22 research outputs found

    Squid: Type-Safe, Hygienic, and Reusable Quasiquotes

    Get PDF
    Quasiquotes have been shown to greatly simplify the task of metaprogramming. This is in part because they hide the data structures of the intermediate representation (IR), instead allowing metaprogrammers to use the concrete syntax of the language they manipulate. Scala has had ``syntactic'' quasiquotes for a long time, but still misses a statically-typed version like in MetaOCaml, Haskell and F#. This safer flavor of quasiquotes has been particularly useful for staging and domain-specific languages. In this paper we present Squid, a metaprogramming system for Scala that fills this gap. Squid quasiquotes are novel in three ways: they are the first statically-typed quasiquotes we know that allow code inspection (via pattern matching); they are implemented purely as a macro library, without modifications to the compiler; and they are reusable in the sense that they can manipulate different IRs. Adapting (or binding) a new IR to Squid is done simply by implementing a well-defined interface in the style of object algebras (i.e., tagless-final). We detail how Squid is implemented, leveraging the metaprogramming tools already offered by Scala, and show three application examples: the definition of a binding for a DSL in the style of LMS; a safe ANF conversion; and the introduction of type-safe, hygienic macros as an alternative to the current macro system

    Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

    Get PDF
    In interactive theorem provers (ITPs), extensible syntax is not only crucial to lower the cognitive burden of manipulating complex mathematical objects, but plays a critical role in developing reusable abstractions in libraries. Most ITPs support such extensions in the form of restrictive "syntax sugar" substitutions and other ad hoc mechanisms, which are too rudimentary to support many desirable abstractions. As a result, libraries are littered with unnecessary redundancy. Tactic languages in these systems are plagued by a seemingly unrelated issue: accidental name capture, which often produces unexpected and counterintuitive behavior. We take ideas from the Scheme family of programming languages and solve these two problems simultaneously by proposing a novel hygienic macro system custom-built for ITPs. We further describe how our approach can be extended to cover type-directed macro expansion resulting in a single, uniform system offering multiple abstraction levels that range from supporting simplest syntax sugars to elaboration of formerly baked-in syntax. We have implemented our new macro system and integrated it into the upcoming version (v4) of the Lean theorem prover. Despite its expressivity, the macro system is simple enough that it can easily be integrated into other systems.Comment: accepted to IJCAR 202

    Compile-time meta-programming in converge.

    Get PDF
    Compile-time meta-programming allows programs to be constructed by the user at compile-time. Few modern languages are capable of compile-time meta-programming, and of those that do, many of the most powerful are statically typed functional languages. In this paper I present the dynamically typed, object orientated language Converge which allows compile-time meta-programming in the spirit of Template Haskell. Converge demonstrates that integrating powerful, safe compiletime meta-programming features into a dynamic language requires few restrictions to the exible development style facilitated by the paradigm

    Scala Macros, a Technical Report

    Get PDF
    Metaprogramming is a powerful technique of software development, which allows to automate program generation. Applications of metaprogramming range from improving expressiveness of a programming language via deep embedding of domain-specific languages to boosting performance of produced code by providing programmer with finegrained control over compilation. In this report we introduce macros, facility that enables compile-time metaprogramming in the Scala programming language

    Extensible Languages for Flexible and Principled Domain Abstraction

    Get PDF
    Die meisten Programmiersprachen werden als Universalsprachen entworfen. Unabhängig von der zu entwickelnden Anwendung, stellen sie die gleichen Sprachfeatures und Sprachkonstrukte zur Verfügung. Solch universelle Sprachfeatures ignorieren jedoch die spezifischen Anforderungen, die viele Softwareprojekte mit sich bringen. Als Gegenkraft zu Universalsprachen fördern domänenspezifische Programmiersprachen, modellgetriebene Softwareentwicklung und sprachorientierte Programmierung die Verwendung von Domänenabstraktion, welche den Einsatz von domänenspezifischen Sprachfeatures und Sprachkonstrukten ermöglicht. Insbesondere erlaubt Domänenabstraktion Programmieren auf dem selben Abstraktionsniveau zu programmieren wie zu denken und vermeidet dadurch die Notwendigkeit Domänenkonzepte mit universalsprachlichen Features zu kodieren. Leider ermöglichen aktuelle Ansätze zur Domänenabstraktion nicht die Entfaltung ihres ganzen Potentials. Einerseits mangelt es den Ansätzen für interne domänenspezifische Sprachen an Flexibilität bezüglich der Syntax, statischer Analysen, und Werkzeugunterstützung, was das tatsächlich erreichte Abstraktionsniveau beschränkt. Andererseits mangelt es den Ansätzen für externe domänenspezifische Sprachen an wichtigen Prinzipien, wie beispielsweise modularem Schließen oder Komposition von Domänenabstraktionen, was die Anwendbarkeit dieser Ansätze in der Entwicklung größerer Softwaresysteme einschränkt. Wir verfolgen in der vorliegenden Doktorarbeit einen neuartigen Ansatz, welcher die Vorteile von internen und externen domänenspezifischen Sprachen vereint um flexible und prinzipientreue Domänenabstraktion zu unterstützen. Wir schlagen bibliotheksbasierte erweiterbare Programmiersprachen als Grundlage für Domänenabstraktion vor. In einer erweiterbaren Sprache kann Domänenabstraktion durch die Erweiterung der Sprache mit domänenspezifischer Syntax, statischer Analyse, und Werkzeugunterstützung erreicht werden . Dies ermöglicht Domänenabstraktionen die selbe Flexibilität wie externe domänenspezifische Sprachen. Um die Einhaltung üblicher Prinzipien zu gewährleisten, organisieren wir Spracherweiterungen als Bibliotheken und verwenden einfache Import-Anweisungen zur Aktivierung von Erweiterungen. Dies erlaubt modulares Schließen (durch die Inspektion der Import-Anweisungen), unterstützt die Komposition von Domänenabstraktionen (durch das Importieren mehrerer Erweiterungen), und ermöglicht die uniforme Selbstanwendbarkeit von Spracherweiterungen in der Entwicklung zukünftiger Erweiterungen (durch das Importieren von Erweiterungen in einer Erweiterungsdefinition). Die Organisation von Erweiterungen in Form von Bibliotheken ermöglicht Domänenabstraktionen die selbe Prinzipientreue wie interne domänenspezifische Sprachen. Wir haben die bibliotheksbasierte erweiterbare Programmiersprache SugarJ entworfen und implementiert. SugarJ Bibliotheken können Erweiterungen der Syntax, der statischen Analyse, und der Werkzeugunterstützung von SugarJ deklarieren. Eine syntaktische Erweiterung besteht dabei aus einer erweiterten Syntax und einer Transformation der erweiterten Syntax in die Basissyntax von SugarJ. Eine Erweiterung der Analyse testet Teile des abstrakten Syntaxbaums der aktuellen Datei und produziert eine Liste von Fehlern. Eine Erweiterung der Werkzeugunterstützung deklariert Dienste wie Syntaxfärbung oder Codevervollständigung für bestimmte Sprachkonstrukte. SugarJ Erweiterungen sind vollkommen selbstanwendbar: Eine erweiterte Syntax kann in eine Erweiterungsdefinition transformiert werden, eine erweiterte Analyse kann Erweiterungsdefinitionen testen, und eine erweiterte Werkzeugunterstützung kann Entwicklern beim Definieren von Erweiterungen assistieren. Um eine Quelldatei mit Erweiterungen zu verarbeiten, inspizieren der SugarJ Compiler und die SugarJ IDE die importierten Bibliotheken um die aktiven Erweiterungen zu bestimmen. Der Compiler und die IDE adaptieren den Parser, den Codegenerator, die Analyseroutine und die Werkzeugunterstützung der Quelldatei entsprechend der aktiven Erweiterungen. Wir beschreiben in der vorliegenden Doktorarbeit nicht nur das Design und die Implementierung von SugarJ, sondern berichten darüber hinaus über Erweiterungen unseres ursprünglich Designs. Insbesondere haben wir eine Generalisierung des SugarJ Compilers entworfen und implementiert, die neben Java alternative Basissprachen unterstützt. Wir haben diese Generalisierung verwendet um die bibliotheksbasierten erweiterbaren Programmiersprachen SugarHaskell, SugarProlog, und SugarFomega zu entwickeln. Weiterhin haben wir SugarJ ergänzt um polymorphe Domänenabstraktion und Kommunikationsintegrität zu unterstützen. Polymorphe Domänenabstraktion ermöglicht Programmierern mehrere Transformationen für die selbe domänenspezifische Syntax bereitzustellen. Dies erhöht die Flexibilität von SugarJ und unterstützt bekannte Szenarien aus der modellgetriebenen Entwicklung. Kommunikationsintegrität spezifiziert, dass die Komponenten eines Softwaresystems nur über explizite Kanäle kommunizieren dürfen. Im Kontext von Codegenerierung stellt dies eine interessante Eigenschaft dar, welche die Generierung von impliziten Modulabhängigkeiten untersagt. Wir haben Kommunikationsintegrität als weiteres Prinzip zu SugarJ hinzugefügt. Basierend auf SugarJ und zahlreicher Fallstudien argumentieren wir, dass flexible und prinzipientreue Domänenabstraktion ein skalierbares Programmiermodell für die Entwicklung komplexer Softwaresysteme darstellt

    Beyond Notations: Hygienic Macro Expansion for Theorem Proving Languages

    Get PDF
    In interactive theorem provers (ITPs), extensible syntax is not only crucial to lower the cognitive burden of manipulating complex mathematical objects, but plays a critical role in developing reusable abstractions in libraries. Most ITPs support such extensions in the form of restrictive "syntax sugar" substitutions and other ad hoc mechanisms, which are too rudimentary to support many desirable abstractions. As a result, libraries are littered with unnecessary redundancy. Tactic languages in these systems are plagued by a seemingly unrelated issue: accidental name capture, which often produces unexpected and counterintuitive behavior. We take ideas from the Scheme family of programming languages and solve these two problems simultaneously by proposing a novel hygienic macro system custom-built for ITPs. We further describe how our approach can be extended to cover type-directed macro expansion resulting in a single, uniform system offering multiple abstraction levels that range from supporting simplest syntax sugars to elaboration of formerly baked-in syntax. We have implemented our new macro system and integrated it into the new version of the Lean theorem prover, Lean 4. Despite its expressivity, the macro system is simple enough that it can easily be integrated into other systems

    Late-bound code generation

    Get PDF
    Each time a function or method is invoked during the execution of a program, a stream of instructions is issued to some underlying hardware platform. But exactly what underlying hardware, and which instructions, is usually left implicit. However in certain situations it becomes important to control these decisions. For example, particular problems can only be solved in real-time when scheduled on specialised accelerators, such as graphics coprocessors or computing clusters. We introduce a novel operator for hygienically reifying the behaviour of a runtime function instance as a syntactic fragment, in a language which may in general differ from the source function definition. Translation and optimisation are performed by recursively invoked, dynamically dispatched code generators. Side-effecting operations are permitted, and their ordering is preserved. We compare our operator with other techniques for pragmatic control, observing that: the use of our operator supports lifting arbitrary mutable objects, and neither requires rewriting sections of the source program in a multi-level language, nor interferes with the interface to individual software components. Due to its lack of interference at the abstraction level at which software is composed, we believe that our approach poses a significantly lower barrier to practical adoption than current methods. The practical efficacy of our operator is demonstrated by using it to offload the user interface rendering of a smartphone application to an FPGA coprocessor, including both statically and procedurally defined user interface components. The generated pipeline is an application-specific, statically scheduled processor-per-primitive rendering pipeline, suitable for place-and-route style optimisation. To demonstrate the compatibility of our operator with existing languages, we show how it may be defined within the Python programming language. We introduce a transformation for weakening mutable to immutable named bindings, termed let-weakening, to solve the problem of propagating information pertaining to named variables between modular code generating units.Open Acces

    Compile-time meta-programming in a dynamically typed OO language.

    Get PDF
    Compile-time meta-programming allows programs to be constructed by the user at compile-time. Although LISP derived languages have long had such facilities, few modern languages are capable of compile-time meta-programming, and of those that do many of the most powerful are statically typed functional languages. In this paper I present the dynamically typed object orientated language Converge which allows compile-time meta-programming in the spirit of Template Haskell. Converge demonstrates that integrating powerful, safe compile-time meta-programming features into a dynamic language requires few restrictions to the flexible development style facilitated by the paradigm. In this paper I detail Converge’s compile-time meta-programming facilities, much of which is adapted from Template Haskell, contain several features new to the paradigm. Finally I explain how such a facility might be integrated into similar languages
    corecore