research

Hybrid VCSPs with crisp and conservative valued templates

Abstract

A constraint satisfaction problem (CSP) is a problem of computing a homomorphism RΓ{\bf R} \rightarrow {\bf \Gamma} between two relational structures. Analyzing its complexity has been a very fruitful research direction, especially for fixed template CSPs, denoted CSP(Γ)CSP({\bf \Gamma}), in which the right side structure Γ{\bf \Gamma} is fixed and the left side structure R{\bf R} is unconstrained. Recently, the hybrid setting, written CSPH(Γ)CSP_{\mathcal{H}}({\bf \Gamma}), where both sides are restricted simultaneously, attracted some attention. It assumes that R{\bf R} is taken from a class of relational structures H\mathcal{H} that additionally is closed under inverse homomorphisms. The last property allows to exploit algebraic tools that have been developed for fixed template CSPs. The key concept that connects hybrid CSPs with fixed-template CSPs is the so called "lifted language". Namely, this is a constraint language ΓR{\bf \Gamma}_{{\bf R}} that can be constructed from an input R{\bf R}. The tractability of that language for any input RH{\bf R}\in\mathcal{H} is a necessary condition for the tractability of the hybrid problem. In the first part we investigate templates Γ{\bf \Gamma} for which the latter condition is not only necessary, but also is sufficient. We call such templates Γ{\bf \Gamma} widely tractable. For this purpose, we construct from Γ{\bf \Gamma} a new finite relational structure Γ{\bf \Gamma}' and define H0\mathcal{H}_0 as a class of structures homomorphic to Γ{\bf \Gamma}'. We prove that wide tractability is equivalent to the tractability of CSPH0(Γ)CSP_{\mathcal{H}_0}({\bf \Gamma}). Our proof is based on the key observation that R{\bf R} is homomorphic to Γ{\bf \Gamma}' if and only if the core of ΓR{\bf \Gamma}_{{\bf R}} is preserved by a Siggers polymorphism. Analogous result is shown for valued conservative CSPs.Comment: 21 pages. arXiv admin note: text overlap with arXiv:1504.0706

    Similar works