1,736 research outputs found

    Data compression for satellite images

    Get PDF
    An efficient data compression system is presented for satellite pictures and two grey level pictures derived from satellite pictures. The compression techniques take advantages of the correlation between adjacent picture elements. Several source coding methods are investigated. Double delta coding is presented and shown to be the most efficient. Both predictive differential quantizing technique and double delta coding can be significantly improved by applying a background skipping technique. An extension code is constructed. This code requires very little storage space and operates efficiently. Simulation results are presented for various coding schemes and source codes

    MIDAS, prototype Multivariate Interactive Digital Analysis System for large area earth resources surveys. Volume 1: System description

    Get PDF
    A third-generation, fast, low cost, multispectral recognition system (MIDAS) able to keep pace with the large quantity and high rates of data acquisition from large regions with present and projected sensots is described. The program can process a complete ERTS frame in forty seconds and provide a color map of sixteen constituent categories in a few minutes. A principle objective of the MIDAS program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughput. The hardware and software generated in the overall program is described. The system contains a midi-computer to control the various high speed processing elements in the data path, a preprocessor to condition data, and a classifier which implements an all digital prototype multivariate Gaussian maximum likelihood or a Bayesian decision algorithm. Sufficient software was developed to perform signature extraction, control the preprocessor, compute classifier coefficients, control the classifier operation, operate the color display and printer, and diagnose operation

    Automated Debugging Methodology for FPGA-based Systems

    Get PDF
    Electronic devices make up a vital part of our lives. These are seen from mobiles, laptops, computers, home automation, etc. to name a few. The modern designs constitute billions of transistors. However, with this evolution, ensuring that the devices fulfill the designer’s expectation under variable conditions has also become a great challenge. This requires a lot of design time and effort. Whenever an error is encountered, the process is re-started. Hence, it is desired to minimize the number of spins required to achieve an error-free product, as each spin results in loss of time and effort. Software-based simulation systems present the main technique to ensure the verification of the design before fabrication. However, few design errors (bugs) are likely to escape the simulation process. Such bugs subsequently appear during the post-silicon phase. Finding such bugs is time-consuming due to inherent invisibility of the hardware. Instead of software simulation of the design in the pre-silicon phase, post-silicon techniques permit the designers to verify the functionality through the physical implementations of the design. The main benefit of the methodology is that the implemented design in the post-silicon phase runs many order-of-magnitude faster than its counterpart in pre-silicon. This allows the designers to validate their design more exhaustively. This thesis presents five main contributions to enable a fast and automated debugging solution for reconfigurable hardware. During the research work, we used an obstacle avoidance system for robotic vehicles as a use case to illustrate how to apply the proposed debugging solution in practical environments. The first contribution presents a debugging system capable of providing a lossless trace of debugging data which permits a cycle-accurate replay. This methodology ensures capturing permanent as well as intermittent errors in the implemented design. The contribution also describes a solution to enhance hardware observability. It is proposed to utilize processor-configurable concentration networks, employ debug data compression to transmit the data more efficiently, and partially reconfiguring the debugging system at run-time to save the time required for design re-compilation as well as preserve the timing closure. The second contribution presents a solution for communication-centric designs. Furthermore, solutions for designs with multi-clock domains are also discussed. The third contribution presents a priority-based signal selection methodology to identify the signals which can be more helpful during the debugging process. A connectivity generation tool is also presented which can map the identified signals to the debugging system. The fourth contribution presents an automated error detection solution which can help in capturing the permanent as well as intermittent errors without continuous monitoring of debugging data. The proposed solution works for designs even in the absence of golden reference. The fifth contribution proposes to use artificial intelligence for post-silicon debugging. We presented a novel idea of using a recurrent neural network for debugging when a golden reference is present for training the network. Furthermore, the idea was also extended to designs where golden reference is not present

    Design of a digital compression technique for shuttle television

    Get PDF
    The determination of the performance and hardware complexity of data compression algorithms applicable to color television signals, were studied to assess the feasibility of digital compression techniques for shuttle communications applications. For return link communications, it is shown that a nonadaptive two dimensional DPCM technique compresses the bandwidth of field-sequential color TV to about 13 MBPS and requires less than 60 watts of secondary power. For forward link communications, a facsimile coding technique is recommended which provides high resolution slow scan television on a 144 KBPS channel. The onboard decoder requires about 19 watts of secondary power

    Resilient store: a heuristic-based data format selector for intermediate results

    Get PDF
    The final publication is available at link.springer.comLarge-scale data analysis is an important activity in many organizations that typically requires the deployment of data-intensive workflows. As data is processed these workflows generate large intermediate results, which are typically pipelined from one operator to the following. However, if materialized, these results become reusable, hence, subsequent workflows need not recompute them. There are already many solutions that materialize intermediate results but all of them assume a fixed data format. A fixed format, however, may not be the optimal one for every situation. For example, it is well-known that different data fragmentation strategies (e.g., horizontal and vertical) behave better or worse according to the access patterns of the subsequent operations. In this paper, we present ResilientStore, which assists on selecting the most appropriate data format for materializing intermediate results. Given a workflow and a set of materialization points, it uses rule-based heuristics to choose the best storage data format based on subsequent access patterns.We have implemented ResilientStore for HDFS and three different data formats: SequenceFile, Parquet and Avro. Experimental results show that our solution gives 18% better performance than any solution based on a single fixed format.Peer ReviewedPostprint (author's final draft

    A cost-based storage format selector for materialized results in big data frameworks

    Get PDF
    Modern big data frameworks (such as Hadoop and Spark) allow multiple users to do large-scale analysis simultaneously, by deploying data-intensive workflows (DIWs). These DIWs of different users share many common tasks (i.e, 50–80%), which can be materialized and reused in future executions. Materializing the output of such common tasks improves the overall processing time of DIWs and also saves computational resources. Current solutions for materialization store data on Distributed File Systems by using a fixed storage format. However, a fixed choice is not the optimal one for every situation. Specifically, different layouts (i.e., horizontal, vertical or hybrid) have a huge impact on execution, according to the access patterns of the subsequent operations. In this paper, we present a cost-based approach that helps deciding the most appropriate storage format in every situation. A generic cost-based framework that selects the best format by considering the three main layouts is presented. Then, we use our framework to instantiate cost models for specific Hadoop storage formats (namely SequenceFile, Avro and Parquet), and test it with two standard benchmark suits. Our solution gives on average 1.33× speedup over fixed SequenceFile, 1.11× speedup over fixed Avro, 1.32× speedup over fixed Parquet, and overall, it provides 1.25× speedup.Peer ReviewedPostprint (author's final draft
    • …
    corecore