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 Breast cancer is the common cancer in women, where early detection 

reduces the mortality rate. The magnetic resonance imaging (MRI) images 

are efficient in analyzing breast cancer, but it is hard to identify the 

abnormalities. The manual breast cancer detection in MRI images is 

inefficient; therefore, a deep learning-based system is implemented in this 

manuscript. Initially, the visual quality improvement is done using region 

growing and adaptive histogram equalization (AHE), and then, the breast 

lesion is segmented by Otsu thresholding with morphological transform. 

Next, the features are extracted from the segmented lesion, and a modified 

fuzzy rough set technique is proposed to reduce the dimensions of the 

extracted features that decreases the system complexity and computational 

time. The active features are fed to the stacked autoencoder for classifying 

the benign and malignant classes. The results demonstrated that the proposed 

model attained 99% and 99.22% of classification accuracy on the benchmark 

datasets, which are higher related to the comparative classifiers: decision 

tree, naïve Bayes, random forest and k-nearest neighbor (KNN). The 

obtained results state that the proposed model superiorly screens and detects 

the breast lesions that assists clinicians in effective therapeutic intervention 

and timely treatment. 
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1. INTRODUCTION  

In the current scenario, breast cancer is the common cancer type in the rural and urban areas, where 

women between the age group of thirty-fifty years are at a higher risk of breast cancer [1], [2]. It is the 

second most cause of cancer deaths in women after lung cancer [3]. Hence, the death rate of women due to 

breast cancer is 1 in 37 subjects, which is around 2.7%. Therefore, the proper treatment and early diagnosis 

of breast cancer are essential for decreasing the death rates and preventing the disease progression [4]–[6]. In 

recent decades, magnetic resonance imaging (MRI) images are highly utilized for diagnosing breast cancer to 

decrease unnecessary biopsies [7], [8]. Additionally, the MRI images are a highly recommended test to 

monitor and detect the breast cancer lesion and to interpret the lesioned region, because it has better soft 

tissue imaging [9]. Additionally, an experienced physician is needed to process the MRI images, which is a 

time-consuming mechanism [10], [11]. For overcoming the above-stated issue, several automated models are 
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implemented by the researchers [12], [13]. Singh et al. [14] introduced a novel two-stage model for tumor 

classification. The integration of adversarial network and convolutional neural network (CNN) requires a 

large amount of medical data for training the developed model, which was extremely expensive. 

Ibraheem et al. [15] combined two dimensional median filter and discrete wavelet transform for improving 

the quality of breast images and extracting the features. The extracted features were given to the support 

vector machine (SVM) for tumor and healthy region classification. The SVM does not work well, when the 

target-classes were overlapping and the collected data was noisier. Khan et al. [16] introduced a deep 

learning framework based on the concept of transfer learning for breast cancer detection. In the presented 

deep learning system, three pre-trained models like residual network (ResNet), GoogLeNet and visual 

geometry group network (VGGNet) were used to extract features from the breast cytology images. The 

extracted deep learning features were fed to the fully connected layer of the transfer-learning model for 

malignant and benign classification. The developed transfer-learning model needs expensive graphics 

processing unit systems that increase computational cost. 

Ragab et al. [17] has integrated ResNet, AlexNet, and GoogLeNet models for extracting deep 

features from the breast mammogram images. The extracted features were given to the SVM classifier for 

tumor and non-tumor region classification. However, the SVM classifier was suitable for binary class 

classification, where it was inappropriate for multiclass classification. On the other hand, Alanazi et al. [18] 

has presented a CNN model for boosting the automatic detection of cancer regions by utilizing 

histopathology images, where it was computationally expensive. Fang et al. [19] firstly applied median 

filtering technique for enhancing the quality of mammogram images. Then, the whale optimization algorithm 

was combined with the multilayer perceptron algorithm for classifying the breast images as healthy or 

cancerous. The evaluation outcomes demonstrated that the presented model obtained higher accuracy than 

the existing models. The multilayer perceptron algorithm was sensitive to feature scaling and needs more 

hyper-parameters tuning such as hidden layers and neurons. Gravina et al. [20] developed a CNN model 

based on the intrinsic deforming autoencoders for automatic breast lesion malignancy recognition. The CNN 

was computationally costly, where it requires an enormous amount of data in order to obtain better 

classification results. Chouhan et al. [21] developed a deep highway network to extract dynamic features 

from the digital breast mammogram images. Further, the extracted features were given to the SVM and 

emotional learning inspired ensemble model for benign and malignant classification. As specified earlier, the 

developed SVM model supports only binary class classification. 

Khamparia et al. [22] has implemented a hybrid transfer-learning model that combines ImageNet 

and modified VGGNets for superior breast cancer recognition. The presented hybrid transfer-learning model 

was a superior tool for clinicians in order to diminish the false positive and false negative rates of breast 

cancer recognition, but it was computationally complex. In addition, Yurttakal et al. [23] implemented a time 

saving deep CNN model for classifying the breast lesions as benign or malignant tumors. The presented time 

saving deep CNN model obtained promising results in the breast cancer classification by means of 

specificity, accuracy, and sensitivity. In addition, Hizukuri et al. [24] developed a deep CNN model with 

Bayesian optimization for effective breast cancer classification. As presented in the resulting section, the 

deep CNN model obtained higher classification performance and it would be useful in early diagnoses of 

breast masses. However, the vanishing gradients was a major problem in the hybrid transfer-learning model 

and deep CNN model. To highlight the above-stated issues and to enhance breast-cancer detection, a novel 

deep learning system is implemented in this work. The primary aim of this article is to categorize the 

malignant and benign breast lesions with limited system complexity and computational time. The 

contributions are listed below: 

− After acquiring the breast images from breast imaging-reporting and data system (BI-RADS) MRI and 

breast dynamic contrast material-enhanced MRI (DCE-MRI) datasets, the image denoising is carried out 

by using region growing and adaptive histogram equalization (AHE) techniques. The undertaken pre-

processing techniques significantly enhance the edge definitions and improve the local contrast of the 

collected breast images.  

− The breast lesion segmentation is accomplished utilizing Otsu thresholding with morphological 

transform, where this technique is effective, when the background condition is unchanged. 

− The discriminative features are extracted from the segmented lesions by utilizing local ternary pattern 

(LTP) and steerable pyramid transform (SPT). Then, the dimensions of the extracted features are 

diminished by proposing a modified fuzzy rough set technique that enhances the computational time and 

complexity of the stacked autoencoder model, which is used for classification. The modified fuzzy rough 

set technique combines the fuzzy equivalence and the membership function of fuzzy c means clustering 

technique for feature optimization. The rough set based stacked autoencoder model’s effectiveness is 

analyzed in terms of positive predicted value (PPV), specificity, accuracy, negative predicted value 

(NPV), and sensitivity. 
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This article is arranged in the following manner; the proposed methodology explanations are 

described in section 2. The simulation outcomes and its comparison are demonstrated in section 3. Finally, 

the conclusion of this study is depicted in section 4. 

 

 

2. METHOD 

In the context of breast cancer detection, the presented deep-learning framework comprises six 

phases. These six phases include image acquisition: BI-RADS MRI and DCE-MRI datasets, image 

denoising: region growing and adaptive histogram equalization, segmentation: Otsu thresholding with 

morphological transform, feature extraction: steerable pyramid transform and local ternary pattern descriptor, 

feature optimization: modified fuzzy rough set, and classification: stacked autoencoder. The workflow of the 

developed deep learning framework is represented in Figure 1. 

 

 

 
 

Figure 1. Workflow of the developed deep learning framework 

 

 

2.1.  Image acquisition and denoising 

In this research work, the developed deep learning framework’s effectiveness is validated using the 

BI-RADS MRI and DCE-MRI datasets. The BI-RADS MRI dataset consists of 200 MRI breast images in 

that 98 breast images are benign and 102 breast images are malignant. In the BI-RADS MRI dataset, the 

benign breast images are 17.63±5.79 mm in size and the malignant breast images are 29.80±9.88 mm in size. 

In addition, the subjects with granulomatous mastitis and infection are excluded from the research. Table 1 

states the data statistics of the BI-RADS MRI dataset. On the other hand, the DCE-MRI dataset comprises 56 

MRI examinations of 56 patients in which 30 are malignant masses and 26 are benign masses. The  

sample-acquired images are denoted in Figure 2. 

 

 

Table 1. Data statistics of the BI-RADS MRI dataset 
Sequence Contrast enhanced subtracted images 

Image resolution 288×288 

Image format DICOM 
Malignant 102 

Benign 98 

Slice thickness <2.0 mm 
Cases 200 

 

 

  
 

Figure 2. Sample acquired images 

 

 

After collecting the raw breast MRI images, the pre-processing is carried out by utilizing AHE 

technique and region growing. Firstly, the AHE is an effective image processing technique, which is 
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employed to enhance the contrast of the raw breast MRI images. The AHE technique computes different 

histogram values to distinguish the images into many sections and then utilizes these sections for 

redistributing the lightness of the breast MRI images. Hence, the AHE technique is appropriate to enhance 

the image edges and to improve the local contrast of the collected breast MRI images [25]. Additionally, the 

region growing technique completely relies on the neighborhood image pixel assumption [26]. The region 

growing techniques compare one pixel with the neighbourhood pixels. If the similarity criterion is satisfied, 

the pixels belong to the clusters. The output image of the AHE and region-growing techniques are 

graphically depicted in Figures 3 and 4. 

 

 

  
 

Figure 3. Output images of AHE technique 

 

 

  
 

Figure 4. Output images of region growing 

 

 

2.2.  Tumor segmentation 

After denoising the breast images, the tumor segmentation is accomplished by utilizing Otsu 

thresholding technique. The Otsu thresholding is an effective and simple segmentation technique, where it 

uses maximum class variance values. Related to existing image segmentation techniques, the Otsu 

thresholding technique includes advantages like need only smaller storage space, faster processing speed and 

ease in implementation. The pixel intensity level of the denoised image 𝐿 is initially determined by  

utilizing (1). 

 

𝑃𝐻𝑖
𝑒 =

𝐻𝑖
𝑒

𝑀
, ∑ 𝑃𝐻𝑖

𝑒 = 1𝑀
𝑖=1 , 𝑒 = {

1,2,3         𝑖𝑓 𝑅𝐺𝐵
1     𝑖𝑓 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒

     (1) 

 

where, 𝐻𝑖
𝑒  indicates the pixel intensity value that corresponds to the intensity levels from 𝑖 until 𝑒, and 𝑃𝐻𝑖

𝑒  

represents distribution probability value of the denoised image. Additionally, 𝐸 indicates image components 

(grayscale or RGB) and 𝑀 specifies the number of pixel values in the denoised breast images [27]. Next, the 

histogram values in the probability distribution are normalized using (2). 

 

𝑤𝑜
𝐸(𝑡ℎ) = ∑ 𝑃𝐻𝑖

𝑒 ,𝑡ℎ
𝑖=1 𝑤1

𝐸(𝑡ℎ) = ∑ 𝑃𝐻𝑖
𝑒𝐿

𝑖=𝑡ℎ+1  (2) 

 

where, 𝐸1 =
𝑃𝐻1

𝑒

𝑤𝑜
𝑒(𝑡ℎ)

, … . ,
𝑃𝐻𝑡ℎ

𝑒

𝑤𝑜
𝑒(𝑡ℎ)

, 𝐸2 =
𝑃𝐻𝑡ℎ+1

𝑒

𝑤1
𝑒(𝑡ℎ)

, … . . ,
𝑃𝐻𝐿

𝑒

𝑤1
𝑒(𝑡ℎ)

 , 𝑤0(𝑡ℎ) 𝑎𝑛𝑑 𝑤1(𝑡ℎ) denotes probability distribution 

from 𝐸1 and 𝐸2. Further, calculate the variants and average levels between the classes 𝐶 by utilizing the (3) 

and (4). 

 

𝜇0
𝑒 = ∑

𝑖𝑃𝐻𝑖
𝑒

𝑤𝑜
𝑒(𝑡ℎ)

,𝑡ℎ
𝑖=1 𝜇1

𝑒 = ∑
𝑖𝑃𝐻𝑖

𝑒

𝑤1
𝑒(𝑡ℎ)

,𝐿
𝑖=𝑡ℎ+1  (3) 

 

 𝜎2𝑒 = 𝜎1
𝑒 + 𝜎2

𝑒 ,  (4) 
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where, 𝜎1
𝑒 = 𝑤0

𝑒(𝜇0
𝑒 + 𝜇𝑇

𝑒 )2, 𝜎2
𝑒 = 𝑤1

𝑒(𝜇1
𝑒 + 𝜇𝑇

𝑒 )2 , 𝜎2𝑒 represents variants between the classes 𝐶 (benign and 

malignant classes), 𝜎1
𝑒 and 𝜎2

𝑒 denotes class variants one and two, and 𝜇0
𝑒 and 𝜇1

𝑒 states average rate for the 

class variants one and two. Then, the objective function is calculated utilizing (5). 

 

𝐽(𝑡ℎ) = 𝑚𝑎𝑥( 𝜎2𝑒(𝑡ℎ)) , 0 ≤ 𝑡ℎ𝑖 ≤ 𝐿 − 1, 𝑖 = 1,2,3, … 𝐾 (5) 

 

where, 𝑡ℎ = 𝑡ℎ1, 𝑡ℎ2, … … . 𝑡ℎ𝐾−1 represents a vector, which contains multiple thresholds. The Otsu 

thresholding between the class variance function is maximized to achieve the optimum threshold level of 

breast image for better tumor segmentation by increasing the objective function. In addition, the 

morphological dilation operator is employed on the output images of the Otsu thresholding technique that 

utilizes a structural element for expanding and probing the shapes in the output images of the Otsu 

thresholding technique. The output images of Otsu thresholding with morphological transform are 

graphically represented in Figure 5. 

 

 

  
 

Figure 5. Output images of Otsu thresholding with morphological transform 

 

 

2.3.  Feature extraction with optimization  

After tumor segmentation, the feature extraction is performed by utilizing steerable pyramid 

transform (SPT) and local ternary pattern (LTP) for extracting the features from the segmented tumor 

regions. The SPT is a linear multi-orientation and multi-scale image decomposition method, where the major 

portions of the linear transforms are sub-band transforms. Initially, the SPT is an effective image 

decomposition method that partitions the segmented tumor images into numerous sub-bands using orientation 

and scale, which is calculated using decimation and convolution operations. The sub-bands of the SPT are 

rotation invariant and translation that reduce the concern of orthogonal-separable-wavelet-decomposition 

[28]. In the SPT method, the segmented image is partitioned into low and high pass sub-bands utilizing the 

filters 𝐿0 and 𝐻0. Further, the low pass sub-bands are decomposed into four oriented band-pass sub-bands 

utilizing low pass filter 𝐿1 and band pass filters 𝐵0, 𝐵1, 𝐵2, and 𝐵3. Lastly, a robust image representation is 

generated with high orientation and scale by increasing the number of pyramid levels and number of image 

orientations. 

Additionally, the LTP is a three-value texture descriptor for extracting the textual feature vectors 

from the segmented images. The LTP labels the image pixels with a threshold value by multiplying and 

adding the centre neighborhood image pixels 𝑝𝑐 to generate the new labels. After defining the threshold 

value 𝑡, the pixel values within the range of −𝑡 to +𝑡 are considered to assign the value of zero to the image 

pixels [29]. The value 1 is assigned to the image pixels, if the value is higher than the threshold value, and the 

value -1 is assigned to the image pixels if the value is lower than the center pixel value. The mathematical 

expression of the LTP operator is represented in (6). 

 

𝐿𝑇𝑃 = {

1      𝑖𝑓 𝑝𝑖 − 𝑝𝑐 ≥ 𝑡

   0      𝑖𝑓 |𝑝𝑖 − 𝑝𝑐| < 𝑡
 −1      𝑖𝑓 𝑝𝑖 − 𝑝𝑐  ≤ −𝑡

} (6) 

 

where, 𝑡 indicates user-specified threshold, 𝑝𝑖  denotes neighborhood pixel value and 𝑝𝑐 represents a central 

pixel value. The hybrid feature extraction (LTP and SPT) extracts 1536 features from the segmented images. 

The dimensions of the extracted feature vectors are decreased by implementing the modified fuzzy rough set 

technique. Generally, the fuzzy rough set utilizes two approximations such as lower and upper limits for 

feature optimization that ranges between [0, 1]. The conventional fuzzy rough set feature optimization is 

employed on nominal, valued, continuous and nominal data, where it significantly handles the data noise. 

Several reformulations are carried out in a fuzzy rough set to speed up the calculations. In this manuscript, 
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the modified fuzzy rough set technique is proposed that integrates the fuzzy equivalence and the membership 

function of fuzzy c means clustering technique for feature optimization. The modified fuzzy rough set 

technique knows the dataset and selects the highly correlated feature vectors of 537 for disease classification. 

The flowchart of the modified fuzzy rough set technique is represented in Figure 6. 

 

 

 
 

Figure 6. Flowchart of the modified fuzzy rough set technique 

 

 

2.4.  Classification 

After choosing the active features, the stacked autoencoder is applied for classification [30]. The 

stacked autoencoder classification technique comprises multi-layer autoencoders that obtain higher-level 

representation of the original feature vectors by reconstructing input and its structure. In the input layer, the 

original information is encoded for obtaining the higher-level feature vectors of the middle-hidden layer and 

then the input information is reconstructed by decoding the information. By minimizing the reconstruction 

error, the stacked autoencoder networks are trained. The original training data is considered as 𝑥 and the 

hidden layer is mathematically expressed in (7). 

 

𝑦(𝑖) = 𝑓(𝑊1
𝑇𝑥(𝑖) + 𝑏2) (7) 

 

where 𝑓 = 𝑡𝑎𝑛ℎ (. ) represents activation function. Further, the output 𝑧 is obtained by decoding the original 

information, which is mathematically represented in (8). Then, the objective is minimized for training the 

autoencoder that is defined in (9). 

 

𝑧(𝑖) = 𝑊2
𝑇𝑦(𝑖) + 𝑏2 ≈ 𝑥(𝑖) (8) 

 

𝐽(𝑋, 𝑍) =
1

2
∑ ‖𝑥(𝑖) − 𝑧(𝑖)‖

2𝑀
𝑖=1  (9) 

 

The stacked autoencoder is trained on the basis of layer-by-layer greedy method. Particularly, the 

feature vector of the upper hidden layer is used as the input of the succeeding layers, which is named as pre-

training. Further, the weights of the pre-trained network are connected and then the weights of the final 

network are obtained by fine-tuning. The assumed parameters are: maximum iterations: softmax learning is 

100, sparsity proportion is 0.15, maximum iterations: SAE learning is 100, L2 weight regularization is 0.004, 

sparsity regularization is 4, and a number of hidden layers is 100. 

 

 

3. RESULTS AND DISCUSSION 

In the automated breast cancer detection, the developed rough set based stacked autoencoder 

model’s efficacy is simulated by MATLAB 2020. The rough set based stacked autoencoder model’s efficacy 
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is analyzed in terms of PPV, specificity, accuracy, NPV and sensitivity on the BI-RADS MRI and DCE-MRI 

datasets. However, the NPV and PPV are defined as the proportions of the negative and positive results in the 

statistic and diagnostic tests, which are true negative and true positive results. The formulae of NPV and PPV 

are depicted in equations (10) and (11).  

 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
× 100 (10) 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100 (11) 

 

The sensitivity is a test that determines the patient cases precisely and the specificity is a test that 

precisely identifies the healthy cases. In addition, accuracy is a vital evaluation metric in breast cancer 

detection that indicates how closer the obtained results are to the actual results. The mathematical formulae 

of sensitivity, specificity and accuracy are stated in (12), (13), and (14). Where, FP, TP, FN, and TN indicate 

false positive, true positive, false negative and true negative values. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100 (12) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100 (13) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 (14) 

 

3.1.  Quantitative analysis 

In this scenario, the rough set based stacked autoencoder model’s efficacy is analysed on the  

BI-RADS MRI dataset that comprises 200 MRI breast images in which 20% breast images are utilized for 

model testing. Additionally, the proposed rough set based stacked autoencoder model is evaluated by a  

five-fold cross validation technique that diminishes the computational time, and the variance of the estimated 

parameters against the dataset. In Table 2, the experimental analysis is carried-out utilizing different 

classifiers such as stacked autoencoder, naïve Bayes, random forest (RF), decision tree (DT), and k-nearest 

neighbor (KNN) along with and without feature optimization in that the combination: a modified fuzzy rough 

set technique with stacked autoencoder obtained maximum performance with sensitivity of 98.68%, PPV of 

98.11%, classification accuracy of 99%, specificity of 99%, and NPV of 97.56% on the BI-RADS MRI 

dataset. The experimental outcome by changing the classifiers with and without feature optimization is 

represented in Figures 7 and 8. 

 

 

Table 2. Experimental result by changing the classifiers on the BI-RADS MRI dataset 
 Classifier Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

Without feature optimization KNN 81.14 80.44 79.94 80.69 79.71 
Random forest 86.24 85.81 83.71 87.78 83.75 

Naïve Bayes 90.45 90.57 89.34 91.79 89.25 

Decision tree 85.94 82.99 86.03 85.22 86.27 
Stacked autoencoder 95.62 96.31 96.78 94.56 94.77 

With feature optimization KNN 82.50 84.29 83.26 82.11 81.43 

Random forest 88.22 89.55 90.10 88.53 88.31 

Naïve Bayes 92.74 93.88 93.84 91.55 93.32 

Decision tree 90.98 91.57 89.01 89.99 92.30 

Stacked autoencoder 99 98.68 99 98.11 97.56 

 

 

Table 3 reveals that the modified fuzzy rough set technique with stacked autoencoder achieved 

maximum classification performance in the breast cancer detection on the BI-RADS MRI dataset related to 

other optimizers like artificial bee colony (ABC), particle swarm optimizer (PSO), and grey wolf optimizer 

(GWO). In this research manuscript, the modified fuzzy rough set technique is significant for visualization 

and feature optimization of the BI-RADS MRI dataset, where it effectively deals with the hybrid decision 

systems. The experimental results by varying the feature optimizers are graphically stated in Figure 9. 

Similar to the BI-RADS MRI dataset, the proposed rough set based stacked autoencoder has 

obtained higher classification accuracy of 99.22%, sensitivity of 98.80%, specificity of 98.91%, PPV of 

98.92%, and NPV of 98.90% on the DCE-MRI dataset. The achieved experimental results are maximum 

related to other classifiers and optimizers, as specified in Tables 4 and 5.  
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Figure 7. Comparison result by changing the classifiers without feature optimization on the BI-RADS MRI 

dataset 

 

 

 
 

Figure 8. Comparison result by changing the classifiers with feature optimization on the BI-RADS MRI 

dataset 

 

 

Table 3. Experimental result by changing the feature optimizers on the BI-RADS MRI dataset 
Stacked autoencoder 

Optimizers Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 
PSO 88.35 88.11 88.72 88.37 87.11 

GWO 92.29 92.54 92.86 91.70 92.60 

ABC 95.24 96.56 94.71 96.72 94.59 
Modified fuzzy rough set 99 98.68 99 98.11 97.56 

 

 

 
 

Figure 9. Comparison result by changing the feature optimizers with stacked autoencoder on the BI-RADS 

MRI dataset 
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Table 4. Experimental result by changing the classifiers on the DCE-MRI dataset 
 Classifier Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

Without feature optimization KNN 82.65 82.11 81.90 85.65 84.70 
Random forest 84.32 86.78 85.70 89.90 88.22 

Naïve Bayes 93.22 90.99 89 90.11 90.25 

Decision tree 94.34 93.21 90.08 92.90 90.33 
Stacked autoencoder 95.80 95.65 93.77 95.50 93.70 

With feature optimization KNN 90.33 90.90 91.28 90.12 91.40 

Random forest 92.38 93.10 92.10 95.50 92.99 
Naïve Bayes 96.70 95.84 93.99 96.86 94.34 

Decision tree 97.07 96.50 95.08 97.90 96.30 

Stacked autoencoder 99.22 98.80 98.91 98.92 98.90 

 

 

Table 5. Experimental result by changing the feature optimizers on the DCE-MRI dataset 
Stacked autoencoder 

Optimizers Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

PSO 93.38 90.11 90.70 90.30 91.32 
GWO 94.20 94.84 94.85 92.62 93.68 

ABC 95.08 96.40 95.09 93.88 94.11 

Modified fuzzy rough set 99.22 98.80 98.91 98.92 98.90 

 

 

3.2.  Comparative analysis 

The comparative results of the prior models and the rough set based stacked autoencoder model is 

represented in Table 6. Yurttakal et al. [23] presented a deep CNN model for classifying the breast MRI 

lesions as malignant and benign. The simulation outcomes demonstrated that the deep CNN model achieved 

98.33% of classification accuracy and 96.88% of specificity on the BI-RADS MRI dataset. In addition, 

Hizukuri et al. [24] integrated a deep CNN model with Bayesian optimization for effective breast cancer 

classification. As depicted in the resulting section, the developed model obtained 92.90% of accuracy and 

92.30% of specificity on the DCE-MRI dataset. Compared to the existing deep CNN models, the rough set 

based stacked autoencoder model obtained superior performance in breast lesion detection by means of 

different evaluation measures. 

 

 

Table 6. Comparative evaluation between the existing and the proposed rough set based stacked 

autoencoder model 
Models Dataset Accuracy (%) Specificity (%) 

Deep CNN [23] BI-RADS MRI 98.33 96.88 
Deep CNN with Bayesian optimization [24] DCE-MRI 92.90 92.30 

Rough set based stacked autoencoder model BI-RADS MRI 99 99 

DCE-MRI 99.22 98.91 

 

 

3.3.  Discussion 

The segmentation, feature optimization, and classification are the vital parts of this research for 

precise breast cancer detection with minimal computational time. The Otsu thresholding with morphological 

transform is simple and speed in finding the optimal threshold value for separating foreground and 

background regions. After feature extraction, the incorporation of the modified fuzzy rough set technique in 

the proposed system diminishes the computational time and complexity of the stacked autoencoder by 

selecting active features. The computational complexity of the rough set based stacked autoencoder model is 

linear 𝑂(𝑁), where 𝑂 indicates the order of magnitude and 𝑁 states input size. The proposed model 

consumes 34 and 22 seconds to train and test the BI-RADS MRI and DCE-MRI datasets, which are 

minimum related to other comparative classification models. Additionally, the stacked autoencoder easily 

and effectively learns non-linear transformation with multiple layers and activation functions for better 

disease classification. The computational complexity and training time are the major issues addressed in the 

related work section that are effectively overcome by the rough set based stacked autoencoder model. 

 

 

4. CONCLUSION 

In this manuscript, a new rough set based stacked autoencoder model is implemented for effective 

breast cancer detection. The aim of this research is to develop a feature optimizer and an effective deep 

learning classifier for effective classification of breast cancer. Therefore, the most pre-dominant 
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discriminative feature vectors are selected utilizing the modified fuzzy rough set technique. Further, the 

selected features are given as the input to the stacked autoencoder for classifying both the malignant and 

benign breast lesions. The proposed rough set based stacked autoencoder model delivers superior 

performance in the breast cancer recognition in terms of classification accuracy, PPV, specificity, NPV, and 

sensitivity. In the experimental segment, the proposed rough set based stacked autoencoder model obtained 

classification accuracy of 99% and 99.22% on the BI-RADS MRI and DCE-MRI datasets. The obtained 

experimental outcomes are superior to the conventional classifiers and optimizers. Breast cancer detection by 

the proposed rough set based stacked autoencoder model can assist doctors and pathologists in the 

classification of abnormalities with maximum accuracy in minimal computational time. In future, a new 

ensemble based deep learning model can be included in the proposed system to further detect the sub-stages 

of breast cancer. 
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