112 research outputs found

    The bracket geometry of statistics

    Get PDF
    In this thesis we build a geometric theory of Hamiltonian Monte Carlo, with an emphasis on symmetries and its bracket generalisations, construct the canonical geometry of smooth measures and Stein operators, and derive the complete recipe of measure-constraints preserving dynamics and diffusions on arbitrary manifolds. Specifically, we will explain the central role played by mechanics with symmetries to obtain efficient numerical integrators, and provide a general method to construct explicit integrators for HMC on geodesic orbit manifolds via symplectic reduction. Following ideas developed by Maxwell, Volterra, Poincaré, de Rham, Koszul, Dufour, Weinstein, and others, we will then show that any smooth distribution generates considerable geometric content, including ``musical" isomorphisms between multi-vector fields and twisted differential forms, and a boundary operator - the rotationnel, which, in particular, engenders the canonical Stein operator. We then introduce the ``bracket formalism" and its induced mechanics, a generalisation of Poisson mechanics and gradient flows that provides a general mechanism to associate unnormalised probability densities to flows depending on the score pointwise. Most importantly, we will characterise all measure-constraints preserving flows on arbitrary manifolds, showing the intimate relation between measure-preserving Nambu mechanics and closed twisted forms. Our results are canonical. As a special case we obtain the characterisation of measure-preserving bracket mechanical systems and measure-preserving diffusions, thus explaining and extending to manifolds the complete recipe of SGMCMC. We will discuss the geometry of Stein operators and extend the density approach by showing these are simply a reformulation of the exterior derivative on twisted forms satisfying Stokes' theorem. Combining the canonical Stein operator with brackets allows us to naturally recover the Riemannian and diffusion Stein operators as special cases. Finally, we shall introduce the minimum Stein discrepancy estimators, which provide a unifying perspective of parameter inference based on score matching, contrastive divergence, and minimum probability flow.Open Acces

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Mathematics & Statistics 2017 APR Self-Study & Documents

    Get PDF
    UNM Mathematics & Statistics APR self-study report, review team report, response report, and initial action plan for Spring 2017, fulfilling requirements of the Higher Learning Commission

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence
    corecore