112 research outputs found

    Model estimates of China's terrestrial water storage variation due to reservoir operation

    Get PDF
    Understanding the role of reservoirs in the terrestrial water cycle is critical to support the sustainable management of water resources especially for China where reservoirs have been extensively built nationwide. However, this has been a scientific challenge due to the limited availability of continuous, long-term reservoir operation records at large scales, and a process-based modeling tool to accurately depict reservoirs as part of the terrestrial water cycle is still lacking. Here, we develop a continental-scale land surface-hydrologic model over the mainland China by explicitly representing 3,547 reservoirs in the model with a calibration-free conceptual operation scheme for ungauged reservoirs and a hydrodynamically based two-way coupled scheme. The model is spatially calibrated and then extensively validated against streamflow observations, reservoir storage observations and GRACE-based terrestrial water storage anomalies. A 30-year simulation is then performed to quantify the seasonal dynamics of China’s reservoir water storage (RWS) and its role in China\u27s terrestrial water storage (TWS) over recent decades. We estimate that, over a seasonal cycle, China\u27s RWS variation is 15%, 16%, and 25% of TWS variation during 1981–1990, 1991–2000, and 2001–2010, respectively, and one-fifth of China’s reservoir capacity are effectively used annually. In most regions, reservoirs play a growing role in modulating the water cycle over time. Despite that, an estimated 80 million people have faced increasing water resources challenges in the past decades due to the significantly weakened reservoir regulation of the water cycle. Our approaches and findings could help the government better address the water security challenges under environmental changes

    Remote Sensing of Precipitation: Volume 2

    Get PDF
    Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne

    SUNRISE: Drought monitoring in China - a brief review

    Get PDF
    Drought is one of the most complex and costly natural hazards. It develops slowly and can affect a large area meaning it can be difficult to pinpoint the start and/or the end of an event. Drought is primarily driven by a deficit in precipitation but an additional level of complexity is introduced when these deficits in precipitation propagate to other parts of the hydrological cycle such as soil moisture, river flows and groundwater levels over different time scales

    Recent Land Cover Changes and Sensitivity of the Model Simulations to Various Land Cover Datasets for China

    Get PDF

    Global scale evaluation of precipitation datasets for hydrological modelling

    Get PDF
    Abstract. Precipitation is the most important driver of the hydrological cycle but is challenging to estimate over large scales from satellites and models. Here, we assessed the performance of six global and quasi-global high-resolution precipitation datasets (ERA5 global reanalysis (ERA5), Climate Hazards group Infrared Precipitation with Stations version 2.0 (CHIRPS), Multi-Source Weighted-Ensemble Precipitation version 2.80 (MSWEP), TerraClimate (TERRA), Climate Prediction Centre Unified version 1.0 (CPCU) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-Climate Data Record (PERCCDR)) for hydrological modelling globally and quasi-globally. We forced the WBMsed global hydrological model with the precipitation datasets to simulate river discharge from 1983 to 2019 and evaluated the predicted discharge against more than 1800 hydrological stations worldwide, using a range of statistical methods. The results show large differences in the accuracy of discharge predictions when using different precipitation input datasets. Based on evaluation at annual, monthly and daily time scales, MSWEP followed by ERA5 demonstrated a higher CC and KGE than other datasets for more than 50 % of the stations. Whilst, ERA5 was the second-highest performing dataset, it showed the highest error and bias in about 20 % of the stations. The PERCCDR is the least well performing dataset with large bias (percentage of bias up to 99 %) and errors (normalised root mean square error up  to 247 %) with a higher KGE and CC than the other products in less than 10 % of the stations. Even though MSWEP provided the highest performance overall, our analysis reveals high spatial variability, meaning that it is important to consider other datasets in areas where MSWEP showed a lower performance. The results of this study provide guidance on the selection of precipitation datasets for modelling river discharge for a basin, region or climatic zone as there is no single best precipitation dataset globally. Finally, the large discrepancy in the performance of the datasets in different parts of the world highlights the need to improve global precipitation data products.  </jats:p

    Global-scale evaluation of precipitation datasets for hydrological modelling

    Get PDF
    Abstract. Precipitation is the most important driver of the hydrological cycle, but it is challenging to estimate it over large scales from satellites and models. Here, we assessed the performance of six global and quasi-global high-resolution precipitation datasets (European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5), Climate Hazards group Infrared Precipitation with Stations version 2.0 (CHIRPS), Multi-Source Weighted-Ensemble Precipitation version 2.80 (MSWEP), TerraClimate (TERRA), Climate Prediction Centre Unified version 1.0 (CPCU), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-Climate Data Record (PERSIANN-CCS-CDR, hereafter PERCCDR) for hydrological modelling globally and quasi-globally. We forced the WBMsed global hydrological model with the precipitation datasets to simulate river discharge from 1983 to 2019 and evaluated the predicted discharge against 1825 hydrological stations worldwide, using a range of statistical methods. The results show large differences in the accuracy of discharge predictions when using different precipitation input datasets. Based on evaluation at annual, monthly, and daily timescales, MSWEP followed by ERA5 demonstrated a higher correlation (CC) and Kling–Gupta efficiency (KGE) than other datasets for more than 50 % of the stations, whilst ERA5 was the second-highest-performing dataset, and it showed the highest error and bias for about 20 % of the stations. PERCCDR is the least-well-performing dataset, with a bias of up to 99 % and a normalised root mean square error of up to 247 %. PERCCDR only show a higher KGE and CC than the other products for less than 10 % of the stations. Even though MSWEP provided the highest performance overall, our analysis reveals high spatial variability, meaning that it is important to consider other datasets in areas where MSWEP showed a lower performance. The results of this study provide guidance on the selection of precipitation datasets for modelling river discharge for a basin, region, or climatic zone as there is no single best precipitation dataset globally. Finally, the large discrepancy in the performance of the datasets in different parts of the world highlights the need to improve global precipitation data products. </jats:p

    Using Remote Sensing Techniques to Improve Hydrological Predictions in a Rapidly Changing World

    Get PDF
    Remotely sensed geophysical datasets are being produced at increasingly fast rates to monitor various aspects of the Earth system in a rapidly changing world. The efficient and innovative use of these datasets to understand hydrological processes in various climatic and vegetation regimes under anthropogenic impacts has become an important challenge, but with a wide range of research opportunities. The ten contributions in this Special Issue have addressed the following four research topics: (1) Evapotranspiration estimation; (2) rainfall monitoring and prediction; (3) flood simulations and predictions; and (4) monitoring of ecohydrological processes using remote sensing techniques. Moreover, the authors have provided broader discussions on how to capitalize on state-of-the-art remote sensing techniques to improve hydrological model simulations and predictions, to enhance their skills in reproducing processes for the fast-changing world

    Evaluating the latest IMERG products in a subtropical climate : the case of Paraná state, Brazil

    Get PDF
    The lack of measurement of precipitation in large areas using fine-resolution data is a limitation in water management, particularly in developing countries. However, Version 6 of the Integrated Multi-satellitE Retrievals for GPM (IMERG) has provided a new source of precipitation information with high spatial and temporal resolution. In this study, the performance of the GPM products (Final run) in the state of Paraná, located in the southern region of Brazil, from June 2000 to December 2018 was evaluated. The daily and monthly products of IMERG were compared to the gauge data spatially distributed across the study area. Quantitative and qualitative metrics were used to analyze the performance of IMERG products to detect precipitation events and anomalies. In general, the products performed positively in the estimation of monthly rainfall events, both in volume and spatial distribution, and demonstrated limited performance for daily events and anomalies, mainly in mountainous regions (coast and southwest). This may be related to the orographic rainfall in these regions, associating the intensity of the rain, and the topography. IMERG products can be considered as a source of precipitation data, especially on a monthly scale. Product calibrations are suggested for use on a daily scale and for time-series analysis

    A D-vine copula-based quantile regression towards merging satellite precipitation products over rugged topography: a case study in the upper Tekeze–Atbara Basin

    Get PDF
    Precipitation is a vital key element in various studies of hydrology, flood prediction, drought monitoring, and water resource management. The main challenge in conducting studies over remote regions with rugged topography is that weather stations are usually scarce and unevenly distributed. However, open-source satellite-based precipitation products (SPPs) with a suitable resolution provide alternative options in these data-scarce regions, which are typically associated with high uncertainty. To reduce the uncertainty of individual satellite products, we have proposed a D-vine copula-based quantile regression (DVQR) model to merge multiple SPPs with rain gauges (RGs). The DVQR model was employed during the 2001–2017 summer monsoon seasons and compared with two other quantile regression methods based on the multivariate linear (MLQR) and the Bayesian model averaging (BMAQ) techniques, respectively, and with two traditional merging methods – the simple modeling average (SMA) and the one-outlier-removed average (OORA) – using descriptive and categorical statistics. Four SPPs have been considered in this study, namely, Tropical Applications of Meteorology using SATellite (TAMSAT v3.1), the Climate Prediction Center MORPHing Product Climate Data Record (CMORPH-CDR), Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG v06), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN-CDR). The bilinear (BIL) interpolation technique was applied to downscale SPPs from a coarse to a fine spatial resolution (1 km). The rugged-topography region of the upper Tekeze–Atbara Basin (UTAB) in Ethiopia was selected as the study area. The results indicate that the precipitation data estimates with the DVQR, MLQR, and BMAQ models and with traditional merging methods outperform the downscaled SPPs. Monthly evaluations reveal that all products perform better in July and September than in June and August due to precipitation variability. The DVQR, MLQR, and BMAQ models exhibit higher accuracy than the traditional merging methods over the UTAB. The DVQR model substantially improved all of the statistical metrics (CC = 0.80, NSE = 0.615, KGE = 0.785, MAE = 1.97 mm d−1, RMSE = 2.86 mm d−1, and PBIAS = 0.96 %) considered compared with the BMAQ and MLQR models. However, the DVQR model did not outperform the BMAQ and MLQR models with respect to the probability of detection (POD) and false-alarm ratio (FAR), although it had the best frequency bias index (FBI) and critical success index (CSI) among all of the employed models. Overall, the newly proposed merging approach improves the quality of SPPs and demonstrates the value of the proposed DVQR model in merging multiple SPPs over regions with rugged topography such as the UTAB.</p
    corecore