661 research outputs found

    A combined data mining approach using rough set theory and case-based reasoning in medical datasets

    Get PDF
    Case-based reasoning (CBR) is the process of solving new cases by retrieving the most relevant ones from an existing knowledge-base. Since, irrelevant or redundant features not only remarkably increase memory requirements but also the time complexity of the case retrieval, reducing the number of dimensions is an issue worth considering. This paper uses rough set theory (RST) in order to reduce the number of dimensions in a CBR classifier with the aim of increasing accuracy and efficiency. CBR exploits a distance based co-occurrence of categorical data to measure similarity of cases. This distance is based on the proportional distribution of different categorical values of features. The weight used for a feature is the average of co-occurrence values of the features. The combination of RST and CBR has been applied to real categorical datasets of Wisconsin Breast Cancer, Lymphography, and Primary cancer. The 5-fold cross validation method is used to evaluate the performance of the proposed approach. The results show that this combined approach lowers computational costs and improves performance metrics including accuracy and interpretability compared to other approaches developed in the literature

    Modified fuzzy rough set technique with stacked autoencoder model for magnetic resonance imaging based breast cancer detection

    Get PDF
    Breast cancer is the common cancer in women, where early detection reduces the mortality rate. The magnetic resonance imaging (MRI) images are efficient in analyzing breast cancer, but it is hard to identify the abnormalities. The manual breast cancer detection in MRI images is inefficient; therefore, a deep learning-based system is implemented in this manuscript. Initially, the visual quality improvement is done using region growing and adaptive histogram equalization (AHE), and then, the breast lesion is segmented by Otsu thresholding with morphological transform. Next, the features are extracted from the segmented lesion, and a modified fuzzy rough set technique is proposed to reduce the dimensions of the extracted features that decreases the system complexity and computational time. The active features are fed to the stacked autoencoder for classifying the benign and malignant classes. The results demonstrated that the proposed model attained 99% and 99.22% of classification accuracy on the benchmark datasets, which are higher related to the comparative classifiers: decision tree, naïve Bayes, random forest and k-nearest neighbor (KNN). The obtained results state that the proposed model superiorly screens and detects the breast lesions that assists clinicians in effective therapeutic intervention and timely treatment

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE

    Predictive data mining approaches in medical diagnosis: A review of some diseases prediction

    Get PDF
    Due to the increasing technological advances in all fields, a considerable amount of data has been collected to be processed for different purposes. Data mining is the process of determining and an-alyzing hidden information from different perspectives to obtain useful knowledge. Data mining can have many various applications, one of them is in medical diagnosis. Today, many diseases are regarded as dangerous and deadly. Heart disease, breast cancer, and diabetes are among the most dangerous ones. This paper investigates 168 articles associated with the implementation of data mining for diagnosing such diseases. The study concentrates on 85 selected papers which have received more attention between 1997 and 2018. All algorithms, data mining models, and evaluation methods are thoroughly reviewed with special consideration. The study attempts to determine the most efficient data mining methods used for medical diagnosing purposes. Also, one of the other significant results of this study is the detection of research gaps in the application of data mining in health care

    A comprehensive study on disease risk predictions in machine learning

    Get PDF
    Over recent years, multiple disease risk prediction models have been developed. These models use various patient characteristics to estimate the probability of outcomes over a certain period of time and hold the potential to improve decision making and individualize care. Discovering hidden patterns and interactions from medical databases with growing evaluation of the disease prediction model has become crucial. It needs many trials in traditional clinical findings that could complicate disease prediction. Comprehensive survey on different strategies used to predict disease is conferred in this paper. Applying these techniques to healthcare data, has improvement of risk prediction models to find out the patients who would get benefit from disease management programs to reduce hospital readmission and healthcare cost, but the results of these endeavours have been shifted

    En-PaFlower: An Ensemble Approach using PSO and Flower Pollination Algorithm for Cancer Diagnosis

    Get PDF
    Machine learning now is used across many sectors and provides consistently precise predictions. The machine learning system is able to learn effectively because the training dataset contains examples of previously completed tasks. After learning how to process the necessary data, researchers have proven that machine learning algorithms can carry out the whole work autonomously. In recent years, cancer has become a major cause of the worldwide increase in mortality. Therefore, early detection of cancer improves the chance of a complete recovery, and Machine Learning (ML) plays a significant role in this perspective. Cancer diagnostic and prognosis microarray dataset is available with the biopsy dataset. Because of its importance in making diagnoses and classifying cancer diseases, the microarray data represents a massive amount. It may be challenging to do an analysis on a large number of datasets, though. As a result, feature selection is crucial, and machine learning provides classification techniques. These algorithms choose the relevant features that help build a more precise categorization model. Accurately classifying diseases is facilitated as a result, which aids in disease prevention. This work aims to synthesize existing knowledge on cancer diagnosis using machine learning techniques into a compact report.  Current research work aims to propose an ensemble-based machine learning model En-PaFlower using Particle Swarm Optimization (PSO) as the feature selection algorithm, Flower Pollination algorithm (FPA) as the optimization algorithm with the majority voting algorithm. Finally, the performance of the proposed algorithm is evaluated over three different types of cancer disease datasets with accuracy, precision, recall, specificity, and F-1 Score etc as the evaluation parameters. The empirical analysis shows that the proposed methodology shows highest accuracy as 95.65%

    Artificial Intelligence Techniques for Cancer Detection and Classification: Review Study

    Get PDF
    Cancer is the general name for a group of more than 100 diseases. Although cancer includes different types of diseases, they all start because abnormal cells grow out of control. Without treatment, cancer can cause serious health problems and even loss of life. Early detection of cancer may reduce mortality and morbidity. This paper presents a review of the detection methods for lung, breast, and brain cancers. These methods used for diagnosis include artificial intelligence techniques, such as support vector machine neural network, artificial neural network, fuzzy logic, and adaptive neuro-fuzzy inference system, with medical imaging like X-ray, ultrasound, magnetic resonance imaging, and computed tomography scan images. Imaging techniques are the most important approach for precise diagnosis of human cancer. We investigated all these techniques to identify a method that can provide superior accuracy and determine the best medical images for use in each type of cancer

    A voting-based machine learning approach for classifying biological and clinical datasets.

    Get PDF
    BACKGROUND: Different machine learning techniques have been proposed to classify a wide range of biological/clinical data. Given the practicability of these approaches accordingly, various software packages have been also designed and developed. However, the existing methods suffer from several limitations such as overfitting on a specific dataset, ignoring the feature selection concept in the preprocessing step, and losing their performance on large-size datasets. To tackle the mentioned restrictions, in this study, we introduced a machine learning framework consisting of two main steps. First, our previously suggested optimization algorithm (Trader) was extended to select a near-optimal subset of features/genes. Second, a voting-based framework was proposed to classify the biological/clinical data with high accuracy. To evaluate the efficiency of the proposed method, it was applied to 13 biological/clinical datasets, and the outcomes were comprehensively compared with the prior methods. RESULTS: The results demonstrated that the Trader algorithm could select a near-optimal subset of features with a significant level of p-value \u3c 0.01 relative to the compared algorithms. Additionally, on the large-sie datasets, the proposed machine learning framework improved prior studies by ~ 10% in terms of the mean values associated with fivefold cross-validation of accuracy, precision, recall, specificity, and F-measure. CONCLUSION: Based on the obtained results, it can be concluded that a proper configuration of efficient algorithms and methods can increase the prediction power of machine learning approaches and help researchers in designing practical diagnosis health care systems and offering effective treatment plans
    • …
    corecore