146 research outputs found

    The Study of Properties of n-D Analytic Signals and Their Spectra in Complex and Hypercomplex Domains

    Get PDF
    In the paper, two various representations of a n-dimensional (n-D) real signal u(x1,x2,…,xn) are investigated. The first one is the n-D complex analytic signal with a single-orthant spectrum defined by Hahn in 1992 as the extension of the 1-D Gabor’s analytic signal. It is compared with two hypercomplex approaches: the known n-D Clifford analytic signal and the Cayley-Dickson analytic signal defined by the Author in 2009. The signal-domain and frequency-domain definitions of these signals are presented and compared in 2-D and 3-D. Some new relations between the spectra in 2-D and 3-D hypercomplex domains are presented. The paper is illustrated with the example of a 2-D separable Cauchy pulse

    Instantaneous frequency and amplitude of complex signals based on quaternion Fourier transform

    Get PDF
    The ideas of instantaneous amplitude and phase are well understood for signals with real-valued samples, based on the analytic signal which is a complex signal with one-sided Fourier transform. We extend these ideas to signals with complex-valued samples, using a quaternion-valued equivalent of the analytic signal obtained from a one-sided quaternion Fourier transform which we refer to as the hypercomplex representation of the complex signal. We present the necessary properties of the quaternion Fourier transform, particularly its symmetries in the frequency domain and formulae for convolution and the quaternion Fourier transform of the Hilbert transform. The hypercomplex representation may be interpreted as an ordered pair of complex signals or as a quaternion signal. We discuss its derivation and properties and show that its quaternion Fourier transform is one-sided. It is shown how to derive from the hypercomplex representation a complex envelope and a phase. A classical result in the case of real signals is that an amplitude modulated signal may be analysed into its envelope and carrier using the analytic signal provided that the modulating signal has frequency content not overlapping with that of the carrier. We show that this idea extends to the complex case, provided that the complex signal modulates an orthonormal complex exponential. Orthonormal complex modulation can be represented mathematically by a polar representation of quaternions previously derived by the authors. As in the classical case, there is a restriction of non-overlapping frequency content between the modulating complex signal and the orthonormal complex exponential. We show that, under these conditions, modulation in the time domain is equivalent to a frequency shift in the quaternion Fourier domain. Examples are presented to demonstrate these concepts

    Fourier transforms of hypercomplex signals

    Get PDF
    An overview is given to a new approach for obtaining generalized Fourier transforms in the context of hypercomplex analysis (or Clifford analysis). These transforms are applicable to higher-dimensional signals with several components and are different from the classical Fourier transform in that they mix the components of the signal. Subsequently, attention is focused on the special case of the so-called Clifford-Fourier transform where recently a lot of progress has been made. A fractional version of this transform is introduced and a series expansion for its integral kernel is obtained

    A Novel Representation for Two-dimensional Image Structures

    Get PDF
    This paper presents a novel approach towards two-dimensional (2D) image structures modeling. To obtain more degrees of freedom, a 2D image signal is embedded into a certain geometric algebra. Coupling methods of differential geometry, tensor algebra, monogenic signal and quadrature filter, we can design a general model for 2D structures as the monogenic extension of a curvature tensor. Based on it, a local representation for the intrinsically two-dimensional (i2D) structure is derived as the monogenic curvature signal. From it, independent features of local amplitude, phase and orientation are simultaneously extracted. Besides, a monogenic curvature scale-space can be built by applying a Poisson kernel to the monogenic curvature signal. Compared with the other related work, the remarkable advantage of our approach lies in the rotationally invariant phase evaluation of 2D structures in a multi-scale framework, which delivers access to phase-based processing in many computer vision tasks
    • …
    corecore