3,000 research outputs found

    Hybrid VCSPs with crisp and conservative valued templates

    Get PDF
    A constraint satisfaction problem (CSP) is a problem of computing a homomorphism R→Γ{\bf R} \rightarrow {\bf \Gamma} between two relational structures. Analyzing its complexity has been a very fruitful research direction, especially for fixed template CSPs, denoted CSP(Γ)CSP({\bf \Gamma}), in which the right side structure Γ{\bf \Gamma} is fixed and the left side structure R{\bf R} is unconstrained. Recently, the hybrid setting, written CSPH(Γ)CSP_{\mathcal{H}}({\bf \Gamma}), where both sides are restricted simultaneously, attracted some attention. It assumes that R{\bf R} is taken from a class of relational structures H\mathcal{H} that additionally is closed under inverse homomorphisms. The last property allows to exploit algebraic tools that have been developed for fixed template CSPs. The key concept that connects hybrid CSPs with fixed-template CSPs is the so called "lifted language". Namely, this is a constraint language ΓR{\bf \Gamma}_{{\bf R}} that can be constructed from an input R{\bf R}. The tractability of that language for any input R∈H{\bf R}\in\mathcal{H} is a necessary condition for the tractability of the hybrid problem. In the first part we investigate templates Γ{\bf \Gamma} for which the latter condition is not only necessary, but also is sufficient. We call such templates Γ{\bf \Gamma} widely tractable. For this purpose, we construct from Γ{\bf \Gamma} a new finite relational structure Γâ€Č{\bf \Gamma}' and define H0\mathcal{H}_0 as a class of structures homomorphic to Γâ€Č{\bf \Gamma}'. We prove that wide tractability is equivalent to the tractability of CSPH0(Γ)CSP_{\mathcal{H}_0}({\bf \Gamma}). Our proof is based on the key observation that R{\bf R} is homomorphic to Γâ€Č{\bf \Gamma}' if and only if the core of ΓR{\bf \Gamma}_{{\bf R}} is preserved by a Siggers polymorphism. Analogous result is shown for valued conservative CSPs.Comment: 21 pages. arXiv admin note: text overlap with arXiv:1504.0706

    Hybrid tractability of soft constraint problems

    Get PDF
    The constraint satisfaction problem (CSP) is a central generic problem in computer science and artificial intelligence: it provides a common framework for many theoretical problems as well as for many real-life applications. Soft constraint problems are a generalisation of the CSP which allow the user to model optimisation problems. Considerable effort has been made in identifying properties which ensure tractability in such problems. In this work, we initiate the study of hybrid tractability of soft constraint problems; that is, properties which guarantee tractability of the given soft constraint problem, but which do not depend only on the underlying structure of the instance (such as being tree-structured) or only on the types of soft constraints in the instance (such as submodularity). We present several novel hybrid classes of soft constraint problems, which include a machine scheduling problem, constraint problems of arbitrary arities with no overlapping nogoods, and the SoftAllDiff constraint with arbitrary unary soft constraints. An important tool in our investigation will be the notion of forbidden substructures.Comment: A full version of a CP'10 paper, 26 page

    The complexity of finite-valued CSPs

    Full text link
    We study the computational complexity of exact minimisation of rational-valued discrete functions. Let Γ\Gamma be a set of rational-valued functions on a fixed finite domain; such a set is called a finite-valued constraint language. The valued constraint satisfaction problem, VCSP⁡(Γ)\operatorname{VCSP}(\Gamma), is the problem of minimising a function given as a sum of functions from Γ\Gamma. We establish a dichotomy theorem with respect to exact solvability for all finite-valued constraint languages defined on domains of arbitrary finite size. We show that every constraint language Γ\Gamma either admits a binary symmetric fractional polymorphism in which case the basic linear programming relaxation solves any instance of VCSP⁡(Γ)\operatorname{VCSP}(\Gamma) exactly, or Γ\Gamma satisfies a simple hardness condition that allows for a polynomial-time reduction from Max-Cut to VCSP⁡(Γ)\operatorname{VCSP}(\Gamma)

    A new solution approach to polynomial LPV system analysis and synthesis

    Get PDF
    Based on sum-of-squares (SOS) decomposition, we propose a new solution approach for polynomial LPV system analysis and control synthesis problems. Instead of solving matrix variables over a positive definite cone, the SOS approach tries to find a suitable decomposition to verify the positiveness of given polynomials. The complexity of the SOS-based numerical method is polynomial of the problem size. This approach also leads to more accurate solutions to LPV systems than most existing relaxation methods. Several examples have been used to demonstrate benefits of the SOS-based solution approach

    Tractability in Constraint Satisfaction Problems: A Survey

    Get PDF
    International audienceEven though the Constraint Satisfaction Problem (CSP) is NP-complete, many tractable classes of CSP instances have been identified. After discussing different forms and uses of tractability, we describe some landmark tractable classes and survey recent theoretical results. Although we concentrate on the classical CSP, we also cover its important extensions to infinite domains and optimisation, as well as #CSP and QCSP
    • 

    corecore