23,015 research outputs found

    A Hybrid Indoor Location Positioning System

    Get PDF
    Indoor location positioning techniques have experienced impressive growth in recent years. A wide range of indoor positioning algorithms has been developed for various applications. In this work a practical indoor location positioning technique is presented which utilizes off-the-shelf smartphones and low-cost Bluetooth Low Energy (BLE) nodes without any further infrastructure. The method includes coarse and fine modes of location positioning. In the coarse mode, the received signal strength (RSS) of the BLE nodes is used for location estimation while in the fine acoustic signals are utilized for accurate positioning. The system can achieve centimeter-level positioning accuracy in its fine mode. To enhance the system’s performance in noisy environments, two digital signal processing (DSP) algorithms of (a) band-pass filtering with audio pattern recognition and (b) linear frequency modulated chirp signal with matched filter are implemented. To increase the system’s robustness in dense multipath environments, a method using data clustering with sliding window is employed. The received signal strength of BLE nodes is used as an auxiliary positioning method to identify the non-line-of-sight (NLoS) propagation paths in the acoustic positioning mode. Experimental measurement results in an indoor area of 10 m2 indicate that the positioning error falls below 6 cm

    Exploring Hybrid Indoor Positioning Systems

    Get PDF
    Ubiquitous applications collect contextual information, process it, and then use this derived data to deliver valuable services. Location is one these contexts, and has been significant in providing navigation and guidance services for GPS devices. However, GPS is designed for outdoor use and is not precise enough, in terms of location accuracy for indoor applications. There are many indoor location systems that rely on a single technology, but these systems are either inaccurate in uncontrolled environments or require the installation of a dedicated infrastructure. This has led to the investigation of hybrid systems. This thesis examines the creation of a hybrid indoor positioning system combining different tech­ nologies and techniques; Wi-Fi access points and their associated signal strength, image analysis using machine learning to create location specific scene classifiers, and an altimeter sensor to determine the user\u27s current floor. This system is meant to provide indoor positioning data to location-aware applications

    Improving Location Determination for non-GPS devices

    Get PDF
    Location awareness is one of the most important information that an individual looks for, both in an outdoor and indoor environment. One of the primary location determination techniques is the Global Positioning system, though this system provides a good accuracy in an outdoor environment, its accuracy decreases in densely populated areas and in an indoor environment a GPS system ceases to provide location information since the satellite signal cannot permeate through the roof and the walls. Various location estimation techniques have been proposed for location estimation in an indoor environment, some utilizing the signal strength of a wifi transmitter, while others using the time of arrival of a signal. In an indoor environment location can be estimated using either of the techniques or by using a hybrid approach. In this paper I will study different algorithms to determine which algorithm is the best approach for indoor location determination is

    Non-Taylor series based positioning method for location based services

    Get PDF
    Location Based Services (LBS) has gained increasing popularity in major cities. Due to blocking from man-made structures, the existing Global Positioning System (GPS) could not satisfy LBS applications, especially in street canyon and indoor surroundings. This has lead to the development of Assisted GPS (A-GPS) which can provide better service availability and accuracy gain. In the conventional positioning method, Taylor series expansion is applied to solve non-linear distance equations. This method requires an initial estimation of A-GPS receiver’s position. This paper investigates the positioning method for LBS based on hybrid E-OTD/GNSS. The proposed positioning method is non-Taylor series based. Therefore, it involves less complicated mathematical expansion and substitution. A flexible LBS positioning tool is developed which can generate position information in convenient way. It supports both Taylor series and non-Taylor series based positioning methods. The obtained results showed that the proposed non-Taylor series based positioning method can achieve better positioning accuracy

    Research on Impulse Radio Ultra - wideband Positioning Method Based on Combined BP Neural Network and SVM

    Get PDF
    Intelligent tour guide is a comprehensive service based on tourist\u27s location, which is closely related to Geographic Information System (GIS), mobile positioning technology and Location-Based Service (LBS). But the intelligent tour guide field urgently needs the integrated positioning and navigation technology inside and outside the room. IR-UWB technology is suitable for positioning, tracking, navigation and communication in complex indoor environment, and is considered as the most potential indoor positioning technology to realize seamless connection between indoor and outdoor with outdoor positioning technologies such as GPS. However, one of the main problems facing IR-UWB positioning is Non-Line-Of-Sight (NLOS) error. Based on the advantages of BP neural network and support vector machine, this paper proposes a multi-model fusion algorithm to mitigate the NLOS propagation error of the time difference of arrival (TDOA) and the angle of arrival (AOA) of IR-UWB signal, and then uses TDOA/AOA hybrid positioning that mitigates the NLOS error. Simulation results show that the combined algorithm has stronger NLOS resistance and higher positioning accuracy than the single machine learning algorithm in mitigation NLOS errors

    Indoor pedestrian dead reckoning calibration by visual tracking and map information

    Get PDF
    Currently, Pedestrian Dead Reckoning (PDR) systems are becoming more attractive in market of indoor positioning. This is mainly due to the development of cheap and light Micro Electro-Mechanical Systems (MEMS) on smartphones and less requirement of additional infrastructures in indoor areas. However, it still faces the problem of drift accumulation and needs the support from external positioning systems. Vision-aided inertial navigation, as one possible solution to that problem, has become very popular in indoor localization with satisfied performance than individual PDR system. In the literature however, previous studies use fixed platform and the visual tracking uses feature-extraction-based methods. This paper instead contributes a distributed implementation of positioning system and uses deep learning for visual tracking. Meanwhile, as both inertial navigation and optical system can only provide relative positioning information, this paper contributes a method to integrate digital map with real geographical coordinates to supply absolute location. This hybrid system has been tested on two common operation systems of smartphones as iOS and Android, based on corresponded data collection apps respectively, in order to test the robustness of method. It also uses two different ways for calibration, by time synchronization of positions and heading calibration based on time steps. According to the results, localization information collected from both operation systems has been significantly improved after integrating with visual tracking data

    Hybrid Radio-map for Noise Tolerant Wireless Indoor Localization

    Full text link
    In wireless networks, radio-map based locating techniques are commonly used to cope the complex fading feature of radio signal, in which a radio-map is built by calibrating received signal strength (RSS) signatures at training locations in the offline phase. However, in severe hostile environments, such as in ship cabins where severe shadowing, blocking and multi-path fading effects are posed by ubiquitous metallic architecture, even radio-map cannot capture the dynamics of RSS. In this paper, we introduced multiple feature radio-map location method for severely noisy environments. We proposed to add low variance signature into radio map. Since the low variance signatures are generally expensive to obtain, we focus on the scenario when the low variance signatures are sparse. We studied efficient construction of multi-feature radio-map in offline phase, and proposed feasible region narrowing down and particle based algorithm for online tracking. Simulation results show the remarkably performance improvement in terms of positioning accuracy and robustness against RSS noises than the traditional radio-map method.Comment: 6 pages, 11th IEEE International Conference on Networking, Sensing and Control, April 7-9, 2014, Miami, FL, US

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Joint received signal strength, angle-of-arrival, and time-of-flight positioning

    Get PDF
    This paper presents a software positioning framework that is able to jointly use measured values of three parameters: the received signal strength, the angle-of-arrival, and the time-of-flight of the wireless signals. Based on experimentally determined measurement accuracies of these three parameters, results of a realistic simulation scenario are presented. It is shown that for the given configuration, angle-of-arrival and received signal strength measurements benefit from a hybrid system that combines both. Thanks to their higher accuracy, time-of-flight systems perform significantly better, and obtain less added value from a combination with the other two parameters

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table
    • …
    corecore