
Hybrid VCSPs with Crisp and Valued
Conservative Templates
Rustem Takhanov

Nazarbayev University, Astana, Kazakhstan
rustem.takhanov@nu.edu.kz

Abstract
A constraint satisfaction problem (CSP) is a problem of computing a homomorphism R → Γ
between two relational structures, e.g. between two directed graphs. Analyzing its complexity
has been a very fruitful research direction, especially for fixed template CSPs (or, non-uniform
CSPs), denoted CSP(Γ), in which the right side structure Γ is fixed and the left side structure
R is unconstrained.

Recently, the hybrid setting, written CSPH(Γ), where both sides are restricted simultaneously,
attracted some attention. It assumes that R is taken from a class of relational structures H
(called the structural restriction) that additionally is closed under inverse homomorphisms. The
last property allows to exploit an algebraic machinery that has been developed for fixed template
CSPs. The key concept that connects hybrid CSPs with fixed-template CSPs is the so called
“lifted language”. Namely, this is a constraint language ΓR that can be constructed from an
input R. The tractability of the language ΓR for any input R ∈ H is a necessary condition for
the tractability of the hybrid problem.

In the first part we investigate templates Γ for which the latter condition is not only necessary,
but also is sufficient. We call such templates Γ widely tractable. For this purpose, we construct
from Γ a new finite relational structure Γ′ and define a “maximal” structural restriction H0
as a class of structures homomorphic to Γ′. For the so called strongly BJK templates that
probably captures all templates, we prove that wide tractability is equivalent to the tractability
of CSPH0 (Γ). Our proof is based on the key observation that R is homomorphic to Γ′ if and
only if the core of ΓR is preserved by a Siggers polymorphism. Analogous result is shown for
conservative valued CSPs.
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1 Introduction

The constraint satisfaction problems (CSPs) and the valued constraint satisfaction problems
(VCSPs) provide a powerful framework for the analysis of a large set of computational
problems arising in propositional logic, combinatorial optimization, graph theory, artificial
intelligence, scheduling, biology (protein folding), computer vision etc. CSP can be formalized
either as a problem of (a) finding an assignment of values to a given set of variables, subject to
constraints on the values that can be assigned simultaneously to specified subsets of variables,
or as a problem of (b) finding a homomorphism between two finite relational structures A
and B (e.g., two oriented graphs). These two formulations are polynomially equivalent under
the condition that input constraints in the first case or input relations in the second case
are given by lists of their elements. A soft version of CSP, the Valued CSP, generalizes the
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CSP by changing crisp constraints to cost functions applied to tuples of variables. In the
VCSP we are asked to find a minimum (or maximum) of a sum of cost functions applied to
corresponding variables.

The CSPs have been a very active research field since 70s. One of the topics that
revealed the rich logical and algebraic structure of the CSPs was the problem’s computational
complexity when constraint relations are restricted to a given set of relations or, alternatively,
when the second relational structure is some fixed Γ. Thus, this problem is parameterized by
Γ, denoted as CSP(Γ) and called a fixed template CSP with a template Γ (another name
is a non-uniform CSP). E.g., if the domain set is boolean and Γ is a structure with four
ternary relations x ∨ y ∨ z, x ∨ y ∨ z, x ∨ y ∨ z, x ∨ y ∨ z, CSP(Γ) models 3-SAT which is
historically one of the first NP-complete problems [8]. At the same time, if we restrict that
all relations in Γ are binary, then we obtain tractable 2-SAT. Schaeffer proved [25] that for
any template Γ over the boolean set, CSP(Γ) is either in P or NP-complete. For the case
when Γ is a graph (without loops) Hell and Nešetřil [14] proved an analogous statement, by
showing that only for bipartite graphs the problem is tractable. Feder and Vardi [11] found
that all fixed template CSPs can be expressed as problems in a fragment of SNP, called the
Monotone Monadic SNP (MM SNP), and showed that for any problem in MM SNP there
is a polynomial-time Turing reduction to a fixed template CSP. Thus, non-uniform CSPs’
complexity classification would yield a classification for MM SNP problems. This result
placed fixed-template CSPs into a broad logical context which naturally lead to a conjecture
that such CSPs are either tractable or NP-hard, the so called dichotomy conjecture.

In [16] Jeavons showed that the complexity of CSP(Γ) is determined by the polymorphisms
of Γ. Research in this direction lead to a conjectured description of tractable templates
through properties of their polymorphisms. The key formulation was given by Bulatov,
Jeavons, and Krokhin [5], with subsequent reformulations of this conjecture by Maroti and
McKenzie [23]. Later, it was shown by Siggers [26] that if the Bulatov-Jeavons-Krokhin
formulation is true, then for a relational structure to be tractable it is necessary and sufficient
that its core is preserved by a single 6-ary polymorphism that satisfies a certain term identity.
Further, an arity of a polymorphism in the latter formulation was decreased to 4 [18]. We
will use the last fact as a key ingredient for our results. Very recently, several independent
proofs of the Bulatov-Jeavons-Krokhin formulation were announced [24, 6, 30]. Since the
papers have not yet been thoroughly verified and widely accepted by the CSP community, in
this paper we refer to the formulation as a hypothesis.

Related work. A meta-problem of the VCSP topic is to establish the complexity of VCSP
given that an input is restricted to an arbitrary subset of all input pairs (R,Γ). A natural
approach to this problem is to construct a new structure for any input (R,Γ), GR,Γ, and shift
the analysis to GR,Γ. In case of binary CSPs (i.e. when all relations of an input are binary) it
is natural to define GR,Γ as a microstructure graph [17] of an instance (R,Γ). Thereby, a set
of inputs, in which certain local substructures in GR,Γ are forbidden, forms a parametrized
problem. Cooper and Živný [9] investigated this formulation and found examples of specific
forbidden substructures that result in tractable hybrid CSPs. Microstructure graphs also
naturally appear in the context of fixed template CSPs. Specifically, if a template Γ with
binary relations is such that the arc and path consistency preprocessing of an instance of
CSP(Γ) always results in a perfect microstructure graph, then additionally to satisfying all
constraints (by finding a maximum clique) one can also optimize arbitrary sums of unary
terms over a set of solutions (by assigning weights to vertices of the microstructure graph).
The latter optimization problem is called the minimum cost homomorphism problem and all
such templates were completely classified in [28].
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Recently, a hybrid framework for VCSP has attracted some attention [21], that is when
left structures are restricted to some set H and a right structure Γ is fixed (the corresponding
CSP is denoted as CSPH(Γ)) and H is closed under inverse homomorphisms. The specific
feature of this case is that for any input R ∈ H one can construct a new language ΓR,
called a lifted language, so that tractability of this language is a necessary condition for the
tractability of CSPH(Γ).

Our results. The first question that we address is a characterization of those templates Γ
for which the tractability of ΓR for any R ∈ H is not only necessary, but also is sufficient for
the tractability of CSPH(Γ). We call Γ that possesses this property for any H (closed under
inverse homomorphisms) widely tractable. It turns out that the statement that the core of
ΓR is preserved by a Siggers polymorphism (i.e. satisfies the Bulatov-Jeavons-Krokhin test
for non-NP-hardness) is equivalent to the statement that R is homomorphic to a certain
structure Γ′ (constructed from Γ). Based on this observation we prove that, for a class
of templates (that is likely to capture all templates), wide tractability is equivalent to the
tractability of CSPH0(Γ), where H0 is equal to a set of structures homomorphic to Γ′.
Moreover, we prove that CSP(Γ) can be in polynomial-time Turing reduced to CSP(Γ′)
and, therefore, Γ′ is at least as hard as Γ. We develop an analogous theory for conservative
valued CSPs.

2 Preliminaries

Throughout the paper it is assumed that P 6= NP . A problem is called tractable if it can
be solved in polynomial time. Let Q = Q ∪ {∞} denote the set of rational numbers with
(positive) infinity and [k] = {1, ..., k}. Also, D and V are finite sets, DV is a set of mappings
from V to D. We denote the tuples in lowercase boldface such as a = (a1, . . . , ak). Also for
mappings h : A→ B and tuples a = (a1, . . . , ak), where aj ∈ A for j = 1, . . . , k, we will write
b = (h(a1), . . . , h(ak)) simply as b = h(a). Relational structures are denoted in uppercase
boldface as R = (R, r1, . . . , rk). Finally let ar(%), ar(a), and ar(f) stand for the arity of a
relation %, the size of a tuple a, and the arity of a function f , respectively.

2.1 Fixed template VCSPs
Let us formulate the general CSP as a homomorphism problem.

I Definition 1. Let R = (R, r1, . . . , rk) and R′ = (R′, r′1, . . . , r′k) be relational structures
with a common signature (that is ar(ri) = ar(r′i) for every i = 1, . . . , k). A mapping
h : R → R′ is called a homomorphism from R to R′ if for every i = 1, . . . , k and for any
(x1, . . . , xar(ri)) ∈ ri we have that

(
(h(x1), . . . , h(xar(r′

i
))
)
∈ r′i. In that case, we write R h→ R′

or sometimes just R → R′.

I Definition 2. The general CSP is the following problem. Given a pair of relational
structures with a common signature R = (V, r1, . . . , rk) and Γ = (D, %1, . . . , %k), the question
is whether there is a homomorphism h : R → Γ. The second structure Γ is called a template.

I Definition 3. Let D be a finite set and Γ be a finite relational structure over D. Then
the fixed template CSP for template Γ, denoted CSP(Γ), is defined as follows: given a
relational structure R = (V, r1, . . . , rk) of the same signature as Γ, the question is whether
there is a homorphism h : R → Γ.

ISAAC 2017
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A more general framework operates with cost functions f : Dn → Q instead of relations
% ⊆ Dn.

I Definition 4. Let us denote the set of all functions f : Dn → Q by Φ(n)
D and let

ΦD =
⋃
n≥1 Φ(n)

D . We call the functions in ΦD cost functions over D. For every cost function
f ∈ Φ(n)

D , let dom f = {x | f(x) <∞}.

I Definition 5. An instance of the valued constraint satisfaction problem (VCSP) is
a triple (R,Γ, {wi(v)}i∈[k],v∈ri) where R = (V, r1, . . . , rk) is a relational structure, Γ =
(D, f1, . . . , fk) is a tuple where D is finite and fi ∈ Φ(ar(ri))

D , {wi(v)}i∈[k],v∈ri are positive
rationals, and the goal is to find an assignment h ∈ DV that minimizes a function from DV

to Q given by

fI(h) =
k∑
i=1

∑
v∈ri

wi(v)fi(h(v)), (1)

A tuple Γ = (D, f1, . . . , fk) is called a valued template.

I Definition 6. We will denote by VCSP(Γ) a class of all VCSP instances in which the
valued template is Γ.

For such Γ we will denote by Γ (without boldface) the set of cost functions {f1, . . . , fk}. A
set Γ is called a constraint language. The complexity of VCSP(Γ) does not depend on the
order of cost functions, therefore, we will use VCSP(Γ) and VCSP(Γ) interchangeably.

This framework captures many specific well-known problems, including k-Sat, Graph
k-Colouring, Minimum Cost Homomorphism Problem and others (see [15]).

A function f ∈ Φ(n)
D that takes values in {0,∞} is called crisp. We will often view it as a

relation in Dn, and vice versa (this should be clear from the context). If a language Γ is
crisp (i.e. it contains only crisp functions) then VCSP(Γ) is a search problem corresponding
to CSP(Γ).
I Remark. Note that we formulated CSP as a decision problem, whereas VCSP as a search
optimizational problem. This convention is followed throughout the text and further it
becomes more important because decision and search problems are not computationally
equivalent for hybrid CSPs (see after definition 20).

I Definition 7. A constraint language Γ (or, a template Γ) is said to be tractable, if
VCSP(Γ0) is tractable for each finite Γ0 ⊆ Γ. Also, Γ (or, Γ) is NP-hard if there is a finite
Γ0 ⊆ Γ such that VCSP(Γ0) is NP-hard.

An important problem in the CSP research is to characterize all tractable languages.

2.2 Polymorphisms and fractional polymorphisms
Let O(m)

D denote a set of all operations g : Dm → D and let OD =
⋃
m≥1O

(m)
D .

Any language Γ over a domain D can be associated with a set of operations on D, known
as the polymorphisms of Γ, defined as follows.

I Definition 8. An operation g ∈ O(m)
D is a polymorphism of a relation ρ ⊆ Dn (or, g

preserves ρ) if, for any x1, . . . ,xm ∈ ρ, we have that g(x1, . . . ,xm) ∈ ρ where g is applied
component-wise. For any crisp constraint language Γ over a set D, we denote by Pol(Γ) a
set of all operations on D which are polymorphisms of every ρ ∈ Γ.
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Polymorphisms play a key role in the algebraic approach to the CSP, but, for VCSPs,
more general constructs are necessary, which we now define.

I Definition 9. An m-ary fractional operation ω on D is a probability distribution on O(m)
D .

The support of ω is defined as supp(ω) = {g ∈ O(m)
D | ω(g) > 0}.

IDefinition 10. Anm-ary fractional operation ω onD is said to be a fractional polymorphism
of a cost function f ∈ ΦD if, for any x1, . . . ,xm ∈ dom f , we have∑

g∈supp(ω)

ω(g)f(g(x1, . . . ,xm)) ≤ 1
m

(f(x1) + . . .+ f(xm)). (2)

For a constraint language Γ, fPol(Γ) will denote a set of all fractional operations that are
fractional polymorphisms of each function in Γ.

We will also use symbols Pol(Γ), fPol(Γ) meaning Pol(Γ), fPol(Γ) respectively.

2.3 Algebraic dichotomy conjecture
An algebraic characterization for tractable templates was first conjectured by Bulatov,
Krokhin and Jeavons [5], and a number of equivalent formulations were later given in [23, 1,
26, 18]. We will use the formulation from [18] that followed a discovery by M. Siggers [26]; it
is crucial for our purposes that in the next definition an operation has a fixed arity (namely,
4) and, therefore, there is only a finite number of them on a finite domain D.

I Definition 11. An operation s : D4 → D is called a Siggers operation on D′ ⊆ D if
s(x, y, z, t) ∈ D′ whenever x, y, z, t ∈ D′ and for each x, y, z ∈ D′ we have:

s(x, y, x, z) = s(y, x, z, y)
s(x, x, x, x) = x

I Definition 12. Let g be a unary and s be a 4-ary operations onD and g(D) = {g(x)|x ∈ D}.
A pair (g, s) is called a Siggers pair on D if s is a Siggers operation on g(D). A crisp constraint
language Γ is said to admit a Siggers pair (g, s) if g and s are polymorphisms of Γ.

I Theorem 13 ([18]). A crisp constraint language Γ that does not admit a Siggers pair is
NP-Hard.

I Definition 14. A crisp language Γ is called a BJK language if it satisfies one of the
following:

CSP (Γ) is tractable
Γ does not admit a Siggers pair.

Algebraic dichotomy conjecture: Every crisp language Γ is a BJK language.
This theorem first has been verified for domains of size 2 [25], 3 [3], or for languages

containing all unary relations on D [4]. It has also been shown that it is equivalent to its
restriction for directed graphs (that is when Γ contains a single binary relation %) [7]. Just
recently, a number of authors [24, 6, 30] independently claimed the proof of the conjecture.

3 Hybrid VCSP setting

I Definition 15. Let us call a family H of relational structures with a common signature a
structural restriction.

ISAAC 2017
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I Definition 16 (Hybrid CSP). Let D be a finite domain, Γ a template over D, and H a
structural restriction of the same signature as Γ. We define CSPH(Γ) as the following problem:
given a relational structure R ∈ H as input, decide whether there is a homomorphism
h : R → Γ.

I Definition 17 (Hybrid VCSP). Let D be a finite domain, Γ = (D, f1, . . . , fk) a valued
template over D, and H a structural restriction of the same signature as Γ. We define
VCSPH(Γ) as a class of instances of the following form.

An instance is a function from DV to Q given by

fI(h) =
k∑
i=1

∑
v∈ri

wi(v)fi(h(v)), (3)

where R = (V, r1, . . . , rk) ∈ H is a relational structure, {wi(v)}i∈[k],v∈ri are positive rationals.
The goal is to find an assignment h ∈ DV that minimizes fI .

For certain classes of structural restrictions the tractability/intractability can be explained
by algebraic means, and of special interest is the case when H is up-closed.

I Definition 18. A family of relational structures H is called closed under inverse
homomorphisms (or up-closed for short) if whenever R′ → R and R ∈ H, then also
R′ ∈ H.

Examples of hybrid CSPs with up-closed structural restrictions include such studied
problems as a digraph H-coloring for an acyclic input digraph [27] or for an input digraph
with odd girth at least k [21], renamable Horn Boolean CSPs [12] etc. The key tool in their
analysis is a construction of the so called lifted language that appeared first in [21]. In this
construction, given arbitrary R ∈ H one constructs a language ΓR over a finite domain, such
that for tractability of VCSPH(Γ), the tractability of VCSP(ΓR) is necessary.

Let us give a detailed description of ΓR. Given R = (V, r1, . . . , rk) and Γ = (D, f1, ..., fk)
we define DR = V ×D and Dv = {(v, a)|a ∈ D} , v ∈ V .

For tuples a = (a1, . . . , ap) ∈ Dp and v = (v1, . . . , vp) ∈ V p denote d(v,a) = ((v1, a1), ...,
(vp, ap)).

Now for a cost function f ∈ ΦD and v ∈ V ar(f) we will define a cost function on DR of
the same arity as f via

fv(x) =
{
f(y) if x = d(v,y) for some y ∈ Dar(f)

∞ otherwise
∀x ∈ Dar(f)

R (4)

Finally, we construct the sought language ΓR on domain DR as follows:

ΓR = {fv
i : i ∈ [k],v ∈ ri} ∪ {Dv : v ∈ V }

where relation Dv ⊆ DR is treated as a unary function Dv : DR → {0,∞}.
After ordering of its relations ΓR becomes a template ΓR. The following is true [21]:

I Theorem 19. Suppose that H is up-closed, R ∈ H and Γ is a (valued) template. Then
there is a polynomial-time reduction from (V)CSP(ΓR) to (V)CSPH(Γ). Consequently,
(a) if (V)CSPH(Γ) is tractable then so is (V)CSP(ΓR);
(b) if (V)CSP(ΓR) is NP-hard then so is (V)CSPH(Γ).

Let us give a proof of the latter theorem that slightly differs from the original one. For
this purpose we will need a special case of hybrid VCSP, called the VCSP with input prototype.
Given a finite relational structure R, denote Up (R) = {I|I→ R}.
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I Definition 20. For a given valued template Γ and a relational structure R a problem
VCSPH(Γ) where H = Up (R) is called the VCSP with input prototype R and is
denoted as VCSPR(Γ). If Γ is crisp, then the decision version of VCSPR(Γ) is denoted as
CSPR(Γ).

It is easy to see that H = Up (R) is up-closed. Note that an input of (V)CSPR(Γ) is a
relational structure I that is homomorphic to R but this homomorphism itself is not a part of
the input. If we also assume that together with a structure I we are given a homomorphism
h : I→ R, then the latter problem is denoted as (V)CSP+

R(Γ).
I Remark. Note that the complexities of VCSPR(Γ) and VCSP+

R(Γ) can be sharply different.
For example, consider Γ = ([4]; neq4) and R = ([3]; neq3) where neqk = {(i, j)|i, j ∈ [k], i 6=
j}. While VCSPR(Γ), a problem of 4-coloring of a 3-colorable graph, is known to be NP-hard
[19], VCSP+

R(Γ) is a trivial one. This example also demonstrates the distinction between
decision and search in the hybrid framework: the decision problem CSPR(Γ) is also trivial,
whereas its search version is NP-hard.

I Lemma 21. (V)CSP(ΓR) is polynomially equivalent to (V)CSP+
R(Γ)

Theorem 19 (a). Since H is up-closed, then for any R ∈ H, {I|I → R} ⊆ H. I.e. a
problem VCSPR(Γ) is a restriction of VCSPH(Γ) to certain inputs. Therefore, VCSP+

R(Γ)
is polynomially reducible to VCSPH(Γ). Using the previous lemma, we conclude that for
the tractability of VCSPH(Γ) it is necessary that VCSP+

R(Γ) and VCSP(ΓR) are tractable.
Part (b) can be proved analogously. J

4 Wide tractability of a crisp language

Throughout this section we will assume that Γ is crisp.

4.1 Widely tractable languages
For up-closed structural restrictions H, the construction of a lifted language gives us the
necessary conditions for the tractability of CSPH(Γ) (Theorem 19 (a)). Let us now define
widely tractable templates Γ as those for which the necessary conditions for the tractability
of CSPH(Γ) are, in fact, sufficient:

I Definition 22. A template Γ is called widely tractable if for any up-closed H, CSPH(Γ)
is tractable if and only if CSP(ΓR) is tractable for any R ∈ H.

The concept of wide tractability is important in the hybrid CSPs setting due to the
following theorem:

I Theorem 23. If a template Γ is widely tractable, then there is an up-closed HΓ such that
for any up-closed H, CSPH(Γ) is tractable if and only if H ⊆ HΓ.

Proof. Let us define

HΓ = {R|CSP(ΓR) is tractable} (5)

It is easy to see that HΓ is up-closed itself. By definition, HΓ contains only such R for which
CSP(ΓR) is tractable, and this together with wide tractability of Γ, implies that CSPHΓ(Γ)
is tractable.

Suppose that for some up-closed H, CSPH(Γ) is tractable. From the wide tractability of
Γ we obtain that it is equivalent to stating that CSP(ΓR) is tractable for any R ∈ H. But
the last is equivalent to H ⊆ HΓ. J

ISAAC 2017
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4.2 Wide tractability in case of strongly BJK languages
In this section we will give necessary and sufficient conditions of wide tractability in a very
important case of crisp languages, namely, strongly BJK languages.

I Definition 24. A crisp language Γ is called strongly BJK language if for any R the lifted
ΓR is BJK.

I Remark. As we have already noted it is likely that this class includes all crisp languages [24,
6, 30].

Before introducing the main theorem of this section, let us describe one construction.
Let ρ be some m-ary relation over a domain D. It induces a new relation ρ′ over a
set of Siggers pairs on a set D, denoted D′, by the following rule: a tuple of Siggers
pairs

(
(g1, s1), · · · , (gm, sm)

)
∈ ρ′ if and only if for any (x1, ..., xm) ∈ ρ we have that

(g1(x1), ..., gm(xm)) ∈ ρ and for any tuples (a1, ..., am), (b1, ..., bm), (c1, ..., cm), (d1, ..., dm)
from ρ we have that

(
s1(a1, b1, c1, d1), ... , sm(am, bm, cm, dm)

)
∈ ρ. Note that elements of

D′ are Siggers pairs, but not necessarily polymorphisms of ρ.
Given a relational structure Γ = (D, ρ1, ..., ρs), we define Γ′ = (D′, ρ′1, ..., ρ′s).

I Theorem 25. Let Γ be a strongly BJK language. Then Γ is widely tractable if and only if
CSPΓ′(Γ) is tractable.

A proof of theorem 25 is mainly based on the following lemma:

I Lemma 26. For an arbitrary R, ΓR admits a Siggers pair if and only if there is a
homomorphism h : R → Γ′.

I Remark. If Γ′ → Γ then CSPΓ′(Γ) is a trivial problem and theorem 25 gives us that Γ
is a widely tractable template. Such templates are quite common. E.g. our computational
experiment showed (see section 6) that if D = {0, 1} and ρ ⊆ {0, 1}3 is such that Γ = {ρ} is
NP-hard, then Γ′ → Γ. Example of a widely tractable and NP-hard Γ for which Γ′ 6→ Γ will
be given in the next section (example 29).

4.3 Relationship between Γ and Γ′

The binary relation → is transitive, reflexive, but not antisymmetric. It also induces the
equivalence relation ∼ on a set of all finite structures:

R1 ∼ R2 ⇔ R1 → R2,R2 → R1

I Theorem 27. For any Γ, Γ→ Γ′.

Thus, we can view CSP(Γ′) as a relaxation of CSP(Γ). Moreover, theorem 27 has the
following interesting consequence.

I Theorem 28. If Γ is strongly BJK, then there is a polynomial-time Turing reduction from
CSP(Γ) to CSP(Γ′)

If Γ is tractable, then Γ′ is preserved by a nullary constant operation o = (g, s), where
(g, s) ∈ D′ is a Siggers pair that is admitted by Γ. I.e., Up(Γ′) is a set of all finite structures
with the same vocabulary as Γ. We can take any tractable Γ that is not constant-preserving
(e.g. Γ = ([3]; neq3)) as an example of a template for which Γ 6∼ Γ′, i.e. Γ′ 6→ Γ.

The following example demonstrates an NP-hard Γ for which Γ 6∼ Γ′.
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I Example 29. Define Γ = ({0, 1} ; {0} , {1} , ρ), where ρ = {0, 1}3 \ {(0, 1, 0), (1, 0, 1)}. A
fixed-template CSP with this Γ is called the boolean betweennes, and it is NP-hard because
Γ does not fall into any of Schaefer‘s classes [25].

The boolean betweennes can be popularly reformulated in the following way. Suppose that
we have a number of n towns v1, ..., vn and a system of roads (each consisting of 3 consecutive
towns) (vα1 , vα2 , vα3), ..., (vω1 , vω2 , vω3). Our goal is to divide those towns between 2 states
(assign 0 or 1 to n variables) in such a way that unary constraints are satisfied, i.e. certain
towns should be given to prespecified states, and every road should not cross administrative
barriers twice.

Let Γα = ({0, 1, α} ; {0, α} , {1, α} , ρα), where ρα = ρ ∪ {(1, 1, α), (α, 1, 1), (0, 0, α),
(α, 0, 0), (0, α, 1), (1, α, 0)}. A symbol α can be interpreted as a “dual attachment” status
that can be given to towns, for which we can freely change α-status to both 0 and 1 without
violating ternary constraints.

It is easy to see that Γα 6→ Γ (image of α cannot be both 0 and 1). If we prove that
CSP(ΓΓα) is tractable (and, therefore, ΓΓα admits a Siggers pair), this will lead to a
conclusion that Γα → Γ′ by lemma 26, and consequently, Γ′ 6→ Γ.

According to lemma 21, CSP(ΓΓα) is equivalent to a problem of deciding whether
there is a homomorphism h : R → Γ for a relational structure R = (V,Ω0,Ω1,Ω) and a
homomorphism g : R → Γα given as inputs. If Ω0 ∩ Ω1 6= ∅ we claim the nonexistence of h.
Otherwise, h is defined in the following way: h(x) = g(x), if g(x) 6= α; h(x) = 0, if x ∈ Ω0
and g(x) = α; h(x) = 1, if x ∈ Ω1 and g(x) = α; and h(x) = 0, if otherwise. It can be
checked that this algorithm solves CSP+

Γα(Γ).
Our computational experiment showed (see section 6) showed that, in fact, Γ′ ∼ Γα. It is

easy to see that in the latter algorithm for CSP(ΓΓα) we used a homomorphism g : R → Γα
only at the stage of the construction of h, i.e. we did not need it at the decision stage. The
latter means that CSPΓα(Γ) as a decision problem is also tractable and from theorem 25 we
obtain that Γ is widely tractable (under condition that it is strongly BJK).

Theorem 28 gives us the idea that we can reduce CSP(Γ) to CSP(Γ′), CSP(Γ′) to
CSP(Γ′′) etc. It turns out that this sequence of reductions collapses very soon:

I Theorem 30. If Γ,Γ′ are both strongly BJK, then Γ′ ∼ Γ′′.

5 Valued templates: conservative case

So far, the most applicable class of fixed-template valued VCSPs was the submodular function
minimization problems [22]. Also, minimum cost homomorphism problems (MinHom)
appeared in such different contexts as Defense Logistics [13] and Computer Vision [10].
These two examples make the framework of conservative valued CSPs of special interest, since
it includes both MinHom and submodular function minimization. The structure of tractable
conservative languages is very clearly understood both in crisp [4] and valued cases [29]. Let
us now give the definition.

I Definition 31. A valued constraint language Γ is called conservative if it contains UnD,
where UnD is a set of all unary {0, 1}-valued cost functions over D.

In the hybrid VCSPs setting, if the right structure Γ is conservative, we have to make
a certain supplementary assumption on structural restrictions, so that we do not loose the
desirable property that optimized function can have an arbitrary unary part.
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I Definition 32. We say that a relational structure H does not restrict unaries if for
each R ∈ H of the form R = (V, r1, . . . , ri−1, ri, ri+1, . . . , rk) with ar(ri) = 1 and for each
unary relation r′i ⊆ V , we have R′ ∈ H, where R′ = (V, r1, . . . , ri−1, r

′
i, ri+1, . . . , rk).

A generalization of the wide tractability for conservative languages will be the following
definition.

I Definition 33. A valued conservative language Γ is called widely c-tractable if for any
up-closed H that does not restrict unaries, VCSPH(Γ) is tractable if and only if VCSP(ΓR)
is tractable for any R ∈ H.

I Theorem 34. Any conservative valued language is widely c-tractable.

An analog of theorem 23 is the following statement.

I Theorem 35. For any conservative valued language Γ there is an up-closed HΓ
c that

does not restrict unaries and such that for any up-closed H that does not restrict unaries,
VCSPH(Γ) is tractable if and only if H ⊆ HΓ

c .

Our next goal will be to prove that HΓ
c = Up(Γ′c) for a certain template Γ′c. If in a case

of CSPH(Γ) we used a description of tractable templates in terms of polymorphisms, in the
current case we will need a description via fractional polymorphisms.

I Definition 36. Let (t,u) be a pair of binary operations and (Mj1,Mj2,Mn3) be a triple
of ternary operations defined on a domain D, and M ⊆ {{a, b} |a, b ∈ D, a 6= b}.

The pair (t,u), is a symmetric tournament polymorphism (STP) on M if ∀x, y,
{x t y, x u y} = {x, y} and for any {a, b} ∈M , a t b = b t a, a u b = b u a.

The triple (Mj1,Mj2,Mn3) is an MJN on M if ∀x, y, z, {Mj1(x, y, z),Mj2(x, y, z),
Mn3(x, y, z)} = {x, y, z} and for each triple (a, b, c) ∈ D3 with {a, b, c} = {x, y} ∈ M

operations Mj1(a, b, c), Mj2(a, b, c) return the unique majority element among a, b, c (that
occurs twice) and Mn3(a, b, c) returns the remaining minority element.

The following theorem was established in [20].

I Theorem 37. A conservative valued language Γ is tractable if and only if there is a
symmetric tournament polymorphism (t,u) on M , an MJN (Mj1,Mj2,Mn3) on M =
{{a, b} |a, b ∈ D, a 6= b} \M , such that (t,u), (Mj1,Mj2,Mn3) ∈ fPol(Γ).

Given Γ = (D, f1, ..., fs), let us construct a relational structure Γ′c = (D′c, f ′1, ..., f ′s). Its
domain, D′c, is defined as a set of all triples

(
M, (t,u), (Mj1,Mj2,Mn3)

)
such that (t,u)

is a symmetric tournament polymorphism on M and (Mj1,Mj2,Mn3) is an MJN on M .
All f ′i will be relations, i.e. crisp cost functions.

A tuple((
M1, (t1,u1), (Mj1

1 ,Mj1
2 ,Mn1

3)
)
, · · · ,

(
Mp, (tp,up), (Mjp1 ,Mjp2 ,Mnp3)

))
is in f ′i if and only if

(
t1, · · · ,tp

)
,
(
u1, · · · ,up

)
and

(
Mj1

1 , · · · ,Mjp1
)
,
(
Mj1

2 , · · · ,Mjp2
)
,(

Mn1
3, · · · ,Mnp3

)
are component-wise fractional polymorphisms of fi, i.e. for any x =

(x1, · · · , xp), y = (y1, · · · , yp), z = (z1, · · · , zp) the following inequalities are satisfied:

fi(x t y) + fi(x u y) ≤ fi(x) + fi(y)
fi(Mj1(x,y, z)) + fi(Mj2(x,y, z)) + fi(Mn3(x,y, z)) ≤

fi(x) + fi(y) + fi(z)
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where x t y =
(
x1 t1 y1, ..., xp tp yp

)
and x u y =

(
x1 u1 y1, ..., xp up yp

)
. Analogously,

M(x,y, z) =
(
M1(x1, y1, z1), ...,Mp(xp, yp, zp)

)
, where instead ofM we can pasteMj1,Mj2,

or Mn3.
The structure Γ′c is an analog of Γ′. Its domain consists of fractional polymorphisms,

that play the same role for valued CSPs as polymorphisms for the crisp case.

I Theorem 38. For conservative Γ, HΓ
c = Up(Γ′c).

6 Some experiments and open problems

We list here some experimental results and open problems
In the case when D = {0, 1}, it can be shown that in the definition of Γ′ Siggers pairs can
be replaced with pairs (g, w) where g is unary and w is a ternary weak near unanimity
operation on g(D) (the number of such pairs on {0, 1} is moderate). This allows a
practical computation of Γ′s core. We experimented with random structures over the
boolean domain (Γ = {ρ1, ρ2, ρ3}, ar(ρi) ≤ 3) and found that the domain size of Γ′s core
is never greater than 5.
Since CSP(Γ) is reducible to CSP(Γ′), an interesting problem is to find necessary
and sufficient conditions for Γ ∼ Γ′ (i.e. for the case when such reduction is trivial).
Experiments showed that if Γ = {ρ}, ρ ⊆ {0, 1}3 is NP-hard, then Γ ∼ Γ′. At the same
time, if Γ = {ρ, {0}, {1}}, ρ ⊆ {0, 1}3 is NP-hard, then Γ 6∼ Γ′.
The number of Siggers pairs on D grows as O(|D||D|4) which does not allow the calculation
of Γ′ even in the case when |D| = 3. Upper bounds on the domain size of Γ′s core is an
open problem.
The problem of classifying all conservative Γ for which CSP(Γ′c) is tractable (modification:
is solvable in Datalog [2]) is also open.
Are all crisp templates widely tractable, or is CSPΓ′(Γ) always tractable?
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