85
36 oneia.dual 11.0462392 .98 .74 .76 .79 .81 .86
37 copter2 14.095.311 .98 .74 .71 .80 .80 .85
38 crystk03 14.140.693 1.00 .86 .88 .79 .89 .81
39 3dtube 31.845.622 1.01 .87 .90 .85 .89 .86
40 cfdt 39.970.236 1.00 .72 .73 .75 .81 .81
41 gearbox 52.908.796 .99 .91 .92 .87 .91 .89
42 cfd2 912232.664 .99 .73 .76 .76 .81 .79
geometric mean .99 .92 .90 .90 .92 .92
mean .99 .92 .90 .90 .92 .93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

Table 16
Work requirements fo r factors using various fill-reducing orderings.

Problem
work x 10®

MMD AMD
normalized by MMD

M M F AM M F MIND AMIND MM DF
I commanchc 1.67 .98 .90 .91 .39 .91 .91
2 barth4 4.00 .97 .83 .82 .81 .83 .88
3 barth 4.36 .95 84 .88 .90 .91 .90
4 bcsstk34 4.77 .95 .78 .71 .73 .66 .74
5 font I 15.7 .97 .92 .92 .91 .93 .91
6 ken 13 16.0 1.06 .97 1.00 1.03 .99 .94
7 barth5 19.0 .98 .83 .82 .8-1 .82 .88
8 shuttle.eddy 25.3 1.00 .80 .77 .80 .83 .88
0 bcsstk38 117. 1.01 1.00 .78 .93 .88 .98

to bcsstk!8 125. 1.02 .90 .76 .82 .83 .90
II bcsstk23 147. .95 .73 .65 .74 .75 .83
12 bcsstk l6 153. .96 .87 .84 .70 .80 .84
13 bcsstklS 169. .98 .85 .71 .82 .79 .86
14 bcsslk l7 188. 1.01 .88 .81 .89 .97 .90
15 pwt 222. 1.06 .91 .89 .92 .93 .92
16 ford2 290. 1.06 79 .81 .81 .8-1 .84
17 crystkO 1 342. 1.03 89 .92 .72 .85 .80
18 bcsstk35 393. 1.01 91 .92 .91 .9-1 .96
19 m sc10848 534. .99 1.31 1.17 96 94 96
20 bcsstk37 556. 1.00 .90 .87 .96 .94 .91
21 msc23052 598. 1.02 .98 92 .92 93 .91
22 bcsstk36 612. 1.00 .93 94 .90 .92 .90
23 bcsstk30 887. 1.00 .81 . 4 1 .78 .81 .86
24 tandem .vtx 958. .95 .56 56 .68 .69 .77
25 pdsIO 1.040. .93 .93 92 .88 .88 .99
26 bcsstk32 1, 120. .94 .82 .78 .81 .83 .82
27 struct3 1,240. .99 1.26 .83 .92 .91 .89
28 copter 1 1 .310. .94 .6-1 .61 .77 .71 .82
29 bcsstk33 1 ,330. .98 .80 .72 .67 .84 .73
30 struct4 1,750. 1.03 .68 .58 .66 .69 .72
31 bcsstk3l 2 ,3 8 0 . 1.0-1 .81 .67 .81 .72 .92
32 crystk02 1.430. .99 .70 .75 .63 .83 .67
33 nasasrb 5 ,1 5 0 . .98 .91 .66 .95 .82 .8-1
34 skirt 5 ,5 6 0 . .97 .86 .82 .75 .78 .83
35 tandem-dual 8 ,3 3 0 . .93 .50 .50 .60 .62 .70
36 onera-dual 9 ,5 9 0 . .95 .49 .5-1 .60 .62 .71
37 copter2 12 ,400 . .95 .53 .5-1 .64 .65 .74
38 crystk03 13,600. 1.00 .67 .72 .62 .76 .65
39 3dtube 4 2 ,2 0 0 . 1.02 .77 .80 .75 .80 .77
40 cfdl 4 7 ,9 0 0 . 1.01 .47 .49 .56 .65 .68
41 gearbox 5 7 ,2 0 0 . .98 .74 .79 .72 .79 .77
42 cfd2 185 ,000 . .96 .53 .57 .58 .67 .65
geometric mean .99 .80 .76 .78 .81 .83
mean .99 .82 .77 .79 .82 .83

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

Table 17
CPU time to generate various fill-reducing orderings.

time (secs) normalized by MMD
Problem MMD AMD MMF AMMF MIND AMIND MMMD

1 commanchc 21 2.16 1.28 2.60 1 2 1 2.53 1.09
2 banh4 .15 2.01 1.29 2.16 1.23 2.23 1.17
3 barth .18 2.23 1.3-1 2.40 1 28 2,11 1.20
4 bcsstk34 .02 .90 1.45 1.15 1.10 .80 1.30
5 fordl .56 2 .04 1.27 2.16 1.19 2.15 1.11
6 ken 13 1.28 2.61 1.16 2.87 I 13 3.05 1.10
7 barth5 .14 1.88 1.26 2.00 1.21 2.03 1.10
8 shuttle.eddy .28 1.74 1.27 1.87 1.17 1.86 1.07
9 bcsstk38 .31 .65 1.94 .77 1.28 .82 1.20

10 bcsstklS .79 .95 1.80 1.01 1.21 1.01 1.09
11 bcsstk23 .11 .47 2.04 .61 1.17 .52 1.05
12 bcsslkl6 12 .97 2.15 1.55 1.19 1 .10 1.15
13 bcsstklS .42 .46 2.54 .77 1.19 60 1.06
14 bcsstkl? .28 1.10 1.62 1.35 1 28 1.35 1.14
15 pwt 1.29 1.55 1.34 1.64 I 19 1.65 1.05
16 ford2 3 .97 1.74 1.20 1.84 1.15 1.81 1.12
17 crystkO 1 .13 .87 2.20 1.47 1.06 1.20 .94
18 bcsstk35 .36 1.34 1.39 1.5-1 1.41 1.66 1.20
19 m sc10848 .20 1.06 2.71 1.23 131 1.28 1.13
20 bcsstk37 .35 1.27 1.65 1.15 1.53 1.61 1.30
21 msc23052 .23 1.32 t .27 1.5-1 1,11 1.76 1.18
22 bcsstk36 .23 1.42 1.32 1.58 1,11 1.75 1.16
23 bcsstk30 .66 .98 1.66 1.07 1.33 1.18 1.15
24 tandenuvtx 1.18 1.02 1.37 1.20 1.20 1.18 1.10
25 pdsIO 48 .65 .05 1.01 .02 1.43 .05 1.22
26 bcsstk32 .90 1.09 1.70 1.25 1.36 1.33 1.17
27 struct3 2 .03 1.07 6.09 .97 1.23 1.06 1.18
28 copter 1 1.26 1.03 1.56 1.38 111 1.18 1.02
29 bcsstk33 .56 .49 4.20 .88 1.16 66 1.09
30 struct4 2.54 .13 4.50 .33 .98 .18 .93
31 bcsstk3l 1.35 .85 1.71 .97 1.27 1.05 1.13
32 crystk02 .45 .73 1.67 1.20 1.02 1.08 .91
33 nasasrb 1.78 .8*1 2.16 1.05 1.53 1.18 1.23
34 skirt 1.44 .79 2.3-1 .99 1.36 1.09 1.08
35 tandem.dual 6 .09 1.24 1.20 1.35 1.13 1.33 1.06
36 onera-dual 5 .6 6 1.28 1.20 1.3-1 1.13 1.3-1 1.06
37 copter2 5 .4 7 .92 1.25 1.05 1.13 1.05 1.02
38 crystk03 .93 .71 1.54 1.0*1 1.02 1.05 .89
39 3dtube 1.81 .74 1.29 1.05 1.12 1.20 .92
40 cfdl 14.46 .40 1.22 .50 .96 .54 .88
41 gearbox 5 .39 .79 2.59 .96 1.30 1.17 1.03
42 cfd2 2 1 .36 .47 1.17 .59 1.00 .64 .90
geometric mean .92 1.69 1.13 1.21 1.12 1.09
mean 1.11 1.85 1.30 1.22 1.31 1.09

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

e « M i 9 H n U M 0 l |M N |

(a) MMD(pdslO)

a a a t : 2 \ i i » * « •
W lW I

(c) MMD(kenl3)

• 10*

(b) AMD(pdslO) (d) AMD(kenl3)

FlG. 3 8. Sitpernode compression and elimination in fill-reducing orderings. Plotted are the cumula
tive number o f eliminated supernodes (bottom line) and total supernodes either eliminated or outstanding
(top line) vs. execution time. The two lines converge when all principal supemodes that exist have been
eliminated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

5.2.3 Switching Algorithms Mid-Stream

Because our implementation is object-oriented and because we paid careful attention to decomposition

of duties between the objects, we have some additional flexibility in our system that we can exercise.

The MinPriority algorithm class uses the services o f a PriorityStrategy, but never knows

exactly which one it is using, so the exact type o f strategy can be switched in the middle of the ordering

computation.

For this to be successful, the MinPriority and QuotientGraph classes must be amenable to

dynamically changing some o f their characteristics as well. The exact type o f PriorityStrategy

must communicate to the MinPriority algorithm whether to do single or multiple elimination and it

must notify the QuotientGraph class whether to do approximate updates, or exact updates.

We created a Switcher class that implements MMD until a certain condition is met. After that

condition is met. it changes its behavior to AMD. For the purposes o f this experiment, the conditions

required to switch from MMD to AMD was simply the percentage o f original nodes that were eliminated

from the quotient graph. In Figures 39 and 40 we show how pdsIO and ken 13. respectively, performed

when switching from MMD to AMD at various points in the computation.

In Figure 39 we show experiments in which the switch between MMD and AMD is changed in

10% increments; we also zoom in at the 84-87% range where there is an abrupt transition. Careful

examination reveals that MMD is stalling when eliminating the last two to three thousand supemodes in

the quotient graph. AMD. however not only eliminates the remaining quotient graph faster, it also does

so by eliminating far less supemodes.

As the elimination progresses, not only does the quotient graph have far fewer vertices, it also becomes

increasingly connected. For pdsIO, the last 2000 supemodes are almost, but not completely connected.

This means that MMD cannot And large independent sets o f vertices — which is crucial to its efficient

execution. However, there are a lot o f indistinguishable nodes that are available and MMD is not finding

them. This is because MMD does a lazy update and has a larger set o f supemodes to handle at each

quotient graph update. Therefore it is too expensive to do an exhaustive search o f all possible pairs o f

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

■ ■ _ 4875 8015 11284 12988
— —3784------7085---- 40462-----43681

B B B B B iB IjM 4.— 353s.— 3g° _ 13M 8 _

100 90 ir ' i t ' W i^ B o 70 6 0 5 0 4 0 3 0 2 0 1 0 0
% permutation determined by MMD

FlC. 39. Details o f pdsIO when dynamically changing from MMD to AMD. Each bar represents
a different run o f the software with CPU time in the vertical direction. Each run starts with MMD and
then switches to AMD when a certain percentage o f the total permutation is determined. This percentage
is shown on the horizontal axis. After the switch, AMD is used to complete the ordering. There are two
numbers above each bar. The lower o f the two is the number o f supernodes in the quotient graph at the
time MMD algorithm cedes control to AMD. The upper number is the number o f supemode eliminations
performed by AMD to complete the ordering. These two numbers are not necessarily the same by virtue
o f supemode amalgamation, though the upper number can be no greater than the lower one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100 90 80 70 60 50 40 30 20 10 0
% permutation determined by MMD

FIG. 40. Details o f ken! 3 when dynamically changing from MMD to AMD. at different points in
the ordering. Each bar represents a different run o f the software with CPU time in the vertical direction.
Each run starts with MMD and then switches to AMD when a certain percentage o f the total permutation
is determined. This percentage is shown on the horizontal axis. After the switch to AMD, the algoritlwis
completes the ordering. There are two numbers above each bar. The lower o f the two is the number o f
supernodes in the quotient graph at the time MMD algorithm cedes control to AMD. The upper number is
the number o f supemode eliminations performed by AMD to complete the ordering. These two numbers
are not necessarily the same by virtue o f supemode amalgamation, though the upper number can be no
greater than the lower one.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

indistinguishable supernodes. What it does instead is check all so-called “two adjacent" supemodes.

These are supemodes that are adjacent to exactly two enodes and no other supemodes.

AMD. on the other hand, has a much smaller set o f supemodes to deal with at every graph update,

and since it is a single elimination scheme all the supemodes are reachable to each other through the

most recently created enode. AMD then can afford an exhaustive search for indistinguishable nodes. This

strategy pays o ff in the end because AMD can compress approximately the last 2000 supemodes into just

under 200.

For ken 13 in Figure 40 the picture is quite different. Cursory examination in this case shows that

AMD's aggressive graph compression is not paying off. and in fact is much slower than MMD. Because

AMD is a single elimination scheme there are many more quotient graph updates to perform, one for each

eliminated supemode. MMD can reduce the quotient graph from 26 to 18 thousand supemodes with just

two quotient graph updates.

We note that in both ken 13 and pdsIO the optimum is neither MMD or AM D, but some combination

thereof. The intuition is that initially, when the quotient graph is very sparse and there are large inde

pendent sets o f vertices to be had. MMD is better to use. Later in the elimination process, however, the

quotient graph becomes much denser and there may not be as many sets o f independent vertices to elimi

nate at once. AMD is better suited for this case especially with its more aggressive compression abilities.

O f course, switching on the percentage o f the total permutation that is completed is a crude control. It

is quite possible that a more sophisticated property o f the quotient graph, o r some logic built into the

M in P r i o r i t y object that analyzes its behavior over the last few iterations would provide a much better

reason to switch from a multiple elimination method to an approximate one.

U might seem more natural and a better design to make the S w i t c h e r class more generic by simply

giving it two references to P r i o r i t y S t r a t e g y and letting it switch from any one strategy to another

by forwarding the messages it receives to the current strategy. In this case, however, when the strategy

switches it would be necessary to purge the P r i o r i ty Q u e u e and recompute all the priorities o f all the

outstanding supemodes. This would incur some additional overhead, but would require no foreseeable

changes in the architecture o f the software. Currently, there is no need to purge and recompute for all

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

Table 18
Comparison o f Spindle’s greedy algorithms vs. reported nested dissection algorithms. All numbers

are normalized by Spindle’s MMD ordering.

problem AMD
size

AM MF Metis BEND AMD
work

AM M F Metis BEND
8 shuttle.eddy 1.00 .92 .96 .86 1.00 .77 .91 .71

IS pwt 1.01 .96 .79 .85 1.06 .89 .51 .63
18 bcsstk3S 1.00 .99 1.15 1.02 1.01 .92 1.29 1.00
20 bcsstk37 1.00 .96 1.12 .95 1.00 .87 1.24 .86
22 bcsstk36 1.00 .99 t .U .93 1.00 .94 1.15 .79
23 bcsstk30 1.00 .93 1.19 1.04 1.00 .77 1.33 1.06
26 bcsstk32 .98 .93 1 .10 .97 .94 .78 1.15 .86
27 struct? 99 9-1 86 83 <»9 83 62 .57
29 bcsstk33 .99 .90 .87 .70 .98 .72 .67 .14
31 bcsstk3l 1.01 .85 .86 .81 1.04 .67 .50 .19
33 nasasrb .99 84 .85 .78 .98 .66 .69 .55
39 3dtube 1.01 .90 .58 .56 1.02 .80 .29 .30
40 cfdl 1.00 .73 .57 .56 1.01 .49 .37 .28
41 gearbox .99 .92 .72 .72 .98 .79 .41 .38
42 cfd2 .99 .76 .43 .43 96 .57 .19 .16
geometric mean 1.00 .90 .84 .78 1.00 .75 .65 .54
mean 1.00 .90 .88 .80 1.00 .76 .76 .60

outstanding supemodes at the moment the strategy switches because AMD uses upper bounds on the

degree that MMD uses. Any supemodes in the priority queue at that time are more precise than AMD

would compute anyway, so there is no problem leaving them in.

5.2.4 Comparison against Nested Dissection

Recently, attention has been redirected to divide-and-conquer type till-reducing algorithms using various

forms o f nested dissection. In his Ph.D. thesis, Bomstein (14| presented a comparison o f AMD [2|,

Metis [50|, BEND [461. fo ra set o f matrices. In Table 18 we reproduce matrices that are common to both

Bornstein’s and our test set.

Even compared with the newest greedy fill-reducing algorithms, divide-and-conquer implementations

provide superior permutations to reduce storage and work requirements. The cost to perform these nested

dissection orderings, remains larger than the greedy algorithms, both in terms o f cpu time and storage.

The latter is due to the fact that many nested-dissection codes use multi-level strategies that requires

significant amounts o f memory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

6. EXTENSIONS

One o f the most encouraging signs o f a well-engineered code is its adaptability to new circumstances.

Indeed, extensibility was a primary design goal that we stated back in Section 2.2. In our work, we

have extended the code in directions that we had not originally planned, but where circumstances (or

opportunity) had presented itself. We pay particular attention to how well the software adapted, and how

much modification was required. Our efforts run the gamut o f software evolution; from deriving a new

sub-class and plugging it in. to modifying or rewriting certain objects. Obviously the less original code

that was modified, the better — and more successful — for us.

In Section 6.1 we extend our symmetric ordering algorithms to provide orderings for general sparse

matrices. This section introduces additional notation for unsymmetric matrices, a discussion o f some

established practices, a column-oriented minimum fill algorithm (Section 6.1.1) and a novel generalization

for the Sloan algorithm (Section 6.1.2).

In Section 6.2 we introduce some ordering algorithms with additional constraints. First we discuss a

multi-stage, greedy fill reducing ordering (Section 6.2.1). This algorithm is a critical part o f any nested

dissection ordering where the graph that has already been partitioned, and now the subdomains are suf

ficiently small to do a greedy fill reducing ordering on each subdomain, respecting partition boundaries.

Then we discuss a block-wavefront reducing algorithm (Section 6.2.2) where we want to minimize the

global wavefront, but are subject to partition constraints where the partitions themselves are ordered and

all vertices on a certain partition must be exhausted before proceeding to another.

6.1 Unsymmetric Orderings

Until this point, we have always made the assumption that we are dealing with a large, sparse, structurally

symmetric matrix .4. and wanted a single permutation P to symmetrically permute the system P A P T .

Let us now assume that the matrix is not structurally symmetric, indeed it may not even be square. In this

case, we would require separate row and column permutations P r , Pc.

In practice, unsymmetric orderings are avoided by making the problem symmetric.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

1 2 3 4

la) spylA)

1 2 3 4
1 • • • 1 • • • •
2 • • 2 • • •
3 • • 3 • • •
4 • • 4 • • • •

<b) spyiATA)

t— cp— O — (2)

)— 6— ®— 6
If) graplil A VA) Id) hypergraphlA)

FIG. 41. Art example square, unsymmetric matrix, (a) Nonzero structure o f the square, unsymmetric
matrix. (b) Nonzero structure o f A r .4. (c) Its column intersection graph, (d) Its hypergraph (white circles
fo r columns, black circles fo r rows).

For square matrices that are "almost” symmetric, one can perform a symmetric ordering on the sparse

structure o f .4 + .4 r . The resulting permutation is applied to both the rows and columns o f .4. This

process makes the ordering algorithm form a symmetric permutation that is an upper bound for the un

derlying unsymmetric one. Matlab's sym rcm () function actually operates on the nonzero structure of

.4 + ,4r [40|.

For rectangular problems where .4 can have more rows than columns, one can perform a symmetric

ordering on the sparsity structure o f .4 r .4, which is symmetric but decidedly less sparse. The resulting

permutation can then only be applied as a column permutation. This is effectively what is done in Matlab’s

colm m d () function [401 though the product, .4T.4. is not explicitly formed.

For Sections 6.1.1-6.1.2 we will consider an example unsymmetric matrix shown in Figure 41(a).

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

6.1.1 Column Minimum Fill

To adapt Spindle to perform a column minimim fill ordering for unsymmetric problems, we have a few

choices.

We could derive a C o l I n t e r s e c t io n G ra p h class from our generic G ra p h class and make its

constructor form the graph o f ,4T.4 explicitly. Then we simply pass the graph to the existing M i n P r i -

o r i c y E n g in e class and associate apparatus and return the result.

Alternatively, we can take an approach similar to Davis and Duff [1 8 .19| where we extend the Q uo-

t i e n t G r a p h class to implicitly represent the graph o f ,4T .4. To see how this second technique works,

consider the hypergraph model in Figure 41(d). Instead o f visualizing the black circles as the hub of

a hyperedge, interpret them as enodes in a quotient graph. Once these initial conditions have been set,

the regular M i n P r i o r i t y E n g i n e will produce an elimination order that we can use as the column

fill-reducing ordering.

Although this second approach is more complicated to implement, there are considerable storage

savings by using the implicit representation. This representation requires (9(nnz(.4)) storage. Worst

case for the explicit C o l I n t e r s e c t i o n G r a p h is 0 (nnz '-(.4)) (See Figure I). Thus, we consider the

implicit approach to be superior, even though setting up its initial conditions will require modifications to

existing code.

The critical problem is constructing an appropriate Q u o t i e n tG r a p h . The current implementation

assumes that it is always constructed from a graph o f all supemodes and no enodes. The simplest solution

is to create a H y p e rG ra p h class, and pass it (via a pointer to G ra p h) to the existing constructor of

a Q u o t i e n t G r a p h class. With this solution, the Q u o t i e n t G r a p h class (having no knowledge of

hypergraphs) will interpret both vertices and hyperedge hubs as supemodes. Then, since no hyperedge

hubs-tumed-supemodes are adjacent, they form an independent set which can all be eliminated before

updating the quotient graph. After updating the quotient graph, the quotient graph is in the initial state we

want that implicitly represents .4T .4. The problem is that the quotient graph will incorrectly report the

number o f supemodes, the number o f eliminations, etc. since from its point o f view the initial number of

supemodes included the hyperedge-hubs. A second option is adding a feature to the Q u o t i e n t G r a p h

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

class to recognize enodes that exist a priori. This can probably be done via some additional constructor

using a H y p e rG ra p h or some similarly distinctive graph from an unsymmetric problem. We propose

modifying the original Q u o t i e n tG r a p h because its internal state is too complex to easily change its

behavior consistently in a derived class.

Depending on how successful we are in encapsulating the details of the symmetry/unsymmetry in

the Q u o t i e n tG r a p h . we may need to fine-tune some details in the M i n P r i o r i t y E n g i n e . This is

especially so if we build the unsymmetric quotient graph in the piecemeal fashion we first described. We

are confident if we take our time with the Q u o t i e n t G r a p h . the ordering engine can remain untouched.

This also makes sense from very broad perspective since algorithm is the same whether the underlying

matrix is symmetric or not.

6.1.2 Unsymmetric Sloan

Unlike the fill reduction problem where current state-of-art simply performs a colum n ordering, we can

provide a wavefront-reducing row and column ordering for unsymmetric matrices. Furthermore, we can

do so without modifying the S lo a n E n g in e at all.

Before progressing further, we need to define the unsymmetric generalizations o f some terms we

introduced in Section 3.2.L.

We start by generalizing the definition of a row width for the lower triangle o f a general sparse square

matrix.

Definition 6.1 Consider a large, sparse, square matrix, .4. The row width fo r the ith row, rw,(.4), is the

difference between i and the column index o f the first nonzero entry o f the row, or the diagonal (whichever

comes first).

rw ,(.4) = m ax (i — j) .
j:ait?0 or j = i

We introduce a similar concept for the upper triangle o f a general sparse, square matrix.

Definition 6.2 Consider a large, sparse, square matrix. .4. The column height fo r the t th column, ch<(.4).

is the difference between i and the row index o f the first nonzero entry o f the column, o r the diagonal

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

< whichever comes first).

chj(.4) = max {j - i).
or I

R em ark 6.1 For any sparse, square matrix, .4,

chi (.4) = rw ,(.4 r).

We now define terms like bandwidth and envelope for square, unsymmetric matrices.

Definition 6 3 Given a large, sparse, square, unsymmetric matrix, .4. the bandwidth o f A is the sum o f

the maximum row width and the maximum column height

bw(.4) = m ax rw,(.4) + m ax ch,(.4).
l < i < n

Definition 6.4 Given a large, sparse, square, unsymmetric matrix. .4, the envelope o f A is the sum o f the

envelopes o f both L + L v and the transpose o f i ' + i ' r .

R em ark 6.2 Given a large, sparse, square, unsymmetric matrix. .4, the size o f the envelope o f A is the

sum o f the row widths and column heights:

n n

|env(.4)| =] T rw,(.4) + ^ c h ^ . 4) .
.=i j = i

These generalized terms seem to have the unfortunate side effect o f doubling the values when applied

to symmetric matrices. In fact, we have implicitly halved the terms for the symmetric case since the

underlying system is symmetric and we can store, factor, and work with them in half the space. Matrices

that are only structurally symmetric can only sometimes take advantage o f this economy so the application

o f these terms depends on the context.

We need to define the wavefront o f an unsymmetric matrix. In Section 3.2.1 we defined wavefront

o f a symmetric matrix through Cholesky factorization. For the unsymmetric matrix, we need to first

understand LU factorization, o f which Cholesky is a symmetric variant.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

1 2 3 4
1 • • • 1 V • •
2 • • 2 • • X X
3 • • 3 • •
4 • • 4 • •

1 2 3 4 1 2 3 4 1 2 3 4
1

2
3 • •
4 • X •

1 2 3 4

\ * *• V x x

(0) (i) (2)

1

2
3
4

X X

(3)

1

X X2
3
4

(4)

Fig. 42. Example o f LU factorization. The circles represent original nonzero entries, the crosses
represent fill entries.

We provide an example of LU factorization o f the unsymmetric matrix in Figure 42. This is on the

same unsymmetric matrix we first showed in Figure 41. The LU factorization decomposes a square

matrix .4 into a lower triangular matrix L. and an upper triangular matrix U such that the product o f L

and U is equal to A 1. In this particular example, we form the factors L and U in place. For detailed

information about LU factorization, see Li [56].

Here, when factoring the ith row and column, we consider active rows and columns. An active row

for column i is any o f the last n — i rows that has a nonzero entry in some klh column where k < i.

Similarly, an active column for row i is any o f the last n - i columns that has a nonzero entry in some fcth

row where k < i. When factoring the i th row and column o f an unsymmetric matrix, the number o f active

rows and columns (including both the i 'h row and column) is called the ith wavefront o f .-I. wf,(.-l).

Observation 6.1 The sum o f the wavefronts o f a sparse, square, unsymmetric matrix equals the size o f

the envelope, plus 2n.

]T) |w fj(.4) | = n + ^ r w j (A) -F n + ^ ch,(.4)
i = i i = i i = i

= ‘2n -t- |env(.4)|

Definition 6.5 The ith row wavefront o f a sparse, square, unsymmetric matrix .4. w fP>,(.4) is the con

tribution to the wavefront by all the active columns on row i and row i itself. Similarly the ith column

wavefront. wfCtl(.4) is the contribution to the wavefront by all the active rows on column i and column i

itself.

1 We will assume Tor simplicity that the factorization is numerically stable and no pivoting is required.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

Observation 6.2 Given a sparse, square symmetric matrix .4, let A l be the lower triangle o f A and A u

be the upper triangle o f A. Then

wfr.i(-4) = w f,(.4 t + .41),

and

wf<r.,(.4) = w ft (.4t;- + A[').

Now consider that we want to perform a wavefront reducing ordering on an unsymmetric matrix.

An interesting way to accomplish this is to construct the hypergraph o f the matrix. Then convert all

the hyperedge hubs to vertices themselves, producing a graph o f 2n vertices, where half of the vertices

correspond to vertices in the hypergraph (and columns in the matrix) and the other half of the vertices

correspond to hyperedge hubs in the hypergraph (and rows in the matrix). In this new graph o f 2n

vertices, we want to number adjacent pairs o f vertices such that the number o f unnumbered neighbors o f

all numbered vertices are minimized.

The number of as yet unnumbered vertices adjacent to a numbered vertex (plus two for the two just

numbered) equals the wavefront at that step. Furthermore, the number o f such vertices that originate from

a vertex in the hypergraph (plus one) equals the column wavefront and the number of such vertices that

originate from a hyperedge hub in the hypergraph (plus one) equals the row wavefront. Lastly, since the

graph induced by this hypergraph is bipartite and we restrict ourselves to numbering adjacent pairs, we

are guaranteed to generate the row and column permutations evenly and that there will be nonzeros along

the diagonal o f the permuted system.

Instead o f writing a new algorithm to detect and removed mached pairs, we can simply run the regular

S lo a n E n g in e the graph o f 2n vertices. Once we get a permutation vector o f length 2n. we examine the

order in which vertices are numbered. If the first vertex numbered corresponds to a vertex in the original

hypergraph, we put that into one queue. If it corresponds to a hyperedge hub in the original hypergraph,

we put it into another queue. Then we repeat with the rest o f the vertices in the graph the Sloan algorithm

numbered. When we are done, the order that the hypergraph vertices appear in the queue becomes the

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

column permutation and the order that hyperedge hubs appear in the second queue determines the row

permutation.

Although this new application o f Sloan doesn't exactly satisfy the constraint o f numbering adjacent

pairs, we expect it to work well in practice. There is no need to modify exiting code, simply derive a

H y p e rG ra p h from the G ra p h class, and add a driver to separate the larger permutation into the row

and column permutations. Since the H y p e rG ra p h is also bipartite it is immune to the graph compression

that the S lo a n E n g in e inherits from O r d e r in g A lg o r i t h m .

6.2 Constrained Orderings

Ordering and partitioning problems are strongly related. An ordering problem can be seen as an «-way

partition. With these constrained ordering problems, the graph is already partitioned into subdomains. To

preserve the partitioning, the ordering algorithm must order each subdomain completely before moving

to another, while still minimizing some global property.

6.2.1 Multi-Stage Fill-Reducing Orderings

Nested dissection ordering is a divide-and-conquer approach to the fill reduction problem. It recursively

selects a vertex separator that, upon removal, separates the graph into two independent subgraphs. By

numbering the vertices in the separator last, it ensures that no fill edges can occur between the two sub

graphs. This dissection then recurs on each subdomain until they become sufficiently small. At this point,

there is a large collection o f small, independent subgraphs that are yet unnumbered. These are typically

ordered with MMD. Additionally, performing a MMD ordering on the vertex separators can also improve

the overall reduction in fill.

Metis [50] as well as many other partitioning codes use GENMMD or some equivalent to order their

subdomains. However, this requires actually generating all o f these subdomains as independent graphs,

running the algorithm, and then combining the results. O ne exception is SPOOLES [4], which has its

own Multi-Stage Minimum Degree (MSMD) implementation.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

We now investigate how we could add this feature to our existing code. At first glance, it would

seem that that all we need to do is derive a new class from M i n P r i o r i t y E n g i n e , add an array to

store the subdomain each vertex is in. and override the e x e c u t e () method to produce the appropriate

ordering. Although the entire M i n P r i o r i t y E n g i n e class is over 500 lines o f code, the body for the

e x e c u t e () method is less than a page. There is, however, one problem: supemode amalgamation. It

could happen that during elimination two supemodes from two different domains become indistinguish

able. In this case, we need to prevent them from being amalgamated as this would violate the partition

restrictions.

6.2.2 Block Wavefront Orderings

Running a wavefront reducing ordering in subdomains o f a partitioned system can have many applica

tions, including incomplete factorization preconditioning, and optimizing for cache performance on the

deep memory heirarchies o f current processors.

Our S lo a n E n g in e class has the ability already to handle many more general situations than a simple

Sloan algorithm can handle. It is currently one o f the most mature components in Spmdfe. Not only can it

perform orderings that respect partitioning restrictions, it can take partition boundaries into account. This

required the P s e u d o D ia m e te r and B r e a d t h F i r s t S e a r c h classes to be augmented as well.

For instance, the B r e a d t h F i r s t S e a r c h class can start from a root node, or a set o f root nodes.

It can restrict its search to only those vertices in the same domain as the root node (or nodes). An added

feature is that it can loosen this restriction to include nodes that are adjacent to nodes in the same domain.

The P s e u d o D ia m e te r class can take advantage o f these partition restrictions and select a pair of

vertices that are the farthest apart in their own subdomain.

In a partitioned ordering, we may not know where we want to start numbering vertices in a particular

domain, but we want to ensure that all the boundary vertices are numbered last This can be accomplished

with the S lo a n E n g i n e class. We simply mark ail the boundary nodes as end nodes. The S l o a

n E n g in e uses a B r e a d t h F i r s t S e a r c h object (which can start from multiple roots) to generate the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FlC. 43. Constrained wavefront reduction example. The partitioned graph (a) is broken into two
graphs: (b) and (c), which can be ordered independently.

global component o f the priority function, and to find start nodes. Then the ordering object can artifi

cially deflate the initial priority o f all the end vertices so low that all other vertices are guaranteed to be

numbered before they are.

Another interesting application for these enhanced ordering engines comes from an interface problem

in finite elements [711. We have a mass with linear properties across most o f the domain, but there are

non-linear physics occuring at one face where it is interacting with another body. This gives rise to a

symmetric block system

.4 =
K „ AT, 2

K j , K n

where K \i is the linear domain. Kr> is the non-linear interface. The task now is to generate local order

ings on K n and K?> that reducing the global wavefront.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

Consider the simple example shown in Figure 43(a). After numbering all the vertices in K n the

boundary nodes o f K » form the wavefront. Since we know this wavefront at one point, we can create

two Sloan ordering engines to compute the orderings before and after that wavefront.

The first graph is made up o f all the vertices from the K 11 block o f the matrix and boundary vertices

o f the K >•> block (see Figure 43(b)). These boundary vertices are set as the end nodes o f the wavefront

reducing ordering and we set their priority such that we are guaranteed they are numbered last. Then we

run the S lo a n E n g in e on this subgraph, and examine the order in which all the vertices in K n were

numbered.

The second graph is strictly made up o f all the vertices in the K> > block. The boundary vertices are

labeled as start nodes, but we do not need to force them to be numbered first. The reason is that once a

vertex is in the wavefront, it never leaves until its numbered. We take the order in which these vertices

were numbered, and append that to the end o f the ordering for the K n block.

Because o f the maturity o f the S lo a n E n g in e class, we did not need to make any modifications to

the class itself. We needed only to build a simple driver to construct the two subgraphs, orchestrate the

two S lo a n E n g in e classes, and rebuild the total ordering from the two permutations on the subgraphs.

6.3 Summary

The possibilities for further extension abound. Even more important is understanding how extensible the

current design is. Now that we have explained "what” changes we made, we examine "how” the changes

were made and where the design failed to be extensible.

The easiest example of extensibility is where it was intentionally designed into the code: specifically

the ShrinkingStrategy hierarchy for the PseudoDiameter algorithic class (Section 4.3.2). and

the PriorityStrategy hierarchy for the MinPriorityEngine algorithmic class (Section 4.3.1).

However, achieving extensibility where it was expected, and achieving a generally extensible code are

two different matters. Here, we will focus on the latter.

For both the unsymmetric Sloan and the column minimum fill algorithms, there were no changes

needed to any algorithmic com ponent Additional classes HyperGraph and ColIntersectGraph

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

were derived from the Graph class, and the QuotientGraph needed some modification to handle a

special case o f initial enodes. New drivers were implemented to extract the results of the algorithm class

and reformat it to a solution for an unsymmetric problem. We felt this to be good cases o f software

extensibility.

For the partitioned fill reducing ordering, we needed rewrite parts o f the MinPriorityEngine

algorithm which orchestrates the interaction between its three main member objects. Adding this func

tionality was not difficult, but it would have been better if we could simply derive an enhanced algorithmic

class. But we are inclined to believe that this special case is probably an intrinsic part o f a general al

gorithmic object. Looking back on the rest o f Spindle, we find that several algorithmic objects, including

BreadthFirstSearch. PseudoDiameter. RCMEngine and SloanEngine all have partition

restrictions built-in to the base class. In this case, we should have identified the trend and built partition

restrictions into the MinPriorityEngine at the beginning. The QuotientGraph also needed to

be modified to prevent amalgamating indistinguishable supernodes that resided on different subdomains.

This was not technically difficult.

Our solution to the block-wavefront reducing ordering algorithm is more of an example o f code reuse

and flexibility than extensibilty in the strict sense that we defined in Section 2.2. Here we created a

collection o f SloanEngine classes and set them up to do independent problems. The code we wrote

to divide the problem, and recombine the partial results from the SloanEngine classes is all new. The

algorithmic classes themselves are not exhibiting a new behavior, but are being used in a different way.

As we said before, achieving extensibility where it was expected, and achieving a generally extensible

code are two very different things. With Sphtdfe. we feel that we have accomplished something in the

middle. We are generally pleased with the extensions that we have been able to incorporate efficiently.

We also acknowledge that there are practical limits to how far the code can be extended. The extensions

presented in this chapter are, after all, only a small subset o f all the extensions possible; and were chosen

because we felt they had the highest probability o f success.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

7. CONCLUSION

Better tools promote better science. And improvments in science allow better tools. While this symbiotic

relationship is very obvious in areas such as bio-technology, chemistry, astronomy, and physics, it is often

overlooked — or underestimated — in computer science. It is not enough to have either cutting edge

algorithms or state-of-the-art software engineering. Today’s research requires both.

We spent time analyzing and understanding heuristics for two well-known NP-hard problems. We

augmented existing algorithms and in some cases designed new algorithms. We carefully implemented

these algorithms in efficient and robust object-oriented software. Then, we used these new tools in ex

tending our knowledge; solving additional problems in new and interesting ways.

The envelope/wavefront reduction problem and its more general form as a sequencing problem has

a wide variety o f applications: scientific computing, cache performance tuning, spatial databases, and

genomics to name a few. Our work has produced asymptotically faster algorithms that reduce the envelope

and wavefront better than any other known heuristic. The flexible implementation allows us to generate

these orderings on a variety o f architectures and integrate with larger pieces o f software such as PETSc

and Matlab. It also allows us to solve related problems of constrained envelope/wavefront reduction and

unsymmetric envelope/wavefront reduction with minimal additions to the existing code.

The fill reduction problem is a classic problem in sparse matrix factorization that has been researched

and improved upon for well over 20 years. Our research includes a comprehensive complexity analysis

for a family o f related heuristics. Our software implements the broadest range o f these heuristics for any

known implementation, free or commercial. We use the analysis and the software to find weaknesses

in the current heuristics and demonstrate a novel polymorphic algorithm that has the potential to adapt

dynamically as the ordering progresses. Furthermore, we were able to implement all o f this flexible,

object-oriented software to execute within a small constant o f native Fortran77 code.

There are many additional research projects that readily extend from Spntdle. On the algorithmic side,

the next logical problem to implement would be a full partitioning package. This could be used on its

own o r in conjunction with Sloan o r MinPriority tor various nested dissection orderings. On the software

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

side, because sparse matrix reordering is a service provided to much larger solver codes, and because of

Spmdfe’s inherent object-oriented nature, extending Spmife’s implementation to include distributed com

ponent technologies is tempting.

It is our sincere desire to continue to develop and maintain Sphtdle for some time to come. It provides

many useful services for a wide range o f applications and we hope to have it bundled within complete

solver packages in the near future. Sphtdfe has proven a useful framework for algorithmic research and a

significant contribution to sparse matrix computations.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

REFERENCES

[l | A. Agra w a L, P. K L E I N , and R. Ravi, Cutting down on Jill using nested dissection: Provably

good elimination orderings., in Graph Theory and Sparse Matrix Computation, A. George. J. R.

Gilbert, and J. W. H. Liu. eds., vol. 56 of The IMA Volumes in Mathematics and its Applications.

Springer-Verlag. 1993. pp. 31-55.

[2| P. AMESTOY. T. A. Davis , a n d I. S. D uff. An approximate minimum degree ordering algorithm,

SIAM J. Mat. Anal. & Appl., 17 (1996), pp. 886-905.

[3| C. ASHCRAFT, Compressed graphs and the minimum degree algorithm. SIAM J. Sci. Comput.. 16

(1995). pp. 1404-1411.

[4| C. ASHCRAFT a n d R. G r im e s . SPOOLES: An object-oriented sparse matrix li

brary, in Proceedings of the Ninth SIAM Conference on Parallel Processing. 1999.

h t t p : / /w w w .n e t l i b . o r g / l i n a l g / s p o o l e s .

[5| C. ASHCRAFT a n d J. W. H. LlU. SMOOTH: A software package for ordering sparse matrices.

November 1996. h t t p : / / w w w . c s . y o r k u . c a / ' j o s e p h / S M 00T H .h tm l.

[6| J. E. ATKINS, E. G. Bo m a n . and B. He n d r ic k so n , a spectral algorithm fo r the consecutive

ones problem, SIAM J. Comput.. 28 (1996), pp. 326-337.

[71 S . B a LAY. W . D . G r o p p . L . C . M c lN N E S , A N D B . F . SM ITH , Petsc: The portable extensible

toolkit fo r scientific computing, h t t p : / / www.mcs . a n l . g o v / p e t s c .

[81 --------, Efficient Management o f Parallelism in Object-Oriented Numerical Software Libraries,

Birkhauser Press, 1997. pp. 163-202.

[91 S . T . B A R N A R D . A. P o t h e n , a n d H . D . S i m o n , a spectral algorithm fo r envelope reduction o f

sparse matrices, J. Numerical Linear Algebra with Applications. 2 (1995), pp. 317-334.

[10] P. B E R M A N a n d G . SC H N ITG ER . On the performance o f the minimum degree ordering fo r Gaus

sian elimination, SIAM J. Mat. Anal. &. Appl.. 11 (1990), pp. 83-88.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.netlib.org/linalg/spooles
http://www.cs.yorku.ca/'joseph/SM00TH.html
http://www.mcs

165

[LL] J. R. S. B l a i r . P. H E G G ER N ES, AND J. A. T e l l e . A practical algorithm fo r making filled graphs

minimal. Theoretical Computer Science A, (2000). To Appear.

[121 R- Bo isv ert . R. Po z o , K. Rem in g to n . R. Ba r r e t t , and J. Do n g a r r a . Matrix market: a

web resource fo r test matrix collections, in Numerical Software: Assessment and Enhancement,

R. Boisvert, ed.. Chapman and Hall. London. 1997, pp. 125-137.

113| E . B o m a n a n d B . H e n d r i c k s o n . Multilevel envelope reduction. Tech. Report SCCM-96-14,

Stanford University, 1996.

[1 4 | C. B O R N STEIN . Parallelizing and De-parallelizing Elimination Orders, PhD thesis, Carnegie Mel

lon University, 1998.

[151 U . V. Q a t a LYUREK AND C. AYKANAT. Decomposing irregularly sparse matrices for parallel

matrix-vector multiplications, in Lecture Notes in Computer Science, vol. 117. Springer-Verlag,

1996.

[161 T. H. CORMEN. C. E. LEISERSON. AND R. L. RlVEST. Introduction to Algorithms. McGraw Hill.

1992.

[17] E. H. C U T H IL L . AND J. M cK ee. Reducing the bandwidth o f sparse symmetric matrices, in Pro

ceed. 24th Nat. Conf. Assoc. Comp. Mach., ACM Publications. 1969. pp. 157-172.

[181 T. A. DAVIS a n d I. S. DUFF. An unsymmetric-pattern multifrontal method fo r sparse LU factor

ization, SIAM J. Mat. Anal. & Appl.. 19 (1997). pp. 140-158.

[191 ------- , A combined unifrontal/multifrontal method fo r unsymmetric sparse matrices. ACM Trans, on

Math. Software, 25 (1999), pp. 1-19.

[20| F. D O B R IA N , G. K U M FER T, AND A. PO TH EN . Object-oriented design fo r sparse direct solvers, in

Computing in Object-Oriented Parallel Environments. D. C. et. al.. ed.. vol. 1505 o f Lecture Notes

in Computer Science. Springer-Verlag, December 1998, pp. 207-214.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L66

[21] ------- , Sparse direct solvers using object-oriented techniques, in Advances in Software Tools for

Scientific Computing, H. P. Langtangen, A. M. Bruaset. and E. Quak, eds.. Lecture Notes in Com

putational Science and Engineering, Springer-Verlag. 1999. pp. 89-131.

[22| I. S. D U FF. A. M. ER 1SM A N . a n d J. K. REID. Direct Methods fo r Sparse Matrices, Clarendon

Press, Oxford, 1986.

[231 i- S. DUFF, R. G. G r im e s , and J. G. LEWIS. Users Guide fo r the Harwell-Boemg Sparse Matrix

Collection, Oct 1992.

[24J I. S. DU FF a n d G. A . M E U R A N T . The effect o f ordering on preconditioned conjugate gradients.

Tech. Report CSS 221. AERE Harwell, Oxon 0 X 1 1 ORA. United Kingdom, September 1988.

[251 I- S. D U FF a n d J . K. R e i d , The multifrontal solution o f indefinite sparse symmetric linear equa

tions. ACM Trans, on Math. Software, 9 (1983). pp. 302-325.

[26| I. S . D U FF. J. K . R e i d , a n d J. A . SCO TT, The use o f profile reduction algorithms with a frontal

code. Int. J. for Num. Meths. in Eng.. 28 (1989). pp. 2555-2568.

[271 S. C . ElSENSTAT. M . C . G U R SK Y , M. H. SC H U LTZ, a n d A. H. SHERM AN. The Yale sparse matrix

package /: the symmetric codes. Internatl. J. Numer. Meths. Engr.. 18 (1982). pp. 1145-1151.

[281 M. F ie d l e r . Algebraic connectivity o f graphs, Czechoslovak Math. J .. 23 (1973). p p . 298-305.

[29] ------- . 4 property o f eigenvectors o f iionnegative symmetric matrices and its application to graph

theory, Czechoslovak Math. J., 25 (1975). pp. 619-633.

[301 E . G a m m a . R. H e l m . R. J o h n s o n , a n d J . V l i s s i d e s , Design Patterns: Elements o f Reusable

Object-Oriented Software, Addison Wesley Professional Computing Series, Addison Wesley Long

man, 1995.

[311 A. GEORGE a n d J. W. H . LlU, An implementation o f a pseudoperipheral node finder.:, ACM Trans,

on Math. Software, 5 (1979). pp. 284-295.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

[32| -------, A fast implementation o f the minimum degree algorithm using quotient graphs. ACM Trans.

on Math. Software. 6 (1980). pp. 337-358.

[331 -------. A minimal storage impelmentation o f the minimum degree algorithm, SIAM J. Num. Anal..

17 (1980). pp. 282-299.

[34| ------- . The evolution o f the minimum degree algorithm. SIAM Rev.. 3 1 (1989). pp. 1-19.

[351 A. G E O R G E a n d D. R. M c I n t y r e . On the application o f the minimum degree algorithm to finite

element systems. SIAM J. Num. Anal.. 15 (1978), pp. 9 0 -1 11.

[36| A. G EO R G E AND A. PO TH EN , Analysis o f the spectral approach to envelope reduction via a

quadratic assignment formulation. SIAM J. Mat. Anal. & Appl.. 1997.

[37(N. E. G lB B S . Algorithm 509: A hybrid profile reduction algorithm. ACM Trans, on Math. Software,

2(1976). pp. 378-387.

[381 N. E. G ib b s . W. G. Po o l e . JR.. a nd P. K. Stockm eyer . An algorithm fo r reducing the band

width and profile o f a sparr- matrix. SIAM J. Num. Anal.. 13 (1976). pp. 236-249.

[391 ------- . A comparison o f several bandwidth and profile reduction algorithms. ACM Trans, on Math.

Software, 2 (1976), pp. 322-330.

[4 0 | J . R. G ILB ER T, C . M O L E R , a n d R. S c h r e IBER, Sparse matrices in MATLAB: design and imple

mentation. SIAM J. M a t. Anal. & Appl.. 11 (1992). pp. 333-356.

[411 D . S . GREENBERG a n d S . C . IST R A IL . Physical mapping with STS hybridization:, opportunities

and limits. tech. report, Sandia National Labs, 1994.

[421 B. H EN D R IC K SO N , Graph partitioning and parallel solvers: Has the Emperor no clothes?, in Pro

ceedings from Irregular ’98, vol. 1457 o f Lecture Notes in Computer Science, Springer-Veriag,

1998, pp. 218-225.

[431 B. HENDRICKSON AND T. G . K O LD A , Partitioning rectangular and structurally nonsymmetric

sparse matrices fo r parallel processing. To appear in SIAM J. Sci. Comput.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 68

[44J B- HENDRICKSON a n d R. LELAND, The Chaco user's guide: Version 2.0, Tech. Report SAND94-

2692. Sandia National Laboratories, Albuquerque, NM 87815.1994.

[45] ------- , An improved spectral graph partitioning algorithm fo r mapping parallel computations,

SIAM J. Sci. Comput.. 16 (1995), pp. 452-469.

[46] B. HENDRICKSON a n d E. ROTHBERG, Effective sparse matrix ordering: Just around the BEND.

in Eighth SIAM Conference on Parallel Processing for Scientific Computing. March 1997.

[47] C. J o r d a n . Sur les assemblages de lignes. J. Reine Angew. Math. 70 (1969). pp. 185-190.

[48] M. JUVAN AND B. MOHAR, Laplace eigenvalues and bandwidth-type invariants o f graphs.

Preprint, Department o f Mathematics. University o f Ljubljana. Jadranska 19. 61 I I I . Lubljana.

Slovenia. 1990.

[49] ------- . Optimal linear labelings and eigenvalues o f graphs. Discr. Appl. Math.. 36 (1992), pp. 153—

168.

[5 0] G . K a RYPIS AND V. K U M A R. MeTiS: An unstructured graph partitioning and sparse matrix order

ing system, h t t p : / / w w w .cs . u m n . e d u / - k a r y p i s / m e t i s / m e t i s .h tm l .

[51] I. P. K I N G , An automatic reordering scheme fo r simultaneous equations derived from network sys

tems, Intl. J. Num. Meths. Engr., 2 (1970). pp. 523-533.

[52] G . K U M FE R T AND A . PO TH EN , Tw o improved algorithms fo r envelope and wavefront reduction.

BIT. 37 (1997), pp. 559-590.

[53] ------- , An object-oriented collection o f minimum degree algorithms, in Computing in Object-

Oriented Parallel Environments, D. C. et. al., ed., vol. 1505 o f Lecture Notes in Computer Science,

Springer, December 1998, pp. 207-214.

[54] J. LakOS, Large-Scale C++ Software Design, Professional Computing Series, Addison-Wesley,

1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs

169

[5 5 | J . G . L e w i s , Implementations o f the Gibbs-Poole-Stockmeyer and Gibbs-King algorithms, A C M

Trans, on Math. Soft.. 8 (1982), pp. 180 - 189.

[56J X- S. Ll, Sparse Gaussian Elimination on High Performance Computers, PhD thesis. University of

California at Berkeley, 1996.

[5 7 | R. J. L lPTO N AND R. E . T a r j a n , A separator theorem fo r planar graphs, SIAM J. A p p l. M ath ..

3 6 (1 9 7 9) , p p . 1 7 7 -1 8 9 .

[58[J- W. H. L lU , Modification o f the minimum-degree algorithm by multiple elimination, ACM Trans,

on Math. Software. 11 (1985). pp. 141-153.

[591 3- W. H . L lU AND A. H . SH ERM AN. Comparative analysis o f the Cuthill-Mckee and the reverse

Cuthill-Mckee ordering algorithms fo r sparse matrices, SIAM J. Num. Anal.. 13 (1976), pp. 198—

213.

[60| S. M E Y E R S . More Effective C ++: 35 New IVtovs to Improve your Programs and Designs. Addison-

Wesley. 1996.

[61] ------- . Effective C ++: 50 Specific H im to Improve your Programs and Designs. Addison-Wesley.

2nd ed., 1998.

[621 G . L. M I L L E R . S .-H . T E N G , W. T h u r s t o n , a n d S. A. VAVASIS. Automatic mesh partitioning.

in Graph Theory and Sparse Matrix Computation, A. George, J. R. Gilbert, and J. W. H. Liu, eds..

Springer Verlag, 1993. pp. 57-84. The IMA Volumes in Mathematics and its Applications, Volume

56.

[63] D. R. M U S S E R A N D A. S a i n i , STL Tutorial and Reference Guide, Addison-Wesley. 1996.

[64] E. G . NG A N D P. R A G H A V A N , Performance o f greedy ordering heuristics fo r sparse Cholesky

factorization. Submitted to SIAM I. Mat. Anal. & Appl.. 1997.

[65] S . PaRTER, The use ofplanar graphs in Gaussian Elimination, SIAM Rev.. 3 (1961), pp. 364-369.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

[6 6 | G . H . Pa u l i n o , I. F . M . M E N E Z ES. M . G a t t a S S . a n d S . M U K H E R JE E . Node and element rese

quencing using the Laplacian o f a finite element graph. Part I, International Journal for Numerical

Methods in Engineering, 37 (1994), pp. 151L—1530.

[67] ------- , Node and element resequencing using the Laplacian o f a finite element graph. Part II, Inter

national Journal for Numerical Methods in Engineering, 37 (1994). pp. 1531-1555.

[68] A. PoTHEN. H . D . S i m o n , a n d K. P. L i o u . Partitioning sparse matrices with eigenvectors o f

graphs, SIAM J. Mat. Anal. & Appl.. 11 (1990), pp. 430-452.

[69] A. POTHEN. H . D . SIMON, a n d L. W a n g , Spectral nested dissection. Tech. Report CS-92-01.

Computer Science. Pennsylvania State University, University Park. PA. 1992. Also NASA Ames

Research Center Report RNR-092-003.

[70] A. PO TH EN . S. YE, AND J. Fu. Enhancing the cache performance o f irregular computations by

reordering data accesses, (in preparation), 2000.

[7 11 L. V. QUOC AND J. R. O ’L e a ry . Automatic node resequencing with constraints. Computers and

Structures. 18 (1984). pp. 55-69.

[7 2] J . K. REID a n d J . A . S c o t t . Ordering symmetric sparse matrices fo r small profile and wavefront.

Tech. Report R A L -1998-016. Rutherford Appleton Laboratory, 1998.

[73] E. ROTHBERG, Ordering sparse matrices using approximate minimum local fill. Preprint.Silicon

Graphics Inc., Mountain View CA. April 1996.

[74] E. ROTHBERG AND S. C. ElSENSTAT, Node selection strategies fo r bottom-up sparse matrix or

dering, SIAM J. Mat. Anal. & Appl., 19 (1998), pp. 682-695.

[75] S . SH EK H A R , S . C H A W L A . S . R a v a d a . A. FETTER ER , X. LlU, A N D C .-T . L U. Spatial databases:

Accomplishments and research needs, IEEE Trans, on Knowledge and Data Eng., 11 (1999), pp. 4 5 -

55.

[76] S . W. SL O A N . An algorithm fo r profile and wavefront reduction o f sparse matrices. International

Journal for Numerical Methods in Engineering. 23 (1986), pp. 2 3 9 -2 5 1.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

[77| A. STEPANOV a n d M. L e e . The Standard Template Library, Palo Alto. CA 94304. Oct. 1995.

[78] B. STROUSTRUP, The C++ Annotated Reference Manual, Addison-Wesley, 3 ed., 1997.

[7 9] L . W a n g , Spectral Nested Dissection, PhD thesis. The p ;nnsylvania State University, August 1994 .

[80] W. WATTHAYU, Cache-friendly algorithms in scientific computing, master’s thesis. Old Dominion

University, 1999.

[811 M . Y A N N A K A K IS . Computing the minimum fill-in is NP-complete. SIAM J. Alg. & Disc. Meth.,

(1981). pp. 77-79.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

INDEX

active columns, 154
active rows, 154
adjacency graph, see graph, adjacency-
algebraic

ordering algorithms, 38
combinatorial hybrid. 1,40

A lg o r i th m class, 92
AMD. 1 .67 .7 7 -8 0 ,6 5 -9 0 . 119.122,135-148

implementations, see AMDBAR,
SPOOLES. or Spindle

AMDBAR, 135, 137,138
algorithm, see AMD

AMF.67
priority function, 69

AMIND. 67
priority function, 69

AMMF.67
priority function, 69

anisotropy, 55.57
Approximate Minimum Degree, see AMD
Approximate Minimum Fill, see AMF
Approximate Minimum Increase in Neighbor

Degree, see AMIND
Approximate Minimum Mean Local Fill, see

AMMF
ArraySloan. 49-52

bandwidth, 2 2 .2 3 ,3 7 .4 6 .4 8 .1 3 0 -1 3 2
reduction, 23 .23
symmetric. 22

bandwith
unsymmetric. 153

BEND. 148
BFS, see search, breadth-first
BinaryHeap class, 98
breadth-first-search, see search, breadth-first
BreadthFirstSearch class, 107 ,157 .160
BucketSorter class, 98 ,121 ,122

CFD, see computational fluid dynamics
CG, see conjugate gradient methods
Chaco. 117,127
Cholesky, see factorization, Cholesky
C la s s M e ta D a ta class, 9 3 ,9 4 ,9 9
clique. 7
ColIntersectGraph class, 159
ColIntersectionGraph class, 151
column height

unsymmetric, 152
column intersection graph, see graph, column

intersection-combinatorial

ordering algorithms. 1 .3 7 ,8 1
algebraic hybrid. 1 ,40

refinement algorithm. 40
Common Object Request Broker Architecture,

see CORBA
C o m p re s s ionM ap class. 97 ,99 ,107
computational fluid dynamics

problems, 128
conjugate gradient methods, 55, 56
CORBA. 100

D a c a S tr e a m class, 116,118
D a t a S t r u c t class, 96
D a t a S t r u c t u r e class, 92, 94. 95. 97-99,

104.116
DCOM, 100
diameter

pseudo, see pseudo-diameter
Distributed Component Object Model, see

DCOM

EJB. IOO
E l i m i n a c i o n F o r e s t class, 97. 106.107
Enterprise Java Beans, see EJB
envelope, 22

unsymmetric, 153

factorization
Cholesky. 2 3 .5 4 .5 5 .6 0 , 153

incomplete, 54
LU. 153.153,154
symmetric, see factorization, Cholesky
unsymmetric. see factorization, LU

factorization. Cholesky, incomplete. 55-57
Fiedler vector, 38 .5 4 .1 2 7 ,1 2 7
finite-element. 39.83

Gaussian elimination
variants

symmetric, see factorization, Cholesky
G e n e r i c F o r e s t class, 97
GENMMD, 135,136,138

algorithm, see MMD
Gibbs-King, see GK
Gibbs-Poole-Stockmeyer, see GPS
GK, 16
GPS. 16
G ra p h class, 9 5 .9 7 .9 7 .9 8 ,1 0 7 ,1 0 9 , I I I . 112,

116 ,117 ,125 .151 ,155 ,159
graph

adjacency-, 4 -5

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

bipartite-, 155,156
column intersection-,4,5 -6 ,1 5 0
compression. 6-7
diameter. 16
directed, 8
distance. 16. 17. 1 8 .3 8 .4 1 .4 4 .4 7 .5 3 .1 0 8
hyper-. 4 ,6 ,1 5 0 .1 5 1 .1 5 5
index, 53,58
of matrix, 4
quotient

unsymmetric. 152
undirected, 4 ,6 ,7 ,2 2 ,2 4 , 38 .60
undirected edges, 8
unweighted, 38

G ra p h B a s e class. 9 7 ,9 7 ,116-118
G ra p h C o m p re s s o r class. 107

Harwell Sparse Library. 49 ,55 . 135
Harwell-Boeing Sparse Matrix Collection, 57,

113
HeapSloan. 49-52
HyperGraph class, 151. 155, 156. 159
hypergraph, see graph, hyper-

IC. see factorization, Cholesky, incomplete
inodes, 7

level set. 17
level structure, 17

height, 17
width, 18

LU. see factorization, LU

MapUt i I s class. 98 ,99
Matlab. 13. 115.150. 161
matrices

rectangular, 150
structurally symmetric-, 153

M a t r i x class. 9 8 ,9 9 .1 0 0 ,1 1 3 ,1 1 4 .1 1 6 ,1 1 7
matrix

format
column-major, 115
row-major, 115

graph of, 4
unsymmetric, 5 ,6

sparse. 3
storage

column-major, 14
row-major, 14

structure, 3
Matrix Market Library, 113 ,116 .117
MatrixBase class. 9 8 .114,116-118
MatrixFile class, 113,114
MatrixMarketFile class, 116

M a t r i x U t i l s class, 98,99
M C 40.49 .50
M C 60 .50
MD, 1
M essage Passing Interface, see MPl
M e ta D a ta class. 98
Metis. 148
MinimumPriorityEngine class, 119
MinimumPriorityStrategy class, 124.

125
M i n P r i o r i t y E n g i n e class. 108, 119, 151,

152. 156. 159, 160
MMD. 1 .6 7 .6 5 -9 0 , 119.122. 135-148

implementa
tions, see GENMMD. SPOOLES, or
Spindle

MMDF. 67
priority function, 69

M M M D .67
priority function. 69

Modified Minimum Deficiency, see MMDF
Modified Multiple Minimum Degree, see

MMMD
MPL 100
Multiple Minimum Degree, see MMD

node, see vertex
NP-complete. 3 9 .6 1
NP-hard. 1. 161

operating systems
Linux. 91
Solaris. 91
WindowsNT. 9 1

O p t i o n D a t a b a s e class, 109
ordering

fill-reducing. 1 .5 ,7 ,5 8 -9 0 .108. 151
results. 133-148

wavefront-reduction. 21-58
O r d e r i n g A l g o r i t h m class, 107, 108, 109,

156

path
undirected. 62

permutation
colum n, 150-152
unsymmetric, 149-156

P e r m u ta t io n M a p class, 9 5 .9 7 ,9 7 ,98-103,
106,107

PETSc. 7. 14,91, 115,161
Portable Extensible Toolkit for Scientific Com

puting, see PETSc
preactive nodes. 37
preconditioning

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

incomplete Cholesky, see factorization,
Cholesky, incomplete

P r i o r i t y Q u e u e class. 147
P r i o r i t y S t r a t e g y class, 120. 133. 138,

144. 147. 159
pseudo-diameter. 16-21
P s e u d o D ia m e te r class, 107, 108. 117, 119,

157. 159. 160

Q u o t i e n tG r a p h class, 94 ,98 ,120-124 ,126 ,
144. 151, 152. 159.160

RCM. 1 6 ,2 3 .2 5 .2 6 .3 8 .4 0 ,4 9 .5 0 ,5 5 ,5 7 ,1 0 8 ,
127-132

RCM Engine class. 108.160
Reverse Cuthill-McKee. see RCM
row width, 22

unsymmetric. 152

S c a t t e r M a p class, 97
search

breadth-lirst-, 17. 18,20
asymptotic complexity. 17

S h i n k i n g S t r a t e g y class. 107
short-circuit. 20
shrinking strategy, 1 8 .2 0 .2 1 .1 1 7
S h r i n k i n g S t r a t e g y class. 117.117. 159
Sloan. 16.26.38. 127-133

enhanced. 21
implementation

array based, see ArrayS loan
Harwell Sparse Library, see MC40 or

MC60
heap based, see HeapSloan

normalized weights. 128-130
refinement. 21

Sloan's Algorithm
aymptotic complexity, 51-52

SloanrFast-. 129
S lo a n E n g in e class. 108.152.155-160
sort

bucket. 98
sparse

matrix. 3
spectral ordering. 38 -39
Spindle, iii. I. 14. 15. 66. 92. 94. 95, 99, 104,

106, 109, 111, 113. 117, 119. 133—
135,138,150, 157.160-162

S p i n d l e A l g o r i t h m class, 104-107,122
S p i n d l e A r c h i v e class, 100
S p i n d l e B a s e C l a s s class. 92 -94 .98-100
S p in d le S y s t e m class, 99
SPOOLES, 135,136-138
Standard Template Library, see STL

STL. 9 1
Strategy Pattern. 1 1 7 .119
supemode, see vertex
Sw i t c h e r class. 144. 147
S y m b o l i c F a c t o r i z a t i o n class. 107

TCP/IP, 100

vertex
degree

approximate. 65
exact, see vertex, degree

distance, see graph, distance
indistinguishable. 6 .6 4 .6 5 .6 7 .6 8 .7 3 ,7 4 .

76. 79-81 .83 . 84, 139. 144. 147. 157.
160

wavefront
column. 154
reduction

blockwise. 149. 157-160
row, 154.155
unsymmetric. 154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

VITA

Gary Karl Kumfert was bom and (with the exception o f two years) raised in Philadelphia. Pennsylvania.
In August 1989. fresh out o f high school, he moved to Norfolk. Virginia with a full tuition academic
scholarship to Old Dominion University. During his undergraduate career, he was recognized for distin
guished service to the university and the community, and for demonstrated leadership among his peers.
He earned a Bachelors o f Science in Applied Mathematics with a minor in Computer Science in Spring
1993.

Having maintained a 4.0 GPA in his computer science classes as an undergraduate. Gary was ap
proached by the Computer Science Department and offered an assistantship in the Ph.D. program. He
started in Fall 1993. During his time at Old Dominion University. Gary has done an internship at ICASE
at NASA Langley, served as President of the Graduate Student Association, and was awarded a GAANN
Fellowship (Graduate Assistantships in Areas o f National Need) funded by the Department o f Education.
The Department o f Computer Science can be contacted directly by mail or telephone, or email.

Department o f Computer Science
Old Dominion University
Norfolk. VA 23529
(757) 683-3915

Immediately after his dissertation defense in August 1999, Gary joined the Center for Applied Scien
tific Computing (CASC) in Lawrence Livermore National Laboratory.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Old Dominion University
	ODU Digital Commons
	Spring 2000

	An Object-Oriented Algorithmic Laboratory for Ordering Sparse Matrices
	Gary Karl Kumfert
	Recommended Citation

	tmp.1569424910.pdf.bQFpn

