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Abstract

Ubiquitous applications collect contextual information, process it, and then use this
derived data to deliver valuable services. Location is one these contexts, and has been
significant in providing navigation and guidance services for GPS devices. However,
GPS is designed for outdoor use and is not precise enough, in terms of location accuracy

for indoor applications.

There are many indoor location systems that rely on a single technology, but these
systems are either inaccurate in uncontrolled environments or require the installation of a
dedicated infrastructure. This has led to the investigation of hybrid systems. This thesis
examines the creation of a hybrid indoor positioning system combining different tech-
nologies and techniques; Wi-Fi access points and their associated signal strength, image
analysis using machine learning to create location specific scene classifiers, and an
altimeter sensor to determine the user's current floor. This system is meant to provide

indoor positioning data to location-aware applications.

Keywords: indoor location sensing, hybrid systems, Wi-Fi signal strength, altimeter
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Chapter 1

Introduction

With the continual developments in mobile computing and explosive growth of cell
phone usage [1,2], there has been an increased interest in determining the location of the
user and/or device. A positioning system determines the location of an object. The
Global Positioning System (GPS) is currently the most popular positioning system
available. GPS receivers calculate a location (longitude and latitude) by detecting and
reading signals from three or more satellites, using triangulation to determine the location
[3, 4]. This technology works in most outdoor areas, but GPS signals barely penetrate
buildings preventing GPS receivers from calculating locations due to the absence of line

of sight to satellites.

Applications that use the position information are called location-aware applica-
tions. Examples of location-aware applications can be found in the numerous GPS
services that use GPS and stored maps, points of interest and topographical information
to help users navigate while driving, hiking, boating, and flying. An indoor positioning
system determines the location of the user in an indoor environment and allows the user’s
device to make this information available to location-aware applications. Location-aware
applications make use of the user’s location as input in order to provide valuable services.
Indoor location-aware applications are of interest because most of us spend more than 50
percent of our lives indoors [5], while sleeping, working, watching television and surfing
the Internet. Indoor location-aware applications are emerging everywhere [6-10], espe-
cially in the retail sector. This is due to an increased demand to provide directions to a
specific store, department, or service from a known location or pushing sales information
and advertisements out to shoppers that come within range of the store. Other indoor

location-aware applications are user specific and enforced by user specific policies, such



as determining when a cellular phone should ring or vibrate, forward an incoming call to
a location specific number or go directly to voice mail. There are numerous possibilities
for indoor location-aware applications. Most indoor location-aware applications require a
location accuracy of three to five meters for desirable results. Obtaining a higher accura-
cy is desirable but has proven to be very difficult in these real-world situations as
installation of specialized hardware or tags is required [10-15], making them costly to
deploy and maintain. Furthermore, seamless indoor and outdoor operation is essential

along with ability to use the system with minimal disruption or distraction.

There have been many indoor positioning systems developed. Each system has its
own benefits and shortfalls. Many indoor location systems require specialized infrastruc-
ture to support the transmission or reception of ultrasonic, infrared, and Bluetooth signals
[10, 13, 16-18]. Systems with extensive infrastructure and tags, despite having relatively
inexpensive hardware, primarily focus on optimizing location accuracy rather than large
scale deployment. The recurrent concern associated with these systems is the deploy-
ment and maintenance cost, as this hardware is typically not found in indoor
environments. This is why there is a good deal of research in indoor positioning systems
using Wi-Fi signals [19-25]. Using an already available wireless infrastructure can

significantly reduce system installation and deployment cost.

Wi-Fi indoor positioning systems normally compare the received signal strength
indicator (RSSI) values from access points, referred to as afingerprint, at a given (pre-
sumed to be unknown) location, to fingerprints for known locations of landmarks or
preselected locations. The collection and analysis of fingerprints at landmarks and
preselected locations, is called radio mapping, and usually is accomplished off-line. The
off-line analysis of Wi-Fi signal strengths, and the collection of fingerprints for these
systems is time consuming, but these systems have been able to provide acceptable
location positioning accuracy. However, they can fail to adapt to normal signal fluctua-
tions and access point changes which occasionally make it difficult to correctly
distinguish locations. These limitations have led to more practical systems [26-28],
which provide lower location positioning accuracy, but will reduce the time it takes to

gather location fingerprint information. This is done by either combining the off-line and
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on-line phases, or providing the means for community effort to generate a list of known

access points and their absolute location.

1.1 Thesis Focus

Relying on only Wi-Fi signal fingerprints is complicated because signal fluctuations
make it difficult to distinguish locations within close proximity and on different floors.
Using a single technology to generate location information has been shown to be possible
with good results in optimal indoor test environments. However, given the wide range of
strengths and weaknesses that different navigation technologies have in different circum-
stances, one promising approach is the development of a hybrid system. This system
would combine a set of complementary technologies in ways that the advantage of one
technology or technique compensates for the drawback of the other to provide superior
performance. Weaknesses of a single technology usually limit its desirability for large
scale indoor deployment. Infrared and ultrasound have line-of-sight requirements,
Bluetooth and RFID require high distribution of tags throughout the environment, and all
require installation of specialized hardware. Combining two or more location sensing
technologies into one indoor positioning system will most likely be more accurate and
reliable in real-world conditions. Evidence of this can be seen in some of the previous

work.

For example, one of the first systems to suggest using multiple technologies to infer
indoor location was the Easy Living project from Microsoft [29], which proposed using
different technologies such as; GPS, infrared or ultrasonic badges, and stereo vision for
object detection to give location estimations at different levels. One technology would be
able to locate a user at a structure level (i.e. specific building), another could locate the
user at a room level while the third technology would provide location estimations that
were fine enough to interact with specific objects in the environment. Other hybrid
systems include Place Lab [26], which relies on several signalling technologies and
techniques. Geta Sandals [30] investigated the amalgamation of two step detection

techniques to minimize drift error on the inertia sensors. Another [31] considers the use
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of two systems, an Inertia Navigation System (INS) and infrared tracking system. The
use of a stereo vision tracking system and an INS has also been examined [32]. Short-
falls of existing hybrid systems range from reliance on only signalling techniques and
technologies, lack of actual positioning accuracy results, installation/deployment costs,

and scalability.

This thesis investigates the creation of a hybrid system. Due to the extensive
implementation of Wi-Fi in indoor environments, the core of the system relies on this
technology. One of the technologies that will be combined with the use of Wi-Fi is an
altimeter sensor. An altimeter measures atmospheric pressure, to determine the floor the
user is on. The other is a scene classifier, using image classification techniques, to
determine what type of scene the user is in. The choice of these technologies will be
explained later in the thesis. It is expected that these technologies, when combined,
reduce the impact of signal fluctuations in the Wi-Fi system and allow the system to work
effectively in multi-floor environments. All the technologies are inexpensive and pre-
dominantly off-the-shelf. This thesis demonstrates the system's ability in uncontrolled
environments and shows that as other technologies are combined, there is an increase in

both location accuracy and precision.

1.2 Overview

This thesis is organized as follows: Chapter 2 discusses background information and
related work on this topic area. Chapter 3 discusses and describes the design of the
proposed hybrid system. Chapter 4 presents observations and algorithms. Chapter 5
discusses the details of the implementation of the hybrid system into a proof of concept
prototype. Chapter 6 details the experiments and results of the system. Finally, chapter 7
presents the conclusions, the contributions made, and the future work that could be done.



Chapter 2
Background and Related Work

This chapter focuses on introducing common indoor location technologies and tech-
niques. The chapter introduces indoor positioning systems that rely on Wi-Fi signals
usingfingerprints. A fingerprint is associated with a known location and can consist of
one or more identifying characteristics that can be used to infer this location. The re-

ceived signal strength indicator (RSSI) from access points is most commonly used.

2.1 Positioning Properties
This section outlines the different positioning properties of indoor location systems.

Absolute vs. Relative Location: Absolute location systems use a shared reference grid
for all located objects (i.e. GPS gives latitude, longitude and altitude for reporting loca-
tion of a user). Relative location systems have their own frame of reference (e.g., in

room 240 in Middlesex College).

Centralized vs. Localized Positioning: Centralized positioning systems calculate and/or
maintain the position of the user in one central place. “Maintaining location information
for all users in one central place has the advantage that the users have to trust only one
entity, but the disadvantage that everyone is vulnerable to this entity. * [33]

Localized location systems calculate positioning estimations on the user’s device.
“This gives the user control over when their location is disclosed. Unfortunately, most
current location devices are not as passive as we would like.  For example, 802.11

broadcast its existence to the infrastructure regularly. ” [34]



2.2 System Performance Measurements

This section describes some of the key indoor positioning system performance measure-

ments used to evaluate systems.

Accuracy and Precision: A key metric for evaluating a location system is the accuracy.
This is defined by how much the estimated position is deviated from the true position.
The accuracy is usually denoted by an accuracy value and a precision value (e.g. 15cm
accuracy over 95% of the time). The precision indicates the percentage of time the
location system provides the given accuracy. The accuracy of a positioning system is
often used to determine whether the chosen system is applicable for a specific applica-
tion. Table 2-1 lists several location-aware applications and their required location
accuracy. The most interesting location-based applications require approximately one

meter location accuracy which is about the area within arms reach in any direction.

Potential Applications Location Accuracy Requirements (meters)
Tool Positioning 0.01
Blind / Robot Guidance 0.01-0.5
Goods and Item tracking 0.5-1
Emergency Services 1

In-building Pedestrian Route Guidance 1-1.5
Location-based services 1-3
Warnings 1-5

Outdoor Route Guidance 5-10

Advertising 1-100

Table 2-1: Location accuracy requirements for some location-aware applications

Scalability and Adaptability: Indoor location systems must be able adapt to changes
(i.e. failed hardware or network topology) and expand to other buildings without affect-
ing what is already currently implemented. Ideally, a location system should work

seamlessly both indoors and outdoors.

Wear-ability: Personal navigation systems must be easy to wear and must not be a

distraction to the user, such as always looking down at a screen or carrying a device.
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Likewise, users should not have to wear special shoes, have restricting communication
cables, or clip on numerous sensors to their body. Ideally users should be hands-free by

displaying information on a Head-Up Display (HUD).

Environment: The performance of most location systems positioning estimates are
dependent on the environment in which the location system is deployed. Factors such as
building materials, wall density, location of tags, and the positioning device’s location
relative to the user’s body can greatly affect the performance.

Responsiveness / Latency: Location systems should provide position estimates in real-
time. Having a centralized server calculate position estimates of the user takes time for
wireless communication. Likewise, having the device calculate position estimates can
take just as long, because most mobile devices lack the processing power needed for

some algorithms.

Cost / Affordability: There are many costs associated with location systems including
both direct cost (i.e. hardware) and indirect cost (i.e. disruption during installation).
These costs should be kept to a minimum when evaluating or designing location systems.
The different costs include the following:
» Infrastructure (hardware) costs - servers, access points (antennas, base sta-
tions), tags, sensors
» Installation costs - cabling, labour, renovations
e Maintenance - mean time between failures, re-calibration, repair time, spare
parts, batteries, updating databases, re-positioning of tags

» Setup - tagging the environment, creating information databases, fingerprint-
ing
Power: All mobile devices, sensors and tags require power. Low power consumption

and energy efficiency of location system should be a goal, as it is tedious to replace or

recharge batteries often.



2.3 Indoor Positioning systems

Research has involved using a wide range of technologies and techniques. Described in
the following sections are some of the numerous location techniques that have been
attempted to provide accurate indoor positioning. Techniques can be classified as

follows: Wi-Fi signal-based, image-based and dead reckoning electronic sensors.

There are many other indoor positioning systems that rely on technologies such as
Ultrasound [13,16, 35], Infrared [10, 31, 26], Bluetooth [12, 17, 37, 38], and Radio
Frequency ldentification (RFID) [11, 15, 18, 39, 40] that are not considered here, either
because of extensive infrastructure costs, privacy issues, specialized hardware and/or

tags, or poor indoor performance.

2.4 Wi-Fi Systems

Wi-Fi technology and techniques are the most commonly used indoor positioning sys-
tems. It is possible to have different signal strength measurements in the same location,
on different days. The use of already available wireless infrastructure can significantly
reduce system installation and deployment cost. Wi-Fi operates in the 2.4 GHz band and
has become a popular choice for wireless communication. A typical bit rate depends on
the standard being used (11 Mbps for the b standard and 54 Mbps for the g standard), and
has a signal range of 50-100 meters. Wi-Fi networks have been deployed in many com-
mercial, educational, and public buildings. Lately, even entire cities have setup Wi-Fi
hotspot networks for general public usage. Wi-Fi localization has been attempted using
several signalling techniques. However, radio signals have proven to be unreliable, as
external factors such as obstructions, light, and activity affect its performance in terms of

location accuracy [41, 42].

One technique models the propagation of radio signals [20, 23, 43]. Wi-Fi fingerprint
comparison is based on a calculation of the distance (e.g., Euclidean distance, trilatera-
tion) from the fingerprint measured by the user’s device to a fingerprint of a preselected

location that is stored in a database. Essentially, this technique makes use of mathemati-
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cal models of signal propagation. Most of the models developed assume idealized

conditions that are rarely seen in practice.

Another technique uses empirical data [14, 19, 21, 25] to approximate location.
Some of the systems developed use an off-line phase [14, 19] of measuring signal
strengths at sampled locations to create a radio map. The radio map stores the distribution
of signal strengths received from each access point for each sampled location. These
systems have reported good results. However, they are costly in the time it takes to

develop the radio map, and are susceptible to changes in access points.

Recently, other location positioning systems [26-28, 34, 44] using empirical data
were developed. These systems do not require limited initial calibration, and changes in
access points do not have the same maintenance costs associated with many of the
systems mentioned earlier in this section. PlaceLab [34] is capable of periodically
downloading an updated list of access points (e.g. latitude, longitude), which is provided
by user groups collecting this information. WLoactor [28] is capable of updating finger-
print information at known location in real-time, avoiding the recreation of radio maps

from scratch.

In all systems, the comparison of fingerprints is challenging due to normal signal
fluctuations. These fluctuations are caused by a number of factors, including signal
propagation by reflection, interference of multiple signals from multiple points, etc. If
two locations are physically close to each other, then there are most likely multiple access
points with similar signal strengths found in the fingerprints. One example of these types
of locations is found in long corridors of buildings. An access point located in a corridor
does not have its signal obstructed and therefore the signal strength is substantially
stronger along the entire corridor. The impact is that fingerprints along the corridor
between 5 to 15 metres apart are difficult to distinguish since there is relatively little
variation in the received signal as the result of no obstruction. The rest of this section

describes the techniques that have been used in more detail.
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2.4.1 Wi-Fi Techniques

Some of the more common Wi-Fi techniques are described in the following section.

2.4.1.1 Cell of Origin Signalling Technique (CoO)

User location is determined by first monitoring signal strengths of access points that can
be detected at the current location. The AP with the highest RSSI (Received Signal
Strength Indicator) is used to determine the user’s location. A database with previously
collected AP information is queried, using this data to obtain a relative location of the

user (e.g. Middlesex College - Second Floor).

Location accuracy may not be sufficient for some applications. It is approximately
25 to 50 meters depending on the density of AP deployment and multiple secondary
factors (e.g. type of building, time of day, user orientation to AP, number of training

points). An example can be seen in Figure 2-1.

CL Cl GO
CK

OO0 -Gump Ofific»

Skl

CL - Compiangi ab
K-

Figure 2-1: Cell of Origin

2.4.1.2 Multiple AP Fingerprinting Signalling Technique

This approach also determines user location by first monitoring signal strengths of APs
that can be detected at the current location. However, instead of using only one AP,
multiple APs are used. The fingerprint of the user’s current location is compared with

fingerprints of pre-determined locations (landmarks that are stored in a database). This
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comparison can be used to give a relative location of the user (e.g. Middlesex College -

Conference Room 236 - Second Floor).

Location accuracy is usually finer grained than CoO. It is around five to ten meters
depending on the density of AP deployment. Using more APs can result in better loca-
tion accuracy. An example can be seen in Figure 2-2. The use of multiple APs involves
more complex algorithms, and advanced database queries, to determine similarities
between received and stored fingerprints than those needed for a single AP. A summary

of some of these algorithms was described at the beginning of Section 2.4.
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Figure 2-2: Multiple Access Point Fingerprint

2.4.1.3 Trilatération

This method determines the relative position of a user using the geometry of triangles in a
similar fashion as triangulation. Unlike triangulation, which uses angle measurements
(together with at least one known distance) to calculate the subject's location, trilatération
[45, 46] uses the known locations of two or more reference points, and the measured
distance between the user and each reference point. Distance can be calculated using
signal level measurements, or Time-of-Flight (TOF) measurements, from each reference
point. To accurately and uniquely determine the relative location of a point on a 2D plane
using trilatération alone, generally at least three reference points are needed. An example

of trilatération is found in Figure 2-3. Reference points PI, P2 and P3 are known. Using
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only two reference points, Pl and P2, measuring rl and r2 narrows the location of the
user to A or B. Using the third reference point P3, the third measurement r3 provides the
user’s location at B. This technique suffers from severe multi-path propagation (i.e.,
radio signals reaching the receiving antenna by two or more paths), reflection (i.e., radio
signals bouncing off objects and walls before reaching the receiving antenna), and
shadow fading (i.e., variation of radio signals characteristics resulting from motion of the

receiving antenna).

Figure 2-3: Trilatération Example

2.5 Image Analysis Systems

Vision location systems [32, 33, 47-50] constantly struggle with positioning accuracy
because of increased scene complexity caused by occlusions and analogous features. An
occlusion occurs when a closer object obstructs or masks an object further away from the
viewpoint. Depending on the deployed environment, increased scene complexity usually
leads to more false positive results. Another complication with vision location systems is
the processing power required by scene analysis algorithms, and the requirement of
installing cameras in public areas can limit the large scale deployment of vision location

systems.
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Indoor localization using camera phones [33]: This work demonstrated the feasibility
of determining a user’s location based on images captured from a Smartphone camera. A
database of images was created. Common image comparison algorithms (i.e. colour
histograms, wavelets, and shape matching) were used to explore the similarity between
the images captured and images stored in the database. Three different methods for
location determination were compared. Room-level accuracy was achieved 80% of the
time. Uploading low-resolution images saved time, and reduced energy consumption by
the phone. The drawback was the extra latency of sending images and receiving location
updates on the phone, which takes a couple of seconds, on top of the location computa-

tion.

Easy Living [29]: The Easy Living project funded by Microsoft was one the first at-
tempts at using computer vision to determine object location. Easy Living uses a high
performance stereo vision camera used to capture 3D images. The tests were carried out
in a home living room environment installed with three cameras. The positioning accu-
racy was variable and required significant amounts of processing power to analyze the
frames captured by the stereo camera. The main shortfalls of this system are the cost of

the infrastructure and processing power requirements.

The rest of this section briefly describes some of the vision techniques used.

2.5.1 Image Analysis Techniques (Scene Analysis)

Scene analysis involves examining a view from a particular vantage point to draw
conclusions about the observer’s location. The scene itself can be represented by visual
images, such as frames captured by mounted surveillance video cameras or camera

phones.

The majority of research in image comparison techniques for indoor positioning has
been in the area of optical tracking. Optical tracking typically uses multiple two-
dimensional imaging sensors (stereo cameras) to detect active infrared-emitting or
passive retro-reflective markers affixed to some interaction device. Based on the informa-

tion received from multiple cameras, the system is able to calculate the location of every
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marker through geometric triangulation within a pre-defined coordinate system. The
purpose is to track moving objects automatically. The key problem of this approach is to
make a distinction between usable features and unusable features from the input sequence
of images in a reasonable amount of time. For example, a monitor in an image can be a
usable feature for positioning someone in a personal office or computing lab. A less
usable feature is a doorway or a person, as these features can be found everywhere (in

hallways, classrooms, personal offices, etc.).

The more distinctive an object is the more relevant it is as a landmark. The integra-
tion of landmarks as orientation points should not be overlooked. In route direction,
landmarks are more essential than just mentioning street names, since landmarks are
easier to remember, usually are seen from a distance, and usually require less information

to use.

There are many techniques that can be used for feature extraction, the most common
are based on colour or greyscale intensities, edges, comers, or optical flow of an image
sequence. However for real-time usage, optical flow feature extraction [51] requires a
good deal of computing power, which makes it unsuitable for many portable devices.
Features are commonly represented as points, blobs, contours, or silhouettes. Once
features are extracted, location can be determined using direct image comparison, or
machine learning techniques such as, nearest neighbour [52] or linear classifiers [53, 54]
for landmark recognition. Another popular method measures the movement of features
from previous images to determine the distance travelled using prior knowledge of the
camera’s position. Scene analysis not only requires the detection and extraction of

features, but also the ability to recognize useful features.

2.5.1.1 Colour or Greyscale Intensities Recognition (Histograms)

Features can be determined by using similar colour values or greyscale intensities of a
point or region within the image. A histogram is created, which is a representation of an
image derived by counting the colour space of each pixel. A colour space is a model

describing the way colours can be represented as tuples of numbers. Examples of a
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colour space are RBG (Red, Blue, Green), CMYK (Cyan, Magenta, Yellow, Black), or
HSB (Hue, Saturation, Brightness). This technique is mainly used in situations where
speed of processing is a factor in the choice of an algorithm. As an example, some
buildings paint different floor levels or departments with different colours for easy and
fast recognition. An issue with using colours over greyscale for feature recognition is
that a colour can change dramatically when examined in changing lighting conditions.

This can lead to feature misclassification.

2.5.1.2 Vertical and Horizontal Edge Recognition (Wavelets)

Vertical and/or horizontal edges can be easily identified in images. These edges can be
used to recognize usable features within the image, or the edges can be directly compared
to a stored image. This technique is also useful when the image is taken with a mobile
camera. Once edges are recognized, the image can be corrected so that the horizontal
edges are parallel with each other. This can also be done for vertical edges. This correc-
tion transforms the image such that it represents the appearance that it has been taken

square on, rather than on an angle.

(a) (b) (c)
Figure 2-4: Vertical and Horizontal Edge Detection Example
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Figure 2-4 represents a vertical and horizontal edge recognition example, (a) Image
captured, (b) Vertical and horizontal edge detection and (c) Corrected image to appear if

it has been taken square on.

2.5.1.3 Object Recognition or Shape Matching

Knowledge of the pixel intensities and edges within an image can lead to simple object
recognition for indoor objects. Some indoor objects that can be recognized include
windows, doors, desks, chairs, lockers, signs, bookcases, garbage and recycling bins,
computer monitors, and/or comers. Indoor localization using camera phones system [33]
uses similar techniques to estimate the user’s location with room level accuracy. An
example of feature extraction can be found in Figure 2-5. The green dots outline some
possible objects that can be recognized. This technique is primarily affective for extract-

ing only a single object and requires machine learning.

Figure 2-5: Simple Feature Extraction Example

Earlier attempts at scene analysis had the environment scattered with encoded visual
tags [55-59]. These tags are easily manufactured by normal printers. The visual tags can
encode an extensive amount of data but must be in direct line-of-sight of the camera. The
visual tags within the environment can be used to detect the user’s current location or for
object identification. Each tag is a bitmap pattern (circular or square) that must be
decoded. Similar techniques described above, such as edge detection, and greyscale
intensities, are used to decode a tag’s information. Guide bars and center points are

regions used to orientate the recognition algorithm for the visual tags. Figure 2-6 repre-
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sents an example of visual tags used in early scene analysis systems. These tags can be
scattered throughout the environment. Devices with a tag reader can retrieve information
from them, or attach information to them. The image pattern can represent a unique

identification or binary code that represents a string.

Figure 2-6: Example of Image Tags to Encode Location Information

Problems associated with a scene analysis location system are that images may be
taken at different time of the day (i.e., lighting conditions), at different angles (i.e.,
moving camera) and may have clutter or obstructions that distort the image. These
problems can make it difficult to determine usable features and can lead to feature
misclassification. Usable features should be un-occluded (i.e., not obstructed) most of
the time, somewhat stationary in the environment, and robustly trackable for a large

range of camera rotations and translations.

2.5.2 Image Capture Technologies

Scene analysis techniques require images to be captured before examination. This
section explores the possible technologies that are capable of capturing this information

and their potential performance drawbacks.

Camera Phone: The latest in digital image capturing has been the wide spread adoption
of low resolution cameras (1-2 mega pixels) in cellular phones. The latest generation of
camera phones provide the ability to even capture video clips. Camera phones allow

users to capture images on the move.

Webcam: A web camera is a real-time camera with low resolution (1-2 mega pixels),

whose images can be accessed using many different applications. Generally, a digital
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camera delivers images to a web server, either continuously or at regular intervals. A
webcam can be used to capture images in the first (i.e., attached to user while walking)

and third person (i.e. stationary in environment) perspectives.

Closed-Circuit Television (CCTV): CCTV is often used for surveillance in areas where
there is an increased need for security in both public and private areas. These digital
video cameras usually have high resolution, and by linking the control of the cameras to a
computer, objects can be tracked semi-automatically. For example, the application can
track movement across a scene where there should be no movement, or it can lock onto a
single object in a busy environment and follow it. The tracking process can even flow

seamlessly between cameras.

Stereo Camera: Stereo cameras are a special type of camera with two or more lenses.
This allows the camera to simulate human binocular vision, and therefore gives it the
ability to capture 3-D images. Inexpensive stereo cameras consist of two separate still
cameras spaced apart with a known distance. These cameras can be used to measure

distance between objects and the proximity of objects.

One of the major shortcomings of scene analysis is that when cameras are attached to
the walking subject rather than a robot, the shaking and rotations caused by walking can

considerably degrade the performance of feature tracking and extraction algorithms.

2.6 Sensor Systems

Inertia Navigation Systems (INS) are currently being used in outdoor environments to aid
GPS navigation. An INS uses a computer and motion sensors to continuously track the
position, orientation, direction and speed of movement of a moving object. These
systems currently focus on improving GPS navigation in outdoor areas where GPS
performs poorly. Some INS developers, such as Honeywell [60] have proposed to use
their systems indoors, but current results are biased since the tested indoor environments
are most favourable for positive results (e.g., single floor buildings or stadiums). This

section describes systems that contain accelerometers for the activity recognition of the
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user, and other sensors not traditionally found in INS systems. Most INS systems are
part of hybrid systems and are listed in the next section. Several systems include the

following:

PAWS [61]: The PAWS system uses an accelerometer for determining possible activi-
ties. An accelerometer is a sensor used to measure the direction and magnitude (i.e.
amount) of velocity change. The PAWS system proposes using INS for location sensing,
but currently relies on measured RF signal strength at known locations, similar to Ekahau

[19] RF location sensing technology.

SpotON [36]: SpotON tags are robust location sensing platforms containing other
sensors, such as accelerometers and infrared detectors. However, currently only the radio
signal strength is used to determine location. SpotON produces an ad-hoc network of
SpotON tags that communicate received signal strength information, which is used to
calibrate the system. The SpotON system uses an aggregation algorithm for three dimen-
sional location estimations based on radio strength analysis. The accelerometer is used

for activity recognition and not for positioning.

LuxTrace - Indoor positioning using building illumination [62]: LuxTrace investi-
gates the use of solar cells to collect energy and track light level. It relies on the
fingerprinting technique of radiant energy from indoor illumination, which is monitored
by the solar cells to derive location estimations. The major shortfall of this approach is
the assumption that building light sources are static. However, different types of fluores-
cent bulbs have different intensities and colours, and aging reduces these intensities over

time. Therefore, changing light bulbs will require the system to be recalibrated

Smart Floor [63]: Created by Georgia Tech, the Smart Floor proximity location system
uses pressure sensors embedded in the floor to detect footsteps. The system uses this
information for position tracking and pedestrian recognition. Since it uses direct physical
contact, the user does not have to carry a device or wear atag. The shortfalls are scalabil-
ity and cost. To deploy this system each building must be physically altered to install the

pressure sensor grid.
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2.6.1 Sensor System Techniques

INS determines the user’s position by constantly monitoring and analyzing sensor data.
Starting at a known location, the INS calculates the user’s distance travelled and the
user’s heading (i.e., the direction the user is facing). The placement of the INS is impor-
tant. Accelerometers in INS are sensitive to uneven ground and body sway. As a
pedestrian walks the accelerometer pitches, rolls and yaws about the axis. The first
attempts [64] to calculate the distance walked by a user placed accelerometers in foot-
wear and had long cables from the foot to the measurement module carried elsewhere on
the body. This has obvious problems, such as the user wearing special shoes that may not
fit properly and cables possibly getting caught in the user’s legs while moving. These
problems lead to an alternative approach [65] which makes use of walking dynamics and

allows INS to be located around the user’s waist, inside a backpack or pocket.

2.6.1.1 INS Distanced Travelled Techniques

Determining the distanced travelled using an INS consists of two parts: detection of a
step, and estimation of step length. Detecting a step can be determined by measuring the
accelerometer’s vertical acceleration. Every time a step is detected the length of the step
is estimated. There have been different approaches attempted from using fixed step
length [64, 66] to determining the user’s activity [36, 61] (i.e. walking, running), which
can help in developing adaptive step length estimates [65, 67].

There have been other attempts at determining the distance travelled. GETA Sandals
[30] used pressure sensors in sandals to detect steps and ultrasonic transmitters and
receivers to determine step length. The Visual Odometer [32] uses a pair of stereo
cameras and an ego-motion estimation algorithm to calculate distance. Ego-motion is the
determination of movement of the camera using the images it captures. Common fea-
tures in images extracted from the left and right camera are detected and matched.
Knowing the relative location and distance between cameras, the position of features
relative to the cameras can be calculated. From this information, distance and direction

of the user can be estimated from the difference in position of the tracked features in
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successive frames. Using other information from external sources, such as GPS, step

length can be calibrated for different users.

2.6.1.2 INS Heading Estimation

User heading estimations are obtained by a compass or gyroscope sensor usually inte-

grated in the INS.

2.6.1.3 INS Limitation

Inertial systems measure movement from a known initial position. However, without
frequent and accurate position updates, INS suffers from a constant growing positioning
error called drift. Drift error occurs due to slight errors introduced in the manufacturing
process of the sensors themselves. These errors are usually small, but since the inertia
navigation technique relies on previous calculations, the error is accumulative and grows
in a linear fashion. So, using an INS over short time periods can produce quite accurate
positioning estimates, but for long time usage, a solution is to reset the drift error peri-
odically using one or more other technologies (i.e. GPS or RFID). Figure 2-7 [30]

graphically depicts an example of drift error.
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Figure 2-7: Demonstration of Drift Error

2.6.2 Sensor System Technologies

A sensor is a physical device that detects, or senses, a signal or physical condition. This
section describes some of the sensors that appear in Inertia Navigation Systems. The INS
technique is widely used with systems that may contain long communication delays (e.g.,
Bluetooth), or frequently dropped connections (i.e., GPS in urban canyons or indoors) to

fill in the gaps from last known positions. Most of these sensors are used for flight
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management systems for projectiles and Unmanned Aerial Vehicles (UAV). Dead
reckoning sensors can be integrated together using micro-fabrication technology to create
INS.

Accelerometers: An accelerometer is a sensor that can measure acceleration forces [68].
These forces may be static, like the constant force of gravity, or could be dynamic, such
as moving or vibrating the accelerometer. By measuring the amount of static acceleration
due to gravity, the angle the device is tilted at with respect to the earth can be computed.
By sensing the amount of dynamic acceleration, the movement of the device can be
analyzed. There are many different types of accelerometers with different parameters.
To perform three dimensional positioning, a 3-axis accelerometer, or two 2-axis acceler-
ometers mounted at right angles to each other is needed. These have also been used to

sense basic human activities such as walking, running, and standing still.

Digital Compasses: A digital compass is a sensor that can provide the direction (head-
ing) of the user. These sensors determine the Earth’s magnetic north which can deviate
significantly from true north. Correction information can be obtained from the National
Geophysical Data Center (NDGC). Furthermore, these sensors are affected by magnetic
disturbances from notebook computers, and mobile phones, and should be kept as far

away as possible.

Gyroscopes: A gyroscope is a device for measuring or maintaining orientation, based on
the principle of conservation of angular momentum (i.e. inertia). The essence of the
device is a spinning wheel on an axle. The device, once spinning, tends to resist changes
to its orientation due to the angular momentum of the wheel. A gyroscope can be used to
sense or measure the pitch, roll and yaw attitude of the object it is mounted to. Gyro-
scopes can be used to construct gyrocompasses which complement or replace digital

(magnetic) compasses.

Barometric Pressure or Altimeter: A barometric pressure sensor can determine the
altitude (i.e., height) of a user based on changes in air pressure. This sensor can be used
to correctly determine the floor which the user is standing on. Since it measures air

pressure, air circulation from opening doors and windows, changes in weather, slopes,
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and high populated areas are sources of error. Location Determination in Indoor Envi-
ronments [69] was able to use an altimeter to correctly locate a user to a specific floor

based solely on altimeter data.

Pressure: A pressure sensor can be used to detect physical contact with an object. The
Smart Floor [63] and GETA Sandals [30] systems experimented with the use of pressure

sensors to aid in determining location.

Light: A light sensor can measure the amount of light that it detects. It can accurately
measure the frequency of fluorescent light flicker. The LuxTrace system [62] demon-
strated that light sensors could be used for location determination using indoor building
illumination. The LuxTrace system is not ideal for wide scale deployment, as the emitted

frequency from fluorescent lights changes with age, type, and power.

2.7 Hybrid

Given the wide range of strengths and weaknesses that different navigation technologies
have in different circumstances, one approach to developing a hybrid system is to com-
bine a set of complementary technologies in ways that the advantage of one technology
or technique compensates the drawback of the other, in order to provide acceptable

performance.

The majority of hybrid location sensing systems are for outdoor use. These systems
usually contain an INS and some other signalling technology, specifically GPS, which is
used to provide a starting location. The major reason for the use of GPS is that it has
already proven to be the user’s choice for outdoor navigation, and the introduction of an
INS helps make it more reliable. A GPS system alone only provides a location estima-
tion that states ‘you are in the vicinity of X’. A system is needed that determines the
direction a user is facing. This allows location services to provide more precise direc-

tions or give information about what the user is looking at.

One of the first systems to suggest using multiple technologies to infer indoor loca-

tion was the Easy Living project from Microsoft [29], which proposed using different
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technologies to give location estimation at different levels. One technology would be
able to locate a user at a structure level (i.e. specific building) another could locate the
user at a room level while the third technology would provide location estimations that

were fine enough to interact with specific objects in the environment.

2.7.1 Why Hybrid

Using a single technology to generate location information has proven to be possible,
with good results, in optimal indoor test environments. These optimal environments are
usually on a single floor and the developers have complete control of the location of
access points or have specialized hardware and/or tags installed. ~ Combining two or
more location sensing technologies into one indoor positioning system will most likely be

more accurate and reliable in real-world conditions.

Quality of Service (QoS): Since there is more than one technology calculating location
for the user, different levels of service for location accuracy for different users can be

provided.

Security / Privacy concerns: With more than one technology calculating location (i.e.,
one centralized and one localized), both the user and provider can meet half way with
respect to security and privacy concerns. By having different technologies, the provider
knows which building a user is located for emergency reasons while the user knows
where in the building they are located for personal use. However, the use has the option
not to give up this information to the provider. Therefore the provider knows where users

are, but at a lower location accuracy.

Reliability: Depending on the techniques and technologies combined, having more than
one technology calculating the user’s location, a single system can fail or become un-
available without dramatically affecting the systems performance.
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2.7.2 Hybrid Systems

This section briefly describes the latest attempts at creating a hybrid location system that

does not include GPS.

Dead Reckoning and Stereo Vision Tracking [32]: This system investigates the use of
co-operative location and tracking systems. The combination of stereo vision tracking
system and Inertia Navigation System is proposed. The stereo vision tracking system
requires the installation of cameras that are three meters above the ground, throughout the
environment. Both systems are used to provide precise location accuracy. Currently this

hybrid system is a work in progress with no results.

Place Lab [34]: The Place Lab positioning system listens for transmissions from multiple
signalling technologies (802.11 access points, GSM cell towers, and Bluetooth devices).
A beacon database is required and provides location information based on the identifiers
of beacons detected by the user. Place Lab works both indoor and outdoors, and requires
Wardriving or Warwalking to accumulate identifiers of signalling devices for the data-
base and their relative location. Wardriving or Warwalking is the act of searching for
Wi-Fi APs” MAC addresses by using a moving vehicle or walking. Published results
showed that Place Lab is capable of obtaining 20 meter accuracy. The system’s location
accuracy relies on the 802.11 radio frequency technology utilizing the proximity tech-

nique.

Bridging the Gaps: [31]: This hybrid system combines multiple technologies to provide
different techniques of tracking the user’s position. These techniques differ significantly
in location accuracy. The first technique deployed is an INS that relies heavily on
derived knowledge from spatial maps and accessibility graphs to apply corrections to the
user’s positions as the INS drift error increases. The second technique is an infrared

tracking system, which infers position from a set of infrared signals it receives.

GETA Sandals [30]: This system embeds sandals with multiple sensors, transmitters and
receivers. This system uses the dead-reckoning technique and the position of the user is
determined by detecting footprints, and then calculating the displacement vectors be-
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tween them. The pressure sensors detect footsteps and the ultrasonic transmit-
ters/receivers are used to calculate distance. Since there is a line-of-sight requirement for
the ultrasonic transmitters/receivers, this system introduced an accelerometer that can be
use when the foot-print based method is unreliable (i.e. walking upstairs). Likewise, the
dead-reckoning technique suffers from drift error, which the system tried to reduce by
placing passive RFID tags throughout the environment. Whenever a user walks over a
tag, their location is updated to that location, essentially resetting the accumulated drift

error.

2.8 Summary

The objective of this thesis is to investigate the effectiveness of combining multiple
sources of information for indoor positioning. Previous research considered the combina-
tion of multiple sources of information for indoor positioning and suggested this can be
more accurate than using a single source of information. Relying on a single source of
information to determine the location of a user in an indoor environment has been shown
to be difficult without installing specialized hardware to specifically determine the user’s
location. The problem with previously built hybrid systems is the additional sources of
information were often intrusive, and they required additional hardware that was not
always cost effective to install and maintain. The hybrid system that is described in this
thesis is cost effective. It augments Wi-Fi fingerprint analysis with scene analysis and
the current floor of the user, to better distinguish between similar fingerprints. This
combination of technologies has not been investigated. Additionally the system allows
for additional information to be incrementally added which is not found in other hybrid

systems.
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Chapter 3
Design

This chapter presents the design of an indoor positioning system developed for this thesis.
Section 3.1 describes the observation made about Wi-Fi fingerprints that led to the
selection of scene analysis and altimeter sensors as complementary technologies for the
hybrid system. Section 3.2 provides an overview of the complete system, discussing all
of the components used to infer location. Section 3.3 describes all of the system configu-
rations that are examined during system testing. Section 3.4 presents an example scenario

of the complete hybrid indoor location system.

3.1 Wi-Fi Fingerprints

This section shows how the normal fluctuations in Received Signal Strength Indicator
(RSSI) values can make it difficult to use Wi-Fi fingerprints to determine location. Wi-Fi
signals can fluctuate considerably (5 decibels to 35 db) at the same location at anytime.
This can be seen in Figures 3-1 and 3-2, and Tables 3-1 and 3-2. These scans were
captured every ten seconds for approximately one hour, and show all the access points
that can be detected at a specific location. The examination of other AP scan rates, five
and fifteen seconds, was also investigated. However, the scan rates did not impact the
amount of fluctuation of RSSI values. These fluctuations explain why the location
estimation algorithms have a range in RSSI values when querying the database for a list
of possible locations. Most algorithms use a range in RRSI values for comparison and

return locations that are ‘similar’ instead of looking for exact matches.
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Figure 3-1: Middlesex College, Desk in Room 240, Not Connected AP Scan

Access Point - MAC Address  Min (RSSI)  Max (RSSI) Range
00: A0:F8:65:19:37 -83 -62 21
00:A0:F8:FC:82:20 81 -68 13

Table 3-1: Middlesex College, Desk in Room 240, Not Connected AP Scan
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Figure 3-2: Townhouse, Living Room, Not Connected AP Scan

Access Point - MAC Address Min (RSSI)  Max (RSSI) Range

00:17:9A:9E:F0:9E -80 -47 33
00:13:A3:04:A0:24 -79 -67 12
00:13:46:43:F9:BE -58 -35 23
00:1A:70:76:72:82 -84 -80 4

Table 3-2: Townhouse, Living Room, Not Connected AP Scan
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Table 3-3 compares two locations on two different floors, within Middlesex College.
Table 3-4 compares two locations in different rooms, on the same floor in Middlesex
College. Table 3-5 compares two locations, 15-20 meters apart, in the second floor
hallway in Middlesex College. All three examples demonstrate how comparable different
location fingerprints can be at different locations. Each of the tables show examples
where the difference in the RSSI values of at least two fingerprints is small. As previ-
ously shown, Wi-Fi signals at the same location can vary. The amount of this variation
for an access point can be greater for the same access point at different locations. This
makes it difficult to distinguish locations. Due to these similarities, an altimeter sensor
and scene analysis were chosen as complementary technologies to Wi-Fi to further
distinguish between similar location fingerprints. An altimeter sensor was chosen to
distinguish similar fingerprints on different floors.  Scene analysis was selected to

distinguish similar fingerprints, on the same floor but different rooms.

Point in Middlesex College Room 222 Point in Middlesex College Room 320

MAC RSSI MAC RSSI Diff
00:A0:F8:5C:82:20 -65 00:A0:F8:5C:82:20 -70 5
00:A0:F8:E9:53:AC -65 00:A0:F8:E9:53:AC -70 5
00:AQ:F8:E5:E8:A4 -73 00:A0:F8:5C:8E:76 -74
00:A0:F8:65:19:37 -74 00:A0:F8:E5:E8:A4 -76 1
00:A0:F8:5C:83:88 -77 00:A0:F8:65:19:37  -75 1
00:A0:F8:64:D09:C9 -81 00:A0:F8:65:01:E0 -84
00:AQ0:F8:6E:14:21 -84
Table 3-3: Similar Fingerprint on Different Floors

Point in Middlesex College Room 240  Point in Middlesex College Room 222
MAC RSSI MAC RSSI Diff
00:A0:F8:65:19:37 -71 00:A0:F8:5C:82:20 -65 7
00:A0:F8:5C:82:20 -72 00:A0:F8:5C:83:88 -75 7
00:A0:F8:5C:83:88 -82 00:A0:F8:E9:53:AC -75

00:A0:F8:65:19:37 -78 7

Table 3-4: Similar Fingerprint on the Same Floor, Different Rooms
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Point in MC 2rd Floor Hallway Point in MC 2rd Floor Hallway
MAC RSSI MAC RSSI Diff
00:A0:F8:65:19:37  -45 00:A0:F8:65:19:37  -43 2
00:A0:F8:5C:82:20 -65 00:A0:F8:5C:82:20 -69 4
00:A0:F8:E9:53:AC -78 00:AQ:F8:E9:53:AC -74 4
00:A0:F8:65:01:E0  -78 00:AQ:F8:65:01:E0 -74 4
00:A0:F8:5C:83:88  -80 00:A0:F8:64:FE:OE  -81

00:A0:F8:5C:83:88 -84 4

Table 3-5: Similar Fingerprints in the Same Area

3.2 System Design Overview

The indoor positioning system consists of three different components, each one represent-
ing an established indoor positioning technique. This hybrid system uses a combination
of signalling, scene analysis, and sensor positioning techniques. The technologies
selected provide different accuracies compared to the use of a single technology in an
indoor positioning system. As a group, the different components combine information to
improve position reliability, precision, and accuracy. Figure 3-3 provides an overview of

system components.

Figure 3-3: Proposed Hybrid Indoor Positioning System
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3.2.1 Wi-Fi Signalling Positioning System

The developed system assumes an existing wireless infrastructure already in place that
can be used to detect the position of the user within 10-25 meters accuracy. This large
discrepancy in location accuracy depends on the number and position of the access points
(AP) and the positioning algorithm used. The proposed system is related to Herecast [27],
WLocator [28] and Place Lab [26] systems. These systems position the user in the
proximity of an access point based on Media Access Control (MAC) addresses it can
detect. Furthermore, the system uses RSSI values for detected access points from a given
location (fingerprint), and compares the fingerprint to fingerprinted data that was stored.
The fingerprint technique determines the user’s location by comparing detected access
point MAC addresses and RSSI measurements to previously stored values in a database.
The similarity in the current information and the stored fingerprint data determines the

likelihood of the user being at that location.

The proposed Wi-Fi system provides access point MAC addresses and associated
RSSI information (fingerprint) to the Location Decision Component. The system devel-
oped allows for different Wi-Fi algorithms to be used. This is illustrated with the

discussion and implementation of several Wi-Fi algorithms in Chapter 4.

3.2.2 Scene Analysis Positioning System

Cameras are used to periodically take pictures as the user moves. From the captured
images, low-level features are extracted from the image (e.g., colour histograms (pixel
intensities), wavelets (horizontal and vertical line detection) to classify the image as a
particular scene. Similar systems that perform image comparisons using low-level
features include [33, 50, 70].

The proposed scene analysis system provides the Location Decision Component with
a probability that the captured image is a particular recognized scene. For example, in a
building at a university, typical types of scenes include: classroom, hallway, computing
laboratory, office, etc. The location accuracy for this system is assumed to be coarse (i.e.

low). The user’s location would be a scene/room in a particular building. Some of those
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scenes may be very distinct and others may be very similar. To know that the user is in
an office is possible, but knowing which office is very difficult. More information is
required for finer location results. The use of this information is intended to be used for
distinguishing positions on the same floor that are difficult to distinguish based on

fingerprints.

3.2.3 Sensor Positioning System

This system consists of an altimeter sensor to determine the current floor the user is on.
This sensor was selected for ease of implementation and because most Dead-Reckoning
Modules (DRM) have an altimeter sensor. Research [69] has examined the effectiveness
of using an altimeter to determine the current floor of the user. Therefore, for this
system, the location accuracy would be at the floor level. The use of an altimeter allows

for the distinction of similar fingerprints on different floors.

3.2.4 Location Decision Component

Figure 3-4 outlines the decision component algorithm. This component combines the
information derived from the three systems. It first collects signal strengths of detected
APs (line 2), and applies a fingerprinting algorithm (lines 4, 5, 6) to determine the user’s
location by comparing the fingerprint just collected to a list of previously stored finger-
prints collected earlier. The altimeter data is used next, by filtering out any locations that
are on the incorrect floor (line 7). Depending on the relative floor value from the sensor
positioning system, any location in the list of possible locations that is not on that floor is
removed from the list of possible locations. Finally, it adjusts the likelihood (probability)
of each location based on classified scene list (lines 8, 9, 10) from the scene classifier
system. Each location in the list of possible locations, that has the same scene type as the
scene type class determined from the scene analysis component (i.e. the scene type class
with the highest probability value), has its location likelihood slightly increased. Like-
wise, a slight decrease in location likelihood is applied to locations with the scene type
that is different from the current scene type class detected (these will be the scene types

with the lowest probability values).
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Input: A Collection of Wi-Fi Access Points (RSSI Values and MAC Addresses): apSet
An Relative Altitude value: floorValue
A list of Classified Scenes (Scene Type and Confidence): sceneSet
A Wi-Fi Signaling Algorithm Y

Output  List of possible locations with corresponding likelihoods and scene type

1 apSet <- new apSet (Y)
2 floorValue <- retrieveAltitude()
3. sceneSet <- new sceneSet()
4 foreach ap X in apSet do
5 LocationList <- Perform DB lookup(X)
LocationList <- DetermineLocationLikelihood(LocationList, X)
end
LocationList ~ RemovelncorrectFloors(floorValue, LocationList)
foreach scene S in sceneSet do
LocationList <- AdjustLikelihoodBasedOnScene(S, LocationL.ist)
10. end
11, return LocationList

© ©o N o®

Figure 3-4: Decision Component Algorithm

3.3 Example Scenario

This example scenario illustrates the process of determining the user's location. It
describes information needed and how each component is utilized to infer the user’s
location. In this situation, the user is located somewhere on the fourth floor in Middlesex

College as shown in Figure 3-5, marked with an *X”.

Figure 3-5: Middlesex College Fourth Floor
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Wi-Fi System Component

The Wi-Fi system component obtains the fingerprint of the user’s current location and a
database is queried for possible locations of the user. The list of locations that the query
retrieves is based on the similarity of current Wi-Fi fingerprint data to fingerprint data
collected earlier. Locations are ranked based on similarities in the fingerprints. This list
of locations is sent to the Location Decision Component. An example of data produced
by this system can be seen in Table 3-6. More details on the likelihood computation are

discussed in Section 4.2.

Possible Location Likelihood (Rank) Associated Scene
Stairwell 85 Stairwell
3rdFloor Office 1 80 Office
4th Floor Hallway 80 Hallway
Office 1 75 Office
3rdFloor Office 2 75 Office
Office 2 70 Office
3rdFloor Hallway 70 Hallway
Office 4 65 Office
Office 5 65 Office
Office 3 60 Office

Table 3-6: Example of the Wi-Fi System’s Output

Sensor System Component

The sensor system component provides the Location Decision Component with altitude
data from a barometric pressure sensor. This information is used to determine the current
floor the user is on, and reduces location estimation errors by eliminating fingerprints

associated with locations that are on the wrong floor.

Scene Analysis System Component

The scene analysis system component examines and classifies an image captured from a
webcam as a particular scene type class, by using a generic multi-class classifier. This

information is then sent to the Location Decision Component. An example of the data
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produced by this system can be seen in Table 3-7. The captured image is input into the
scene analysis component which returns a list of scene type classes and their correspond-

ing probabilities by determining and comparing image features.

Scene Type Class Hallway  Classroom  Office Stairmell  Group Office
Probability 5 15 40 10 30

Table 3-7: Example of the Scene Analysis System’s Output

Decision Component

This particular component gathers information from the other components to infer the
best possible location. Possible location probabilities returned from the Wi-Fi component
are filtered and adjusted based on the data from the sensor and scene analysis compo-
nents. An example of the final results produced by the decision component can be seen
in Table 3-8. Possible locations on incorrect floors are filtered out and locations with

similar scenes to the classified image scene type are given more weight as a possible

location.

Possible Location Likelihood (Rank) Associated Scene
Office 1 90 Office

Office 2 85 Office

Stairwell 85 Stairwell

4th Floor Hallway 80 Hallway

Office 4 80 Office

Office 5 80 Office

Office 3 75 Office

Table 3-8: Example Results for Scenario from Decision Component

3.4 Summary

This chapter provided an overview of the design for the hybrid system based on the use
of Wi-Fi, scene analysis, and an altimeter sensor. The justification for using scene
analysis and an altimeter is based on observations made about fluctuations in RSSI
values. The additional sources of information are used to differentiate similar Wi-Fi

fingerprints. An example of the use of the hybrid system was presented.
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Chapter 4

Observations and Algorithms

The following chapter gives a detailed explanation of the algorithms used in the imple-

mentation of the hybrid indoor location system.

4.1 Investigating Wi-Fi Signals

This section discusses observations about Wi-Fi signals. These observations were
applied to the algorithms used to determine the possible location of a user based on Wi-Fi

signals.

4.1.1 Connecting to an Access Point

We investigated whether or not connecting to an Access Point would make any signifi-
cant impact on fluctuating AP RSSI values. Figures 4-1 and 4-2, and Tables 4-1 and 4-2
show the fluctuations in signal strengths when connected to an AP. For comparison,
Figures 3-1 and 3-2, and Tables 3-1 and 3-2 in the previous chapter, show the fluctua-
tions in signal strengths when not connected to an AP. In most environments the user is
more than likely connected to the wireless network. However, for security reasons, in

some public environments the user may not be connected to a wireless network.
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Fingerprint RSSI Values - Scan Every 10 Seconds
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--------- 00:A0:F8:65:19:37 ---------00:A0:F8:FC:82:20

Figure 4-1: Middlesex College, Desk in Room 240, Connected AP Scan

Access Point - MAC Address  Min (RSSI)  Max (RSSI) Range
00: A0:F8:65:19:37 -76 -61 15
00:A0:F8:FC:82:20 -83 -68 15

Table 4-1: Middlesex College, Desk in Room 240, Connected AP Scan

Fingerprint RSSI Values - Scan Every 10 Seconds

Figure 4-2: Townhouse, Living Room, Connected AP Scan

Access Point - MAC Address Min (RSSI)  Max (RSSI) Range

00:17:9A:9E:F0:9E -63 -44 19
00:13:A3:04:A0:24 -73 -65 8
00:13:46:43:F9:BE -46 -38 8
00:1A:70:76:72:82 -87 -80 7

Table 4-2: Townhouse, Living Room, Connected AP Scan
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There is a noticeable reduction in the amount of RSSI fluctuation when the user is
connected to an access point versus when the user is not connected. The main reason that
the Middlesex College, Desk in Room 240 location, has a marginal change in signal
fluctuation when connected and not connected, is due to the fact that the location is
positioned between two APs. When connected to this network, the connection can jump
from one AP to the other. Neither has a strong enough signal strength to always be the

primary AP connection.

4.1.2 Averaging Continual AP Scans

Next, we investigated averaging continual (consecutive) scans to build an average history
of previous scans. This allowed us to see if there can be any improvements in reducing
the fluctuating RSSI values. However, too much emphasis on previous history could be
detrimental to the location estimation results, as users are likely to be moving. Although
the time interval can be selected and changed by the user, the data shown in this section is
based on a ten second interval between scans, as this was the same time interval used
during system testing. Other time intervals where tested and similar results were ob-
tained. The minimal time needed to gather AP data from the wireless adaptor is

approximately five seconds.

History 2 scans - This is the average of the last two received RSSI values for each AP.
History 3 scans - This is the average of the last three received RSSI values for each AP.
History 4 scans - This is the average of the last four received RSSI values for each AP.

History 5 scans - This is the average of the last five received RSSI values for each AP.

The results, some of which are presented in Figures 4-3 and 4-4, and Tables 4-3 and
4-4, show that the more history information available, the less noise there is in Wi-Fi
RSSI values. History information does reduce the impact of outliers on the data being

collected to be used to determine the user’s location.
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Access Point - MAC Address Min (RSSI) Max (RSSI) Range

00:A0:F8:65:19:37 -83 -62 21
00:A0:F8:FC:82:20 -81 -68 13
00:A0:F8:65:19:37- History -76 -64 12
00:A0:F8:FC:82:20 - History -80 -69 n
00:A0:F8:65:19:37 - History 3 Scans  -75 -65 10
00:A0:F8:FC:82:20 - History 3 Scans  -80 -69 1
00:A0:F8:65:19:37 - History 4 Scans  -74 -65 9
00:A0Q:F8:FC:82:20 - History 4 Scans  -79 -69 10
00:A0:F8:65:19:37 - History 5 Scans  -73 -65 rr
00:A0:F8:FC:82:20 - History 5 Scans  -78 -70 8

Table 4-3: Middlesex College, Exploring History on AP Scans

Access Point - MAC Address Min (RSSI) Max (RSSI) Range
00:17:9A:9E:FO:9E -80 -47 33
00:13:A3:04:A0:24 -79 -67 12
00:13:46:43:F9:BE -58 -35 23
00:1A:70:76:72:82 -84 -80 4
00:17:9A:9E:FO0:9E-History -68 -49 19
00:13:A3:04:A0:24 - History -75 -67 8
00:13:46:43:F9:BE - History -53 -37 16
00:1A:70:76:72:82-History -84 -80 4
00:17:9A:9E:F0:9E - History 3 Scans  -67 -49 18
00:13:A3:04:A0:24 - History 3 Scans  -75 -67 8
00:13:46:43:F9:BE - History 3 Scans  -52 -37 15
00:1A:70:76:72:82 - History 3 Scans -84 -80 4
00:17:9A:9E:FO:9E - History 4 Scans  -64 -49 15
00:13:A3:04:A0:24 - History 4 Scans  -75 -67 8
00:13:46:43:F9:BE - History 4 Scans 51 -38 13
00:1A:70:76:72:82 - History 4 Scans -84 -80 4
00:17:9A:9E:F0:9E - History 5 Scans  -64 -49 15
00:13:A3:04:A0:24 - History 5 Scans  -75 -67 8
00:13:46:43:F9:BE - History 5 Scans  -50 -38 12
00:1A:70:76:72:82 - History 5 Scans -84 -80 4

Table 4-4: Townhouse, Exploring History in AP Scans
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4.1.3 Summary

Our observations suggest that the recorded RSSI value for an access point should be the
average of its multiple scans, since the average is more stable and accurate than using one
single RSSI value. The Wi-Fi Scanner refers to a device driver that scans access points
and can be configured to use multiple scans of access points. The implication is that the
recorded RSSI value of an access point in a fingerprint is the average of the RSSI values
monitored over multiple scans. The use of multiple scans is referred to as history. We
have also decided to use averages of multiple consecutive location likelihoods. Section
4.2 provides more information on the calculation of location likelihood. For real-time
purposes, the AP scan history only contains the average of the last three scans. This
reduces some of the noise generated by the RSSI values. The different combinations of
the collected historic data are outlined below. These combinations were investigated to
compare the impact that history has in determining the user’s location. RT represents

real time, and H represents history.

RT Scan/RT Location: The location likelihood value is calculated based on the most
recent AP Scan. The location likelihood returned is the calculated location likelihood

estimation.

RT Scan/H Location: The location likelihood value is calculated based on the most
recent AP Scan. The location likelihood returned is the average of the last three location

likelihood estimations.

H Scan/RT Location: The location likelihood value is calculated based on the average
of the last three AP Scans. The location likelihood returned is the last calculated location
likelihood estimation.

H Scan/H Location: In this combination, the location likelihood value is calculated
based on the average of the last three access point scans. The location likelihood returned

is the average of the last three likelihood estimations.

Another interesting observation about Wi-Fi access points is, APs with weak RSSI values

do not always appear in consecutive AP scans at the same location. This observation is
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demonstrated in Figure 4-2. The access point with the MAC address 00:1A:70:76:72:82
(in red) periodically disappears from the list of detected APs.

4.2 Wi-Fi Algorithms

This section discusses the different Wi-Fi Signalling Algorithms used in the Wi-Fi
system to determine the user’s location. These algorithms are influenced by the observa-
tions of Wi-Fi signals described in Section 4.1. The algorithms vary in the number of
access points used in a fingerprint. The reason that only a subset of access points is used,
as opposed to all access points, is that using all access points increases the cost of calcu-
lating the location. It is also based on the observation that access points with weaker
RSSI values are not good indicators of location. There are a number of algorithms used
in the literature. Our goal in the design was to have an algorithm which is relatively

robust to changes in access points.

4.2.1 1AP Fingerprint Algorithm

Figure 4-5 outlines the 1AP fingerprint algorithm. The algorithm is periodically invoked
in fixed time intervals. When the time interval elapses, the wireless adaptor is queried for
detected Wi-Fi APs and their associated MAC addresses, RSSI values and network
names. A network name filter can be applied at this point to only capture desired net-
work APs to be used in the creation of the location list (line 1). The results returned by
DetectAccessPoints are used to determine a list of possible locations that within the
user’s close proximity (line 2). The AP with the strongest RSSI value is used to compare
against stored fingerprint data. The reason for this is that the AP with the strongest RSSI
value is usually the closest in proximity to the user’s current location. If a location
fingerprint has the detected AP within the given RSSI range then the location is added to
the location list (line 2). The actual range depends on the environment. Our environment
required the range of 11 db (-5 db to +5 db) to compare the measured fingerprint with the
stored average fingerprint to calculate location likelihood. This range was selected due to

the fluctuations observed in Wi-Fi signals in section 3.1.
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For each of the locations in LocationSet, the location is either ignored (filtered out)
or given a likelihood value (lines 3, 4, 5, 6, 7, 8). For a location that is retrieved from the
database to be ignored, it must have an AP in its fingerprint with a higher RSSI value
than the strongest AP detected at the user’s current location. The reason for ignoring this
AP is based on our observations that show when a Wi-Fi receiver is close to an access
point, it will appear in the list of detected APs. This means if the possible location has an
AP in its stored fingerprint scan with a higher RSSI value (15 db) than the first AP
detected during the location scan, it will be removed from the list of possible locations.
The reason for filtering the location is that this location is likely not to be the correct

location; otherwise the AP should have shown up in apSet.

A likelihood value is given to each location based on how close the detected AP
RSSI value is to the AP RSSI value in the fingerprint scan. The further away the RSSI
value is from the stored value, the lower the likelihood. Ifthe RSSI values are the same,
the location is given a likelihood of 1. In our implementation, if the RSSI value is -1 db
or +1 db from the stored value, then the location is given a likelihood of .95. If the RSSI
value is -2 db or +2 db from the stored value, the location is given a likelihood of .70. If
the RSSI value is -3 db or +3 db from the stored value, it is given a likelihood of .45. If
the RSSI value is -4 db or +4 db from the stored value, the location is given a likelihood
of .20. If the RSSI value is -5 db or +5 db from the stored value, the location is given a
likelihood of .05. The list of possible locations and their associated likelihood is then

returned to the decision component (line 9).



Input: A selected Time Interval: selTime
A predetermined RSSI range: range
A set of Network Names: netFilter (if null, do not filter)

Output: A List of possible locations with corresponding likelihoods and scene type

1 apSet <- DetectAccessPoints(netFilter)

2 LocationSet <- DbLookup(range, apSet, 1)

3 foreach X e LocationSet do

4 Eligible = DetermineEligibility(X)

5. If Eligible

6 v = DetermineLikelihood(apSet[], X)
7 Add(X, v) to LikelihoodSet

8. end

9. return LikelihoodSet

Figure 4-5: 1AP Fingerprint Algorithm

4.2.2 2AP Fingerprint Algorithm

Figure 4-6 outlines the 2AP fingerprint algorithm. The algorithm is periodically invoked
in fixed time intervals. When the time interval elapses, the wireless adaptor is queried for
detected Wi-Fi APs and their associated MAC Addresses, RSSI values, and network
names. A network name filter can be applied at this point to only capture desired net-
work APs to be used in the creation of the location list (line 1). The results returned by
DetectAccessPoints are used to determine a list of possible locations that the user’s
current location could be (Line 2). The two APs with the strongest RSSI values are used
to compare against stored fingerprint data. The two APs with the strongest RSSI values
are usually closer in proximity to the user’s current location. If the location fingerprint
has both of the detected APs within the given RSSI ranges then the location is added to
the location list (line 2). The actual range depends on the environment. Our environment
required a range of 19 db (-9 db to +9 db) to compare the measured fingerprint with the
stored average fingerprint scan reading for the AP with the strongest RSSI value and a

range of 11 db (-5 db to +5 db), to compare the measured fingerprint with the stored
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average fingerprint scan reading from the AP with the second strongest RSSI value
detected to calculate location likelihood. This range was selected due to the fluctuations

observed in Wi-Fi signals in section 3.1.

For each of the locations in LocationSet, the location is either ignored (filtered out)
or given a likelihood value. For a location that is retrieved from the database to be
ignored, it must have an AP in its fingerprint with a higher RSSI value than the strongest
AP detected (lines 3, 4). The reason for ignoring this location is based on our observa-
tions that when a Wi-Fi receiver is close to an access point, that AP will be in the list of
detected APs. This means that if the possible location has an AP in its stored fingerprint
scan with a higher RSSI value (within a range of 15 db) than the first AP detected during
the location scan it will be removed from the list of possible locations. The reason for
filtering the location is that this location is likely not to be the correct location, otherwise

the AP should have appeared in apSet.

A likelihood value is given to each location based on how close the detected AP
RSSI values are to the AP RSSI values in the fingerprint scan. The first AP detected has
more weight for determining the likelihood of being at that location then the second AP.
The weight for the first AP starts at 15, and is assigned if the RRSI values are the same.
The weight decreases for the first AP to 6 if the RSSI value is in the range of -9 db or +9
db. The weight for the second AP starts at 10, and is assigned if the RRSI values are the
same. This weight decrease to 5 if the RSSI value is in the range of -5 db or +5 db. This
is intended to increase the likelihood of locations that have with the first detected AP as
its strongest fingerprinted AP (lines 5, 6, 7). The calculated weights of both APs are
added together and divided by the maximum possible total weight to return the likelihood
value (line 8, 9). The list of possible locations and their associated likelihood is then

returned to the decision component (line 10).
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Input: A selected Time Interval: selTime
A predetermined RSSI range: range
A set of Network Names: netFilter (if null, do not filter)

Output: A List of possible locations with corresponding likelihoods and scene type

1 apSet <- DetectAccessPoints(netFilter)

2 LocationSet <- DbLookup(range, apSet, 2)

3 foreach X e LocationSet do

4 Eligible = DetermineEligibility(X)

5. If Eligible

6 apWeight[] = DetermineLocationWeight(apSet[], X)
7 end

8 v =CalculateLikelihood(X, apWeight[])

9 Add(X, v) to LikelihoodSet

10. return LikelihoodSet

Figure 4-6: 2AP Fingerprint Algorithm

4.2.3 3AP Fingerprint Algorithm

Figure 4-7 outlines the 3AP fingerprint algorithm. The algorithm is periodically invoked
in fixed time intervals. When the time interval elapses, the wireless adaptor is queried for
detected Wi-Fi APs and their associated MAC Addresses, RSSI values, and Network
names. A network name filter can be applied at this point to only capture desired net-
work APs to be used in the creation of the location list (line 1). The results returned by
DetectAccessPoints are used to determine a list of possible locations that the user’s
current location could be close to (line 3). The three APs with the strongest RSSI value
are used to compare against stored fingerprint data. The three APs with the strongest
RSSI values are usually closer in proximity to the user’s current location. If the location
fingerprint has all three of the detected APs within the given RSSI ranges, then the
location is added to the location list (line 2). The actual range depends on the environ-
ment.  Our environment required a range of 19 db (-9 db to +9 db) to compare the
measured fingerprint with the stored average fingerprint scan reading for the AP with the

strongest RSSI value detected. A range of 11 db (-5 db to +5 db) was used to compare
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the measured fingerprint with the stored average fingerprint scan reading from the AP
with second and third strongest RSSI value detected to calculate location likelihood. This

range was selected due to the fluctuations observed in Wi-Fi signals in section 3.1.

For each of the locations in LocationSet, the location is either ignored (filter out) or
given a likelihood value. For a location that is retrieved from the database to be ignored,
it must have an AP in its fingerprint with a higher RRSI value than the strongest AP
detected (lines 3, 4). The reason for ignoring this location is based on our findings that
demonstrate that when a Wi-Fi receiver is close to an access point, that particular AP will
be in the list of detected APs. This means that if the possible location has an AP in its
stored fingerprint scan that has a higher RSSI value (within a range of 15 db) than the
first AP detected during the location scan it will be removed from the list of possible
locations. The reason for filtering the location is that this location is likely not to be the

correct location, otherwise the AP should have shown up in apSet.

A likelihood value is given to each location based on how close the detected AP
RSSI values is to the AP RSSI values in the fingerprint scan. The first AP detected has
more weight for determining the likelihood of being at that location then the second AP.
The weight for the first AP starts at 15, and is assigned if the RRSI values are the same.
The weight decreases for the first AP to 6 if the RSSI value is in the range of -9 db or +9
db. Likewise, the second AP detected has more weight for determining the likelihood of
being at that location than the third AP. The weight for the second AP starts at 10, and is
assigned if the RRSI values are the same. The weight decrease to 5 if the RSSI value is
in the range of -5 db or +5 db. The weight for the third AP starts at 8, if the RRSI values
are the same and deceases to 3 if the RSSI value is in the range of -5 db or +5 db. This is
intended to increase the likelihood of locations that have with the first detected AP as its
strongest fingerprinted AP (lines 5, 6, 7). The weights of all three APs are added together
and divided by the maximum possible total weight to return the likelihood value (line 8,
9). The list of possible location and their associated likelihood is then returned to the

decision component (line 10).
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Input: A selected Time Interval: selTime
A predetermined RSSI range: range
A set of Network Names: netFilter (if null, do not filter)

Output: A List of possible locations with corresponding likelihoods and scene type

1 apSet  DetectAccessPoints(netFilter)

2 LocationSet <- DbLookup(range, apSet, 3)

3 foreach X e LocationSet do

4 Eligible = DetermineEligibility(X)

5. If Eligible

6 apWeight[] = DetermineLocationWeight(apSet[], X)
7 end

8 v =CalculateLikelihood(X, apWeight[])

9 Add(X, v) to LikelihoodSet

10. return LikelihoodSet

Figure 4-7: 3AP Fingerprint Algorithm

4.2.4 Cell of Origin (CoO) Algorithm

For this algorithm, the AP with the highest RSSI value determines the user’s location.
This AP’s MAC address is looked up in the database and its relative installed location
(e.g. 3dFloor - East Wing) becomes the user’s location. Once this location is known, the
signal strength is then used to determine how far the user is away from the access point.
This algorithm was not tested during the experiments, as its location accuracy and
precision are too coarse for any feasible location aware applications within a multi-floor

environment.

4.3 Selecting a Scene Classifier Observations

A scene classifier calculates the probability that a scene is of a particular type. For
example, in a typical university building, we can identify scenes that include classrooms,
hallways, offices, group offices, etc. The scene classifier returns a set of scene types and

the confidence (probability) that the current scene is of that scene type. This is intended
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to be used for distinguishing positions on the same floor that are difficult to distinguish
based on fingerprints. The location likelihood of each location calculated using Wi-Fi

fingerprints is adjusted.

We used existing software for scene classification called PIXIT. In this section we
do not describe a specific algorithm but rather we examine some of the different parame-
ter combinations existing in the PIXIT software [71]. This software was selected for use
because of its extensive API, its capability of robust multi-class classification, and its
excellent performance for other image datasets [72-74]. The algorithms provided appear
suitable for this work. Thus, the focus is not on the actual algorithms but rather on the

different parameter combinations that can be used.

4.3.1 Overview of the PIXIT Software

The PIXIT software takes a set of labelled images consisting of a finite number of classes
(scene types) called the leaming/training dataset. After selecting a set of parameters, the
software uses the learning set to build an image classifier model that can be used to
predict the class and confidence of being that class for any new image. The software
extracts sub-windows of specified size at random locations from the training images.
These sub-windows are defined by their pixel values. The number of pixels used to
describe the sub-window is based on the window size. It then takes a random set of these
sub-windows and labels them with the class of its parent image, defined earlier when
creating the leaming/training dataset. A group of decision trees (Extra-Trees) are then
generated to create the classifier model based on the sub-window value, location, and
class. Once this model is created, a new image can be classified by randomly selecting
sub-windows from the image, describing them and using this data as input into the

classifier model to determine class probability.
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The following is an overview of the PIXIT software:

PIXIT uses random sub-window extraction and a machine learning decision tree
ensemble technique (Extra-trees) proposed by Raphael Marée [54]. The use of
random sub-window extraction helps reduce the impact that occlusions and vary-
ing image orientations can have on image analysis results.
PIXIT is able to distinguish between multiple user defined classes, not limited to
Boolean classification. Boolean classification returns true or false response to a
single class, whereas multiple classes classification returns a confidence proba-
bility for each defined class.
PIXIT algorithms for multi-class classification (scene classification) are robust to
conditions of varying illuminations, scale, orientation, and occlusions.
Parameters that can be adjusted include the following:
0 Colour Mode (HSV, RBG3, RBGI, Greyscale)
m  This refers to the number of bytes used to encode the colour of a
pixel
0 Pre-processing filters. These are image algorithms that change the ap-
pearance of an image or part of the image by altering pixel data. Figure 4-
8 provides several examples of different pre-processing filters applied to
the same image.
0 The number and size of sub-windows
0 Sub-window modes (normal, scale, rotation, and shear). This refers to the
appearance of the random windows selected from the image that are used
to classify the image. Figure 4-9 presents several examples.
0 The number of decision trees (Extra-trees) and random tests used in the

classifier model construction



(@) Threshold (h) Convolution (Edge)

(c) Inversion (d) Convolution and Inversion

Figure 4-8: Examples of PLXIT Pre-Processing Filters

(c) Shear (d) Rotation

Figure 4-9: Examples of P1XIT Sub-Window Modes and Sizes
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There are many combinations of settings that the PIXIT software can be configured
to. These settings include colour mode, shape and size of sub-windows, number of sub-
windows and image filters. To find the best settings for scene analysis, multiple tests

were performed, looking for the best combinations of parameters.

4.3.2 Examining the Different Parameters

The tests to determine the best settings assumed a leaming/training dataset of 150 images
per scene. There were eight scenes in total (classroom, hallway, stairwell, computing lab,
group office, office, conference room, and outside) for a total of 1200 images. The
testing dataset consisted of anywhere between 25 to 100 different images per scene.
These images were randomly selected from the gathered data, and represent at least one
third of the distinct collected images per scene. Due to the variation in size and fre-
quency of different scene types, an equal number of unique images per scene were not

gathered.

The images were captured with a Microsoft Life Cam worn around the user’s neck.
The user walked around the environment snapping images every five seconds. The

captured images have the resolution of 640x480 pixels.

All classifier learning models created used the settings of 10 trees and 35 random
tests, unless otherwise specified. The 10 trees are the number of Extra-trees (decision
trees) that were created from the leaming/training dataset, and 35 was the number of
random tests applied to them for classification. The classifier learning model was created
using the images in the training dataset and was later used to create the classifier testing
model. The classifier testing model used the same parameters (i.e. number of sub-
windows, window size mode) of the classifier learning model, unless otherwise specified.
The rest of the subsection below describes some of the different parameters and tests
performed in trying to obtain the best possible scene classifier. All tests used 250 sub-
windows, per learning image, to create the classifier learning model. More sub-windows
per image and a higher number of learning images per class, in the learning model, would

have been ideal for better classification results. However, due to memory constraints in
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Windows XP, there is a maximum of 1.6GB per process, and these values had to be
reduced, due to the amount of memory needed to create the learning model. The PIXIT
developers claimed that increasing the number of randomized tree tests during model

creation would improve classification performance.

Variation in Colour Model

The different colour models include greyscale, RBG (Red, Blue Green) (3 bytes), RBG
(integer), HSV (Hue, Saturation Value) (float). The learning model assumed 250 sub-
windows, a sub-window size of 20x20 pixels, normal sub-window appearance mode, and
no pre-processing filters. We varied the colour model. The results are shown in Table 4-
5.

Colour Model  Results (% Misclassified)
Greyscale 37.2%
RBG-Integer 36.8%
RBG-3 Bytes  28.6%
HSV 35.1%

Table 4-5: Results from Different Colour Models

From this test, RBG (3 bytes) or the HSV colour space models obtained the best results
with no additional parameters selected.

Variation in Window Modes

The different Window mode options include normal and scale. There are additional
window modes, rotation and shear; however these were not tested. The learning model
assumed 250 sub-windows, a sub-window size of 20x20 pixels, a RBG (3 bytes) colour
model, and no pre-processing filters. We varied the sub-window appearance mode. The

results are seen in Table 4-6

Window Mode Results (% Misclassified)
Normal 28.6
Scale 21.1

Table 4-6: Results from Different Window Modes
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This test shows that Scale sub-window mode obtained superior results over normal sub-

window mode.

Variation in Window Size and Variation in Window Mode

Different combinations of sub-window sizes, 16x16, 20x20 and 25x25 pixels were used
with the window mode options normal and scale. The sub-window size of 20x20 pixels
was the default parameter for this option.  The learning model assumed 250 sub-
windows, scale sub-window appearance mode, a RBG (3 bytes) colour model, and no

pre-processing filters. We varied the sub-window size. The results are seen in Table 4-7.

Window size with scale mode Results (% Misclassified)
16x16 22%

20x20 21.5%

25x25 22.2%

Table 4-7: Results from Different Sub-Window Sizes with Scale Mode
This test shows that the size of sub-window using scale appearance mode creates no
considerable difference.

The learning model assumed 250 sub-windows, normal sub-window appearance mode, a
RBG (3 bytes) colour model, and no pre-processing filters. We varied the sub-window

size. The results are seen in Table 4-8.

Window size with normal mode Results (% Misclassified)

16x16 29.5%
20x20 28.6%
25X25 28.5%

Table 4-8: Results from Different Sub-Window Sizes with Normal Mode

This test shown that the size of sub-window using normal mode creates really no consid-
erable difference. However, again, there is a considerable difference in using scale mode

versus normal sub-window appearance mode.
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Variation in Different Edge Filters

This section briefly describes our examination of the pre-processing convolution edge
filter. Two different edge filters were compared. The learning model assumed 250 sub-
windows, a sub-window size of 20x20 pixels, scale sub-window appearance mode, and a
RBG (3 bytes) colour model. We used and varied the pre-processing convolution edge
filter. The results are seen in Table 4-9.

The Two Different Edge Filters Examined

0-3 0 111

312 -3 1-8 1

0-3 0 111

Edge Filter 1 Edge Filter 2

Different Edge Filters Results (% Misclassified)
Edge 1 21.5%
Edge 2 21.8%
No Filter 21.5%

Table 4-9: Results from Different Edge Filters, with Scale Mode

This test showed that there was no significant difference using the pre-processing convo-

lution edge filter.

Variation in Number of Random Tree Tests in Model Construction

This test examined the results of the image classifier, when altering the number (35, 105,
and 210) of randomized tree tests used to create the classifier learning model. The
learning model assumed 250 sub-windows, a sub-window size of 16x16 pixels, scale sub-
window appearance mode, a HSV colour model, and no pre-processing filters. We varied
the number of randomized tree tests used during classifier model creation. The results

are seen in Table 4-10.
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Number of Randomized Tests Results (% Misclassified)

35 20.5%
105 18.7%
210 17.1%

Table 4-10: Result from Varying the Number of Randomized Tree Tests

The test results show that using more random tests does improve results. This classifier
obtained the best results thus far and therefore, these parameters are used to create the

classifiers for the Scene Analysis system.

Additional Tests on Optimal Classifier

Some additional tests were performed on the classifier with the best combination of
parameter settings. These tests examined more randomized tree tests used during model
creation and the number of sub-windows extracted during classification testing. The
learning model assumed 250 sub-windows, a sub-window size of 16x16 pixels, scale sub-
window appearance mode, a HSB colour model, and no pre-processing filters. We
increased and varied the number of randomized tree tests used during classifier model
creation, and the number of sub-windows extracted during classification. The results are
seen in Table 4-11.

Number of Randomized Tests Results (% Misclassified)
420 - 250 Windows during classification 16.008%
840 - 250 Windows during classification 16.424%
420 - 100 Windows during classification 17.879%
840 - 100 Windows during classification 15.385%

Table 4-11: Results from Additional Tests on Optimal Classifier

Sometimes decreasing the number of sub-windows during testing classification does
result in slightly better classification results, but this is not a usual occurrence. This
abnormal increase is due to an optimal random selection of sub-windows from the images
being classified. Secondly, it should be noted that increasing the number of sub-windows
selected during testing classification results in an increase in the amount of time it takes

to classify a random image.
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4.3.3 PIXIT Remarks and Conclusions

When creating a classifier, each learning dataset scene needs to have the same number of
images to prevent the classifier model from applying more weight on one scene than

another.

At least one third of the initially gathered scene images were randomly extracted

from the image data collection to be used for the testing model.

When testing the classifying model, having fewer sub-windows extracted from the

image almost always resulted in poorer performance or increased error rate.

Due to a large image size and somewhat large training dataset, it was impossible to
create a classifier with more than 300 sub-windows using the PIXIT software due to
memory issues. Theoretically, the more sub-windows there are, the better the classifier is
at correctly classifying the correct scene. Nevertheless, the developer of the software
stated that “similar results can be obtained with fewer sub-windows; however, you need

to increase the number of randomized tests when creating the classifier tree”.

Possible future trials could include using lower resolution images for the training
dataset so that there are more images used when creating the scene classifier. Other work
could investigate the use of a completely different multi-class image classifier that would
look at edges (vertical and horizontal), and colour, separately, before classifying the

image.

4.4 Altimeter Sensor

The altimeter sensor is extremely sensitive, not only to changes in elevation, but to other
conditions such as local pressure variations and changes in weather. Long-term altitude
readings fluctuate considerably due to the varying atmospheric conditions. This is illus-
trated in Figure 4-10.
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Altimeter Value Over A Period of

Time
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10

Altimeter Value (Feet)

Figure 4-10: Graph Displaying Fluctuations in Altimeter Value

To help overcome the issue of fluctuating atmospheric pressure, which either in-
creases or decreases over time, the investigation of measuring relative altitude changes
was examined. The addition of a floor value was added to the system, which only
changes when there is an extreme increase or decreases in altitude over a short period of
time. A sliding window of three previous altitude readings was kept to prevent gradual
fluctuations in atmospheric pressure over time, and the user’s activity from influencing
the floor value. An example can be seen in Figure 4-11. Over a period of time, there is a
significant decrease in atmospheric pressure. However, the floor value remains consis-

tent over this period of time.

Altimeter Value and Floor Value Over
A One Hour Time Period

10

-40
Altimeter Display Value (Feet) Current Floor Value

Figure 4-11: Altimeter with Brief History to Maintain Current Floor Results
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4.5 Summary

This chapter presented the algorithms used for the Wi-Fi components, the configuration
of parameters, the use of the PIXIT software for scene analysis, and how the use of

relative altitude data from the altimeter sensor can be utilized.
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Chapter 5

Implementation

The following chapter provides detailed explanation regarding the implementation of the

hybrid indoor location system.

5.1 Overview of Design

This section discusses the Wi-Fi Signalling, Scene Analysis, and Sensor System imple-
mentations in detail. The system prototype consists mostly of off-the-shelf hardware and
software. This has proven to speed up development, however, it created many hurdles in
migrating them into a single system. The entire system prototyping was developed on an
IBM X41 1.5GHZ notebook, with 760 MB Ram, running Windows XP Tablet PC
Edition, with SP2 installed. A notebook was chosen over other portable options because
many different types of peripherals could be affixed, and its capacity and capability to

utilize complete language libraries.

5.1.1 Wi-Fi Signalling Positioning System

The Wi-Fi signalling positioning system was developed using Microsoft’s C# language.
This language was selected for its fast Graphic User Interface (GUI) prototyping abilities.
The Wi-Fi System queries the Windows Management Instrumentation (WMI), to obtain a
list of detected access points MAC address, RSSI values, and Network Names at speci-
fied time intervals. The installation of Intel’s PROSet/Wireless Software is needed to
provide WMI support, as this technique is not possible when Windows is managing the

wireless adapter. A MySQI database was used to store and retrieve collected fingerprint
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information. The developed system is capable of using several different location estima-

tion algorithms as discussed in the previous chapter.

5.1.2 Scene Analysis Positioning System

The implementation of this system requires multiple elements. To begin, the user wears a
camera to periodically capture images as they move throughout their surroundings. For
our purposes, we used Microsoft’s LifeCam NX-6000 Webcam. This camera is capable
of capturing 2.0 megapixel images. Furthermore, it is small and compact, which allowed
us to easily create a device to hold the camera and worn around the user’s neck. Once the
image is obtained, it is then classified under a particular scene type using a single generic
multi-class classifier. A percentage of confidence, or probability, is calculated for all of
the possible classes. This was accomplished using PIXIT software [71], an off-the-shelf
image classifier created by Raphael Marée and discussed in Chapter 4. The classification
techniques used are based on combining random sub-window extraction, and a machine
learning decision tree [54]. The PIXIT software and API are written in Java. The API
requires the creation of a scene classifier using the PIXIT software and learning image
dataset. Once the scene classifier is created and loaded, the user's location would be
determined by the scene that the captured image is classified as. Since this system is not
written in the same language as the others, the hybrid system parses the data file generat-

ed by this system using the same time interval used for detecting access points.

The Wi-Fi system first estimates the user’s location by providing a location likeli-
hood, and its associated scene, for each possible location. The results of the Scene
Analysis system are examined and compared to the scenes associated with each of the

possible locations. For each possible location, if its associated scene matches the classi-
fied scene, then its location probability is increased by the following:

(1 - Wi-Fi location likelihood) * .5 = new location likelihood

Secondly, for each possible location, if its associated scene is one of the scenes in the

bottom quarter of the scene classification results, then it likelihood is multiplied by 0.25.
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Furthermore, due to the less than ideal scene classifier performance, the only time
when these formulas are implemented in the decision component is when the Scene
Analysis system has classified three consecutive images as being of the same particular
scene. This reduces the possibility of increasing the likelihood of a location matching a

scene that has been misclassified by the Scene Analysis system.

5.1.3 Sensor Positioning System

The sensor positioning system periodically polls, every second, generated altimeter
information from the ZLog MOD4 Recording Altimeter [75]. This tiny altimeter, nor-
mally used for radio controlled models, has an altitude resolution of either one foot or one
meter. The interface for the ZLog Module was developed in C#. It provides continuous
serial output of altitude data and is powered through its USB interface connector. The
Zlog is a barometric pressure sensor that is able to detect changes in air pressure, occur-
ring due to changes in altitude and is extremely sensitive as observed in Section 4.4.
Using absolute altitude information, the system would not be able to determine the
correct floor the user is on without additional information. It would require having
altimeters on every floor, as reference points, to cancel out the fluctuations in atmos-

pheric pressure.
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Chapter 6

Experiments

This chapter discusses the experiments that were used to demonstrate the effectiveness of
the hybrid indoor location system over single technology indoor location systems. Each
component of the hybrid system; Wi-Fi signals, Scene Analysis, and Altimeter Sensor
Systems were tested individually to provide a baseline for location accuracy. Different
combinations of systems were tested to demonstrate that involving additional system
components to create a hybrid indoor locations system does indeed increase location

accuracy and precision.

6.1 Experimental Environment

The following section provides details about the environments used for the experiments.

6.1.1 Experimental Environments

All the systems were tested in two distinct environments: a public building, Middlesex
College, located on the University of Western Ontario’s campus, and a residential prop-
erty which is the townhouse where | currently reside. In both environments, there was
little to no control over the access points and their installed locations. The selection of
two almost completely different environments shows that the system is both adaptable
and scalable. Furthermore, at each environment, there were several different scene types

with a similar number of each type within its corresponding environment.
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Middlesex College

This environment is the largest test area spanning multiple floors (second and third) of
the north wing of the building. This testing area detects anywhere from seven to ten APs
of the fourteen installed in the building, with each location fingerprint detecting an
average of three or four APs. This environment contains a wide variety of possible
location scenes (classroom, computing lab, office, hallway, stairwell, group office, and
conference room) with similar number of each type. The floors are approximately

fourteen feet apart.

Townhouse

This environment covers ground and upper floors of a home located in a highly populated
urban neighborhood. There is only one access point located in the home, however, there
are many additional APs in the neighboring homes that can be detected. Each location
fingerprint can consist of five to ten APs. This environment contains one type of each
possible scene (living room, hallway, dining room, kitchen, master bedroom, and spare

bedroom). The two floors are approximately ten feet apart

6.1.2 Fingerprint Data Collection

This section outlines how data was collected for the Wi-Fi and Scene Analysis singleton
systems. The only requirement that needed to be satisfied was the ability to quickly and

easily collect this information.

Wi-Fi Fingerprints

There are several possible approaches that can be used to collect this data. The first
possibility is to collect a single fingerprint in each room. This means that the best
possible location accuracy would be room level. A second approach would be to take
fingerprints at a specified distance apart from each other, say every three to five meters.
The best possible location accuracy would be three to five meters, which is achievable in
ideal, controlled environments using previously developed Wi-Fi systems [14, 19, 20,
25]. The second approach was used, as it provides better location accuracy. It also takes

less time to gather the location fingerprints every three to five meters than every meter,
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which is one of the reasons for gathering every three to five meters. Stairwell and
hallway fingerprints are gathered slightly farther apart, as users are usually moving in

these areas, and location accuracy is not as important.

Fingerprints were collected such that they create zones as demonstrated in Figure 6-
1, option A below. The other option is to have fingerprints overlap each other as demon-
strated in option B. However, this configuration takes longer to gather and configure.
Furthermore, option B leads to more locations, making it difficult to create meaningful
relative location names. This configuration may also lead to reduced location determina-

tion accuracy as there will be quite a few relative locations with very similar fingerprints.

B) Overlap

Figure 6-1: Fingerprint Options

For stairwells in Middlesex College, fingerprint locations
points were taken at every landing, resulting in three points
for every two floors. One at second floor landing Xj, one at
the landing in-between the second and third floor X2, and one
at the third floor landing x3. This configuration is demon-
strated in Figure 6-2. Figure 6-2: Stairwell

. . . Fingerprint Layout
Fingerprint scans are parameterized by the number of

scans, the time in-between consecutive scans and what networks to look for when gene-
rating the fingerprints. A fingerprint represents the average value of signals monitored

over the period of time selected. If more than one fingerprint is collected at the same
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location, the scan stores the continual average, maximum high and minimum low signal

strength values.

For testing purposes, two fingerprint scans were collected at every location. The fin-
gerprint data was collected at least one month before any testing was performed to ensure

that the data was usable over a significant amount of time.

Scene Analysis

Images are captured wearing a Microsoft LifeCam Webcam. Images are captured every
10 seconds as the user moves throughout the building. These images are then categorized
into different scene class folders based on where the images were captured, to be used by
the PIXIT image classification software. Each scene folder is then split into learning
images and testing images at random. The testing images are at least 25 percent of the
total scene images stored in the scene folders. The PIXIT software selects image features
for classification by adjusting variables, such as, the number of sub-windows, sub-
window size, sub-window mode (normal, scale, shear and rotate), colour coding (B/W,
HSB, and RBG), and selection of image filters (grayscale, threshold, invert colour and
edges). Adjusting these variables increases or decreases the number of possible features
that are used for scene classification. A discussion of the parameters that can be adjusted
and how this impacts accuracy was discussed in Chapter 4.

6.1.2.1 Middlesex College Fingerprint Locations

The fingerprint locations collected, and their relative names for Middlesex College, are
shown in Figure 6-3. For the entire environment, there were a total of 84 fingerprints

collected.
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16- or 5Cm

L —Lc.ir.Hi

Figure 6-3: Middlesex College Map with Fingerprint Locations and Names

6.1.2.2 Townhouse Fingerprint Locations

The fingerprint locations collected, and their relative names for the townhouse, are shown
in Figure 6-4. For the entire environment, there were a total of 14 fingerprints collected.



68

-X*

B - Bedreem

S - Stamvdl
H-Hallway

K- Kitchen
D-Dating R.ccm
L-Livmg rccm

Figure 6-4: Townhouse Map with Fingerprint Locations and Names

6.1.3 Test Paths

Once the fingerprint scans are collected, the next step is to determine a testing path that
crosses a large subset of fingerprint points and different scenes. The path covers multiple
floors and must inspect locations within the close proximity of each other with the same
scene type. The testing paths for Middlesex College and the Townhouse can be seen in
Figure 6-5 and Figure 6-6 respectfully. For testing purposes, the user stopped at every
fingerprint location landmark along the test path, and let the system determine the user’s
location for a period of time (i.e., 50 location scans or about 8 minutes). Information was
gathered for the three different fingerprint algorithms (1AP, 2AP and 3AP), and the
different techniques, either using Real Time (RT) or History (H) AP scans, with either
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Real Time (RT) or History (H) location likelihoods were examined. Each test path was
traversed three times.

(2-- Floor)

X

CR- Conferenceroom
GO- Group Office

C- Classroom

S- Stair-veil

CL- Computing Lab
H - Hallway
O-Office

L - Lounge

Figure 6-5: Middlesex College Map with Testing Path

B - Bedroom

S- Stairwell

H - Hallway

K - Kitchen

D - Dining Room
L - Living room

Figure 6-6: Townhouse Map with Testing Path



70

6.1.4 Defining Adjacent Locations

To demonstrate the accuracy and precision of the location system, the definition of an
adjacent location needed to be defined. If the system did not return the user’s correct
location, how close was its estimation to the user’s actual location. Due to the large size
and lower density of APs, Middlesex College’s adjacent location definitions cover a
larger area. The general description of being within one fingerprint and within two
fingerprints is shown in Figure 6-7. Since the Townhouse was a small environment and
there is a high density of AP’s, its adjacent location definition covers a smaller area. The

general description of being within one fingerprint is shown in Figure 6-8.

16-T or 50 m

Figure 6-7: Middlesex College Map with Definition of Adjacent Locations
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Figure 6-8: Townhouse Map with Definition Adjacent Locations

6.1.5 System Configurations

This section outlines the different singleton systems that were developed to be used in the
hybrid system. Once this information is known, the analysis of combining singleton
systems into hybrid systems are examined and compared to the previous measures of
location accuracy of the user in the singleton system. Potentially, the location accuracy
of the user increases as additional systems are combined. The following system configu-

rations were examined:

Wi-Fi Signals (Single System): This system configuration determines the user’s lo-
cation by analyzing Wi-Fi access point signals. The fingerprinting technique was
applied on the detected MAC addresses and corresponding RSSI values obtained
from Wi-Fi AP signals.

Scene Analysis (Single System): This system configuration extracts low level fea-
tures from captured images to determine the user’s location based on the landscape.

These images become input to a machine learning program which classifies the image
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as a particular scene type. When collecting Wi-Fi fingerprint data, the corresponding

scene type must be stored.

Altimeter Sensor (Single System): This system configuration uses an altimeter sen-
sor to determine the user's location based on the particular floor. When collecting

Wi-Fi fingerprint data, the corresponding floor value must be stored.

Wi-Fi Signals and Altimeter Sensor (Hybrid System): This system configuration
combines Wi-Fi signal and altimeter sensor data. The Wi-Fi component uses the de-
tected MAC addresses and RSSI information to create a list of possible locations.
This list is further reduced by eliminating locations from the list with a different floor

value than what was determined by the altimeter sensor.

Wi-Fi Signals, Altimeter Sensor, and Scene Analysis (Hybrid System): This sys-
tem configuration combines all three systems: Wi-Fi signals, altimeter sensor and
scene analysis to determine the user’s location. The Wi-Fi component uses the de-
tected MAC addresses and RSSI information to create a list of possible locations.
This list is reduced by eliminating locations from the list with a different floor value
than what was determined by the altimeter sensor. The scene analysis system classi-
fies the captured image as a particular scene and modifies the likelihoods of the

possible locations list using this information.

The combination of scene analysis and altimeter sensor was not investigated as the
hybrid system, as the system had difficulty in determining an initial starting position.
Likewise, the combination of Wi-Fi signals and scene analysis was removed as a possible
configuration during the observation and implementation phases. The reason for this is
that the results of the scene analysis component were not overwhelmingly positive, and
the improvement in location accuracy and precision using this combination would have
been marginal. By combining the altimeter sensor information before the scene analysis
result, the Location Decision component can filter out all possible locations on incorrect
floors. Thus leaving a smaller set of possible locations before filtering based on the scene
data.
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Each system was tested using the different fingerprint algorithms (1LAP, 2AP and
3AP). These each examine the different techniques, either using Real Time (RT) or
History (H) AP scans with either Real Time (RT) or History (H) location likelihoods.
Table 6-1 outlines the system test table setup for the different combinations of tests

performed.

RT/RT: The location likelihood value is calculated based on the most recent Scan. The
location likelihood returned is the calculated location likelihood estimation.

RT/H: The location likelihood value is calculated based on the most recent AP Scan.
The location likelihood returned is the continual average of the last three location likelih-

ood estimations.

H/RT: The location likelihood value is calculated based on the average of the last three
AP Scans. The location likelihood returned is the last calculated location likelihood

estimation.

H/H: In this combination, the location likelihood value is calculated based on the average
of the last three access point scans. The location likelihood returned is the average of the

last three likelihood estimations.

i It

1AP Algorithm ' RTIRT RTH HIRT HH
2AP Algorithm RT/RT RTH HRT HH
3AP Algorithm RT/RT RT/H HRT m HH

Table 6-1: System Tests Table Setup (Scan/Likelihood)

6.2 Singleton System Testing

In this section, the testing results from the three different singleton indoor position-

ing systems are presented.
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6.2.1 Wi-Fi Signalling Positioning System

The results from the Wi-Fi Signalling system are summarized in the tables below. For
more detailed information about the location results for each fingerprint landmark along

the testing path, refer to Appendix A.

6.2.1.1 Middlesex College - Wi-Fi System

The location accuracy of the Wi-Fi positioning system testing in Middlesex College is
presented in Table 6-2. The table shows the results of the location accuracies of estima-
tion algorithms (1AP, 2AP and 3AP), the precision (actual location, within 1 fingerprint,
within 2 fingerprints) and the examination of adding history to either the AP scan and/or
the location estimation. The 3AP algorithm using history AP scans and history location

likelihood estimations had the highest accuracy and precision.

RT/RT RT/H HRT HH
AL 1R 2FP AL 1FP 2FP AL 1FP 2FP AL 1P 2FP
Totals (Average) 1AP 004 013 025 003 014 027 003 012 02 004 012 02
Totals (Average) 2AP 007 025 038 007 028 042 007 02 040 006 028 043
Totals (Average) 3AP 012 037 050 015 04 05 013 041 055 015 044 057

Table 6-2: Middlesex College Wi-Fi System Results

6.2.1.2 Townhouse - Wi-Fi System

The location accuracy of the Wi-Fi positioning system testing in the Townhouse is
presented in Table 6-3. The table shows the results of the different location accuracy of
estimation algorithms (LAP, 2AP and 3AP), the precision (actual location and within 1
fingerprint) and the examination of adding history to either the AP scan and/or the
location estimation. The 3AP algorithm using history AP scans and history location

likelihood estimations had the highest accuracy and precision.
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RT/RT RT/H HRT HH
AL 1FP AL | FP AL 1FP AL 1P
Totals (Average) 1AP 027 047 028 048 03 051 032 052
Totals (Average) 2AP 032 06 036 059 036 062 037 06
Totals (Average) 3AP 035 066 041 067 04 067 041 o0.68

Table 6-3: Townhouse Wi-Fi System Results

6.2.2 Scene Analysis Positioning System

This section presents the detailed testing phase results of the scene classifiers, created for
both testing environments, generated by the PIXIT software. The results demonstrate the

Scene Analysis system’s ability to determine the current scene the user is in.

6.2.2.1 Middlesex College - Scene Analysis System

The results from the Middlesex College scene classifier are shown below. The classifier
that was selected used the following parameters. Further information about different
classifier parameters tested can be found in Section 4.3.

e HSV - Colour Model, 16x16 Pixel Sub-Window Dimension

» Scale Window Mode, Number of Sub-Windows: 250 per image

* 10- Trees, 420 - Randomized Tests

Table 6-4 and Figure 6-9 provide a detailed overview of the scene classifier’s ability
to detect different scene types. Using the testing dataset and every image in all the
labelled scene classes, the PIXIT application shows what scene the classifier defined the

image as.



Scene Class

classroom
complab
confroom
group office
hallway
office
outside

stairwell

classroom complab
63 1

6 75

1 0

7 7

0 0

6 6

0 0

2 1

conf room

0

0

24

Classifier Output
groupoffice hallway office
1 1 3
2 2 14
0 0 1
74 0 9
1 33 0
4 0 83
0 0 0
1 4 1

outside

0

0

22

stairwell

1

0

0

20

Table 6-4: Summary of Middlesex College PIXIT Classifier Results

O classroom

O hallway

Confusion

m computingjab

O office

Matrix Histogram

0O conference_room O group_office

m outside

O stairwell

Figure 6-9: Middlesex College PIXIT Classifier Matrix Histogram

76

Total
70
99
26
99
36
99
22
30

Figure 6-10 shows the overall classifier’s ability to classify scene types correctly by

each scene type. The chosen classifier has a classification error rate of approximately
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16% using 250 sub-window extraction, and 18% using 100 sub-window extraction,
during image classification. Again, an increased number of sub-windows extracted
during image classification increases the amount of time the classifier takes to classify a
random image. For the hybrid system, a 125 sub-window extraction is used, taking the

system approximately 4 seconds to classify a random image.

Classifier Results

O Correctly Classified O Incorrectly Classified
Figure 6-10: Middlesex College PIXIT Classifier Results

The next three Tables, 6-5, 6-6, and 6-7, provide an overview of which images were
misclassified or classified with less than 20 percent confidence, which images were
classified between 20 and 35 percent confidence, and which images were classified with
over 35 percent confidence. Table 6-8 provides a detailed overview of the scene classifi-
ers confidence for each scene, providing the average confidence when classified correctly

and the max/min confidence over all the testing images.



Classroom

Computing Lab

Conference
Room

Kk
Group Office o

Hallway

Stairnell

Table 6-5: Middlesex Scenes Below 20 Percent Confidence or Misclassified
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Classroom

Computing Lab

Conference

Room

Group Office

Hallway

Office

Stairvell

Table 6-6: Middlesex Scenes Between 20 and 35 Percent Confidence
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Classroom
Computing Lab
Conference
Room
Group Office
Hallway
Office
Stairvell
Table 6-7: Middlesex Scenes Above 35 Percent Confidence
Classification Class Average Max
Confidence Confidence
Classroom 26.805 42.64
Computing Lab 27.367 46.92
Conference Room 40.014 81.72
Group Office 28.573 58.52
Hallway 52.187 76.8
Office 27.324 56.651
Stairwell 23.335 47.16
Outside 60.882 80.64

Min
Confidence
14

14

12.75

n

6

12

9

27.8

Table 6-8: Summary of Average Middlesex College Classifier Scene Confidence
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6.2.2.2 Townhouse - Scene Analysis System

The results from the Townhouse scene classifier are shown below. The classifier that

was selected used the same parameters that were used with Middlesex College.

Classifier Output
Scene Class bedroomm bedroom_s diningroom hallway  kitchen ¥/n Qoo stairwell  Total
bedroomm 32 0 0 0 1 1 1 35
bedroom_s 1 32 0 1 1 0 0 35
diningroom 0 4 19 7 4 1 0 35
hallway 0 1 7 32 0 1 2 43
kitchen 0 0 0 1 26 0 2 29
livingroom 3 1 1 2 0 34 0 41
stairwell 1 0 1 2 0 0 21 25

Table 6-9: Summary of Townhouse PIXIT Classifier Results

Table 6-9 and Figure 6-11 provide a detailed overview of the scene classifier’s abil-
ity to detect different scene types. Using the testing dataset, every image in all the

labelled classes, the application shows what scene the classifier believed the image to be.

Figure 6-12 shows the overall classifier’s ability to classify scene types correctly by
each scene type. The chosen classifier has a classification error rate of approximately
19% using 250 sub-window extraction, and 20% using 100 sub-window extraction,

during image classification.



Figure 6-11: Townhouse P1XIT Classifier Matrix Histogram

Classifier Results

O Correctly Classified n Incorrectly Classified

Figure 6-12: Townhouse PIXIT Classifier Results Graph
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The next three Tables, 6-10, 6-11, and 6-12, provide an overview of which images
were misclassified or classified with less than 20 percent confidence, which images were
classified between 20 and 35 percent confidence, and which images were classified with
over 35 percent confidence. Table 6-13 provides a detailed overview of the scene
classifiers confidence for each scene, providing the average confidence when classified

correctly and the max/min confidence over all the testing images.

Bedroom -
Master

Bedroom -

Spare

Kitchen

Dining Room

Hallway

Living Room

Stairwell

Table 6-10: Townhouse Scenes Below 20 Percent Confidence or Misclassified



Bedroom
Master

Bedroom

Spare

Kitchen

Dining Room

Hallway

Living Room

Stairwell

Table 6-11: Townhouse Scenes Between 20 and 35 Percent Confidence
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Bedroom -

Master

Bedroom

Snare

Kitchen

Dining Room

Iaa

Hallway

Living Room

Stairwell

Table 6-12: Townhouse Scenes Above 35 Percent Confidence
Classification Class Average Max Min
Confidence Confidence Confidence

Bedroom - Master 45.36 64.82 6
Bedroom - Spare 35.44 58.84 10
Kitchen 46.65 69.6 8
Dining Room 34.98 68.88 6
Hallway 36.99 77.08 4
Living Room 38.08 59.8 6
Stairwell 53.83 88.44 12

Table 6-13: Summary of Average Townhouse Scene Confidence
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Table 6-5 and Table 6-10 show images that were misclassified, or had a low confi-
dence value by the scene classifier. There are images which demonstrate that lighting
conditions, minimum features in a scene, similar scene features, and transitional scene
type images can all be cause for misclassification. The time of day and interior lighting
can also play a factor in whether the image is classified correctly. In Middlesex College,
this is not as prevalent, as the lighting is recessed in the ceiling and lighting conditions
are fairly consistent throughout the day. However, in the Townhouse, lighting conditions
change from room to room, and the time of day determined whether the lights were on or

off. These factors significantly affected whether the image was classified correctly.

6.2.3 Sensor Positioning System

This section provides the results of testing the sensor positioning system. The main
purpose of the experiments was to test the altimeter sensor’s ability to determine the
correct floor of the user. The sensor system maintains a short history of previous altime-
ter data and examines it for a rapid change to determine if the user changed floors. Using
relative change in altimeter data was implemented because of the altimeter’s sensitivity to
constant fluctuations in atmospheric pressure. Figure 6-13 demonstrates the sensor
system’s ability to determine the user’s correct floor, when moving up and down between

floors, even though there are regular changes in altimeter readings.

Altimeter Value and Floor Value Over Time

w
o
g A 0o

20

1.0

Figure 6-13: Zlog Altimeter Testing, Floor Determination Results
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6.3 Hybrid System Testing

The following section gives details about the testing completed on the hybrid indoor

positioning systems.

6.3.1 Wi-Fi and Altimeter Sensor System

The results from the Wi-Fi and Altimeter positioning system are summarized below. For
more detailed information about the location results for each fingerprint landmark along

the testing path, refer to Appendix A.

6.3.1.1 Middlesex College - Wi-Fi and Altimeter

The location accuracy of the Wi-Fi and Altimeter positioning system testing in Middlesex
College is presented in Table 6-14. The table shows the results of the location accuracies
of estimation algorithms (1AP, 2AP and 3AP), the precision (actual location and within
one fingerprint), and the examination of adding history to either the AP scan and/or the
location estimation. The 3AP algorithm, using history AP scans and history location

likelihood estimations, had the highest accuracy and precision.

RT/RT RT/H HRT HH

AT 1FP 2FP AL 1FP 2FP AL 1P 2FP AL 1FP 2FP
Totals (Average) 1AP 011 029 049 012 033 05 012 031 050 011 031 052
Totals (Average) 2AP 018 050 069 020 057 075 018 054 073 020 059 0.77
Totals (Average) 3AP 025 062 079 027 067 08 029 069 08 031 071 087

Table 6-14: Middlesex College Wi-Fi & Altimeter System Results

6.3.1.2 Townhouse - Wi-Fi and Altimeter

The location accuracy of the Wi-Fi and Altimeter positioning system testing in the
Townhouse is presented in Table 6-15. The table shows the results of the location
accuracies of estimation algorithms (1AP, 2AP and 3AP), the precision (actual location
and within one fingerprint), and the examination of adding history to either the AP scan
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and/or the location estimation. The 3AP algorithm, using history AP scans and history

location likelihood estimations, had the highest accuracy and precision.

RT/RT RT/H HRT HH
AL 1FP AL 1FP AL 1FP AL | FP
Totals (Average) 1AP 0.38 0.68 0.39 0.7 0.39 0.7 0.42 0.71
Totals (Average) 2AP 0.45 0.76 0.46 0.77 0.48 0.76 1 0.48 0.77
Totals (Average) 3AP 0.59 0.88 0.65 0.91 0.63 0.9 J 0.66 0.91

Table 6-15: Townhouse Wi-Fi & Altimeter System Results

6.3.2 Wi-Fi, Altimeter Sensor and Scene Analysis System

The results from the Wi-Fi, Altimeter, and Scene Analysis positioning system are sum-
marized below. For more detailed information about the location results for each

fingerprint landmark along the testing path, refer to Appendix A.

6.3.2.1 Middlesex College - Wi-Fi, Altimeter and Scene Analysis

The location accuracy of the Wi-Fi, Altimeter, and Scene Analysis positioning system
testing in Middlesex College is presented in Table 6-16. The table shows the results of
the location accuracies of estimation algorithms (1AP, 2AP and 3AP), the precision
(actual location and within one fingerprint), and the examination of adding history to
either the AP scan and/or the location estimation. The 3AP algorithm, using history AP

scans and history location likelihood estimations, had the highest accuracy and precision.

RT/RT RT/H HRT HH
AL 1FP 2FP AL 1FP 2" AL 1FP 2FF AL 1FP 2FP
Totals (Average) 1AP 010 029 049 015 042 061 009 028 049 014 042 061
Totals (Average) 2AP 021 05 073 02 066 08 023 060 076 02 066 080
Totals (Average) 3AP 028 069 08 032 076 08 03 073 08 032 07 088

Table 6-16: Middlesex College Wi-Fi, Altimeter & Scene System Results

6.3.2.2 Townhouse - Wi-Fi, Altimeter and Scene Analysis

The location accuracy of the Wi-Fi, Altimeter, and Scene Analysis positioning system

testing in the Townhouse is presented in Table 6-17. The table shows the results of the
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location accuracies of estimation algorithms (LAP, 2AP and 3AP), the precision (actual
location and within one fingerprint), and the examination of adding history to either the
AP scan and/or the location estimation. The 3AP algorithm, using history AP scans and

history location likelihood estimations, had the highest accuracy and precision.

RT/RT RT/H H/RT HH
AL 1FP AL 1FP AL 1R AL 1FP
Totals (Average) 1AP 047 079 058 08 057 08 059 0.81
Totals (Average) 2AP 0.69 09 079 093 072 09 0.75 091
Totals (Average) 3AP 078 097 087 098 084 098 088 0.98

Table 6-17: Townhouse Wi-Fi, Altimeter & Scene System Results

6.4 Summary

The system testing examines and compares the different fingerprint techniques and
combinations. The results showed that for both environments there was an increase in
both location accuracy and precision as fingerprinting techniques become more complex.
The use a single AP in determining the location of the user was not as effective as using
two APs. The use of three APs in determining the location of the user showed an im-
provement over using two APs. In all cases, the use of the three AP algorithm using
history AP scans and history location likelihood estimations had the highest accuracy and
precision. Furthermore, using history location likelihood estimates (i.e. the average of
three consecutive likelihood values) yielded little improvement when using history AP
scans versus real-time AP scans. The reader can refer to Figures 6-14 and 6-15 for a

comparison of all system testing completed for each testing environment.
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Middlesex College - Comparative Results of Systems

Figure 6-14: Middlesex College System Comparison Graph

Townhouse - Comparative Results of Systems

irr1ri1r1ri1r1r1ri1r11r1r1 i MmMI1EiltT MMM

AL 1 AL 1 AL 1 AL 1 AL 1 AL 1 AL 1 AL 1 AL 1 AL 1 AL 1 AL 1
P P FP P FP FP = P P P FP P

RT/RT RI/H H/RT H/H RT/RT RT/H H/RT H/H RT/RT RI/H H/RT H/H

1AP 2AP 3AP
WiFi WiFi & Altimeter WiFi & Altimeter & Scene

Figure 6-15: Townhouse System Comparison Graph
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Chapter 7

Conclusions

The research presented in this thesis examines the use of multiple technologies, Wi-Fi
signals, altimeter sensor, and scene analysis for indoor location sensing. These technolo-
gies were selected as they are cost effective and readily available. The developed hybrid
system heavily relies on Wi-Fi signals, but the use of Wi-Fi signals is augmented with
other sources of information. The system allows for different technologies to be incre-
mentally added, something not found in other hybrid systems. The significantly different
testing environments represented real-world settings. The testing environments covered
multiple floors, with little or no control over the number and position of access points.
The test results confirmed that the altimeter is highly valuable since it filters out similar
Wi-Fi fingerprints on the incorrect floor. Although there was little improvement in the
test results when using image analysis, this technology is promising, but requires more
research and experimentation into its different techniques. It should be noted that the
most time consuming aspect of this work was the data collection needed to produce the
scene classifier. This thesis demonstrated the system’s ability to function in uncontrolled
environments, and showed that as other technologies are combined, there is an increase in

both location accuracy and precision.

7.1 Contributions

The following section outlines the contributions this thesis made:

 This work demonstrated that the hybrid location system has the ability to work ef-

fectively in two different, multi-floor environments which there was minimal to no
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control over the environment. The altimeter sensor provided very useful informa-

tion to have, as seen from the results.

This work compared results of the singleton technology location systems to the re-
sults of different combinations of hybrid systems. The testing results illustrated

that augmenting Wi-Fi signals with other technologies was effective.

This work demonstrated that location accuracy increases as technologies are com-
bined, and that a small continual history window on both the AP scan and location

likelihood estimation improves location estimation precision.

This work demonstrated that the hybrid system prototype was cost effective using
off-the-shelf technologies that are readily available. There are a lot of buildings
that have adopted Wi-Fi networks for other purposes, and thus using Wi-Fi for loca-
tion positioning comes at no extra cost to the organization that deployed the Wi-Fi
system. The altimeters, other sensors and webcams, are inexpensive and are increa-

singly being used in Smartphones.

The developed prototype system provided the ability to dynamically select different
sources of information and Wi-Fi algorithms. This feature will be especially impor-

tant for future work, where other sources of information will be considered.

The Wi-Fi system component deals with the issue of signal fluctuations by applying
a sliding window of continual averages for both the AP scan and location likelihood
estimations.  Furthermore, during the location likelihood calculation, different
weights are given to the possible relative locations based on how close the detected
APs RSSI values are to the stored fingerprint APs RSSI values. Refer to Section 4

for more information regarding Wi-Fi algorithms.

The prototype system developed uses Wi-Fi algorithms [27, 28, 34, 44] where the
off-line phase (i.e. the creation of radio map or fingerprint collections, which can be
used to determine location while in the on-line phase) overlaps with the on-line

phase. This makes the daunting task of re-calibration easier.
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7.2 Future Work

Building on the success of hybrid indoor location prototype, the use of other sources of
information and the benefits they could provide will be examined. The design of the
software is highly flexible allowing the user to select the desired sources of information.
Some other work suggests that Bluetooth [12, 17, 28, 37, 38], RFID [11, 15, 18, 30, 39,
40, 76], and accelerometer sensors [36, 61, 64-66] could be greatly beneficial. Acceler-
ometers can be used to determine a position relative to an initial position based on user
movement. Tree-graphs [77] that represent all the possible movements/paths the user can
make from a relative location may also be extremely helpful in determining the user’s
location. The location system could remove locations from the list of possible locations
that are realistically impossible to get based on previous location estimations. These

graphs could be created at the same time the user collects location fingerprints.

There will be continued work on improving fingerprint collection and Wi-Fi algo-
rithms. Some researchers [41] have observed that the direction and orientation of the
mobile device Wi-Fi antenna impacts the signal strengths of detected APs. Further
research of other algorithms that use distance measures, (i.e., Euclidian and Manhattan)

K-nearest neighbours, and probabilistic techniques will be conducted.

More learning images would have improved the scene classification results, but due
to memory constraints in Windows (maximum 1.6GB per process), it was not possible to
use more than 150 learning images per scene. One possibility that will be looked at, in
order to improve scene classification results, is to reduce the image resolution to get more
images per learning set. Another approach to improving the scene classifier system may
be to dynamically adjust the weight of importance the scene classifier results has on the
location likelihood estimation. This would be based on confidence values returned by the
scene classifier for each scene type. A different weight value can be applied for different

scene confidence values.

Using Image Classification to determine location provided poor results on its own,

and mediocre results as an additional source of information. Additional issues include
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the time consuming collection of data to build the classifier, and the large computational
power to classify images. However, image classification technology and techniques are
relatively new, and research gains are being made to both improve image classification

performance and image capturing techniques.

One of the reasons for using a notebook was the ability to use peripheral devices, and
the ease in finding libraries for these peripheral devices. As Smartphone support, exter-
nal ports and embedded devices increase, the development of indoor positioning software
for Smartphones will be explored in more detail.



Appendix A

Detailed System Testing Results
Wi-Fi System - Townhouse

Location / Test AP
RT/RT RT/H H/RT H/H

AL 1 FP AL 1 FP AL 1 FP AL 1 FP
Dining Room 0.34 0.45 0.25 0.27 0.15 0.27 0.11 0.15
Entrance 0.21 0.47 0.24 0.47 0.33 0.61 0.30 0.59
Kitchen 0.25 0.34 0.12 0.16 0.27 0.34 0.16 0.21
Living Room 0.46 0.89 0.47 0.83 0.41 0.94 0.41 0.92
Living Room 2 0.82 0.91 0.79 0.90 0.94 0.98 0.91 0.97
Main Hallway 0.01 0.25 0.08 0.37 000 0.6 0.15 0.37
Master 0.09 0.22 0.21 0.24 0.24 0.29 0.37 0.41
M aster 2 0.07 0.14 0.08 0.23 0.14 0.29 0.16 0.49
Spare 0.69 0.89 0.76 0.86 o0.69 0.90 0.75 0.89
Spare 2 0.15 0.44 0.26 0.33 0.29 0.63 0.39 0.57
Stairwell 0.10 0.39 0.12 0.46 0.17 0.42 0.14 0.35
Upstairs Hallway 0.03 0.31 0.03 059 0.01 0.15 0.01 0.28
Totals 0.27 047 028 048 03 051 032 052

Location / Test 2AP
RT/RT RT/H H/RT H/H
1

AL Fp AL 1 FP AL 1 FP AL 1 FP
Dining Room 0.36 0.65 0.42 0.65 0.43 0.66 0.39 0.57
Entrance 0.20 o0.65 0.22 0.63 0.31 0.67 0.31 0.67
Kitchen 0.02 o0.07 0.02 o0.04 0.00 0.02 0.00 0.01
Living Room 0.47 0.83 0.52 0.87 0.61 0.89 0.62 0.89
Living Room 2 0.64 0.98 0.78 0.97 0.74 0.99 0.89 0.99
Main Hallway 0.23  0.49 0.28 0.43 0.28 0.48 0.28  0.45
M aster 011 o.19 0.12 0.25 0.11 021 0.12 0.22
M aster 2 0.20 o0.39 0.24 0.33 0.26 0.57 0.28 0.53
Spare 0.89 0.98 0.97 0.99 0.97 1.00 0.99 100
Spare 2 0.44  0.70 0.52 0.70 0.36 0.74 0.40  0.75
Stairwell 0.10 o0.49 0.06 0.45 0.03 0.46 0.00 o0.41

Upstairs Hallway 0.14 0.71 0.13 75 0.21 0.70 0.18 0.74

0.
Totals 032 06 036 059 1036 062 037 06



Location / Test

Dining Room
Entrance
Kitchen
Living Room
Living Room 2
Main Hallway
M aster

M aster 2
Spare

Spare 2
Stairwell

Upstairs Hallway

Totals

RT/RT
AL 1
0.46 0
012 o
0.30 0
0.40 0
0.57 0
0.18 0
0.27 0
0.28 0
0.77 0
0.38 0
0.27 0
020 o

0.35 0.

FP
.83
54
38
.80
.95
50
53
45
97
67
53

.73

66

3AP
RT/H
AL 1 FP
0.59 0.84
0.12 0.53
0.37 0.40
0.51 0.85
0.65 0.95
0.19 0.51
0.33 0.51
0.34 0.53
0.84 0.99
0.41 0.63
0.32 0.56
0.19 0.78
041 0.67

H/RT
AL 1 FP
0.56 0.85
0.22 0.65
0.32 0.34
0.49 0.90
0.49 0.94
0.18 0.50
0.26 0.39
0.34 0.50
0.85 0.99
0.47 0.66
0.27 0.53
0.34 0.78
04 0.67

H/H

AL
0.59
021
0.39
0.53
0.50
0.20
0.27
0.34
0.86
0.53
0.27

0.28

0.41

1 FP
0.85
0.65

0.95
0.49

0.99
0.68
0.54

0.74

0.68

96



Wi-Fi System - Middlesex College

Location /Test
RT/RT RT/H H/RT H/H
1 2 1 1 1

AL FP FP AL FP 2FP AL FP 2FP AL FP 2FP
MC 2nd Floor North 001 o0.14 o0.as5 002 011 012 000 010 010 010 020 0.20
MC 2nd Floor North Center 016 0.17 o0.18 o0.08 012 o014 o0.13 o044 0.4 011 0.6 0.23
MC 2nd Floor Side Stairwell  0.05 0.10 0.31 0.03 o0.05 0.8 002 o0.05 033 001 o0.07 o0.16
MC 2nd Floor South 001 o027 o027 001 o023 o0.23 000 o024 o024 000 012 0.12
MC 2nd-3rd Side Stairwell 001 o006 012 o0.03 020 o0.31 000 o008 020 011 o0.29 o0.36
MC 3rd Floor North 000 o003 o003 002 o0.07 o008 000 o004 o008 000 o0.07 o0.08
MC 3rd Floor Side Stairwell 021 022 o035 o0.05 0.8 0.33 0.4 0.16 032 0.03 0.14 0.24
MC 3rd Floor South 000 0.00 000 o0.08 o008 o008 000 000 000 001 001 001
MC214 008 0.14 o053 o006 010 o033 006 008 039 0.05 0.05 0.26
M C215 Entrance 012 o030 0.35 0.04 0.17 0.24 0.15 0.36 0.37 0.04 0.13 0.17
M C215 Point 1 006 026 0.33 001 010 o8 o006 034 034 001 o016 022
M C215 Point 2 006 024 024 o004 o008 010 o006 0.8 o0.18 o0.07 010 011
M C215 Point 3 0.07 0.36 0.36 0.03 0.27 0.27 0.07 o036 o036 001 020 0.20
MC235 Back 000 o009 o025 000 o003 020 000 o0.07 0.9 0.08 0.13 0.25
MC235 Entrance 000 o008 o045 001 o007 o050 000 o005 039 0.05 0.07 0.41
MC235 Front 001 001 010 o0.03 o007 o0.14 000 000 o044 001 o0.04 ©0.13
MC235 Front 2 002 o0.05 o0.25 o0.08 0.4 o026 000 001 o019 o0.03 010 0.12
MC239 003 010 021 001 o005 o046 001 o016 o0.25 000 o0.08 0.13
MC240 Angelas Desk 006 0.5 0.27 0.05 0.4 o0.25 010 o014 025 0.09 0.14 0.23
MC240 Entrance 2 0.19 0.23 0.44 o009 012 o024 o023 o025 o048 012 o0.14 0.33
MC240 Jamies Desk 001 o016 o051t 001 o0.13 0.33 0.06 0.15 0.56 0.03 0.08 0.42
MC240 My Desk 0.08 o029 0.36 000 022 o0.28 o0.05 025 o040 002 o0.19 ©0.28
M C316 Back 000 o007 021 001 o030 o0.53 000 o0.08 o025 000 o0.15 o0.39
M C316 Entrance 000 010 o0.24 o0.07 o036 0.47 000 o0.05 0.4 010 o030 0.40
MC316 Front 000 000 021 o0.a3 0.6 o049 000 000 001 011 o0.a3 022
MC316 Front 2 000 o026 032 o005 037 o052 000 022 o024 001 o0.27 o0.44
MC320 Back 000 o008 o009 001 010 o0.23 000 o0.06 o006 0.00 o0.05 o0.16
MC320 Back Entrance 000 001 o023 001 o003 o034 000 000 o023 001 010 o0.43
MC320 Entrance 001 001 o026 001 o003 0.3t 000 000 o029 000 o0.04 o0.27
MC320 Front 000 o026 o026 001 o023 o038 000 021 021 001 0.7 o0.28
MC336 Entrance 000 000 012 001 o014 o029 000 000 o0.15 000 o0.05 0.30
MC336 Point 1 002 o0.15 o0.24 000 o0.07 o024 001 o018 032 o0.03 010 o0.23
MC336 Point 2 000 o0.03 o003 000 o009 o009 000 000 000 000 002 o.05
MC336 Point 3 000 010 o0.23 002 o0.07 021 000 o0.08 o008 001 o009 o0.17

Totals (Average) 0.04 0.13 0.25 0.03 0.4 0.27 o0.03 012 o023 o0.04 012 o0.23



Location /Test

MC 2nd Floor North

MC 2nd Floor North Center

MC 2nd Floor Side Stairwell

MC 2nd Floor South

MC 2nd-3rd Side Stairwell

MC 3rd Floor North

MC 3rd Floor Side Stairwell

MC 3rd Floor South
MC214

M C215 Entrance

M C215 Point 1

M C215 Point 2

M C215 Point 3
MC235 Back
MC235 Entrance
MC235 Front
MC235 Front 2
MC239

MC240 Angelas Desk
MC240 Entrance 2
MC240 Jamies Desk
MC240 My Desk

M C316 Back

M C316 Entrance

M C316 Front

M C316 Front 2
MC320 Back
MC320 Back Entrance
MC320 Entrance
MC320 Front
MC336 Entrance
MC336 Point 1
MC336 Point 2
MC336 Point 3

Totals (Average)

AL
0.06
0.00
0.03
0.04
0.02
0.03
0.03
0.34
0.10
0.11
0.05
0.12
0.03
0.00
0.01
0.04
0.28
0.04
0.07
0.16
0.08
0.03
0.01
0.12
0.03
0.02
0.08
0.04
0.03
0.10
0.01
0.04
0.03
0.04
0.07

RT/RT

FP
0.10

0.29
0.15

o

.37

.15

.23

.25

.19

o O o o o

.24

0.22
0.46
0.38
0.18
021

0.26

0.22

0.40
0.48
0.38
0.23
0.32
0.10
0.25
0.37
0.22
0.15

0.27

0.25

2FP
0.11

0.29
0.29

.30
.32
.37
41

o O o o o

.25

o

.26

o

.19

o

.24

.60

.64

47

o O o o

.55

o

.35

0.44

0.16

o

.63

.51

41

.33

o o o o

.34

.54

.34

.39

o o o o

.27

AL
0.03
0.01
0.00
0.02
0.03
.03
.03
41

.16

.05

o o o o o o

.05

0.00
0.04
0.06
0.34
0.02
0.03
0.12
0.07
0.00
0.01
0.35
0.02
0.00
0.07
0.01
0.10
0.09
0.02
0.05
0.04
0.07
0.07

RT/H

FP

0.06

0.04

0.31
0.12

.25
.45
.16
.29
.16

o O o o o o

0.40
0.20

0.60

0.16
0.25
0.13

0.58
0.77
0.39

o

.06
.43
41
.25

o o o o

.18

2AP
2FP AL
0.06 0.00
0.31 0.00
0.31 0.03
0.31 0.00
0.30 0.05
o.19  0.00
034 0.02
0.45 0.37
0.50 0.09
033 011
0.16  0.02
0.18 0.15
0.32 001
0.67 0.03
061 0.00
061 0.02
0.67 0.49
038 0.02
0.31  0.09
0.37 0.10
0.39 0.15
0.14  0.09
0.88 001
o84 0.10
o.67 0.01
0.48 0.03
0.47 0.04
0.32 001
0.49 0.00
0.64 0.14
0.35 0.00
0.40  0.05
0.26 0.00
0.49  0.09
0.42 0.07

H/RT

FP
0.03
0.36
0.06
0.35
0.23
0.34
0.25
0.38
0.11
0.20
0.20
0.20
0.29
0.32
0.29
0.47
0.37
0.20
0.27

0.18

0.22

0.49
0.29
0.28
0.43
0.08
0.25
.43
.18
.15
.26
0.26
0.26

2FP

0.03

0.35

.40

.38

o o o

41

0.20

0.65
0.60
0.47
0.53
0.35

o

.37

.19

64

.59

o O o o

.65

0.66
0.35
0.39
0.26
0.31
0.40

AL
0.00
0.00
0.02
0.00
0.06
0.01
0.02
0.37
0.13
0.05
0.02
0.12
0.04
0.00
0.00
0.04
0.35
0.01
0.07
0.08
0.14
0.03
0.00
0.24
0.02
0.00
0.02
0.00
0.04
0.08
0.01
0.04
0.00
0.08
0.06

H/H

FP
0.01

0.32
0.18
0.28
0.29
0.37
0

0

0.40
0.33
0.52
0.46
0.22
0.24
0.17
0.18
0.11
0.48

0.66

0.41
0.05
0.33

0.12
0.29
0.48
0.28

2FP
0.01

0.32
0.36
0.28
0.43
0.37

0.20

o

17

.55

.52

.56

o O o o

47

0.40

0.12

0.73
0.57
0.53
0.31
0.42
0.75
0.34
0.35
0.29
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Location /Test

MC 2nd Floor North

MC 2nd Floor North Center

MC 2nd Floor Side Stairwell

MC 2nd Floor South

MC 2nd-3rd Side Stairwell

MC 3rd Floor North

MC 3rd Floor Side Stairwell

MC 3rd Floor South
MC214

M C215 Entrance

M C215 Point 1

M C215 Point 2

M C215 Point 3
MC235 Back
MC235 Entrance
MC235 Front
MC235 Front 2
MC239

MC240 Angelas Desk
MC240 Entrance 2
MC240 Jamies Desk
MC240 My Desk

M C316 Back

M C316 Entrance

M C316 Front

M C316 Front 2
MC320 Back
MC320 Back Entrance
MC320 Entrance
MC320 Front
MC336 Entrance
MC336 Point 1

M C336 Point 2
MC336 Point 3

Totals (Average)

AL
0.05
0.01
0.12
0.04

0.06
0.02

.56
.26
.08
.29

o O o o o

.07

o

.15

o

.31
.16
.03
.08

o O o o

.06

o

.18

0.01
0.03
0.06
0.02
0.08
0.04

0.09
0.12

RT/RT

FP
0.20
0.46
0.23
0.41

0.12

0.50

.58
.29
.36
.35

o O o o o

.32

0.36

0.51

0.42

0.35

0.07

0.17

0.26

0.27

o

.53

.38

.27

.30

o o o o

44

o

.32

0.59

2FP
0.25

0.41

0.26

.58
46
36

o o o o

.35

o

.33

0.89
0.66
0.51

0.60
0.50

0.27

021

0.30
0.67
0.67
0.75

0.46

o

.45

o

.52

o

.54

0.65

AL
0.01
0.01
0.08
0.02
0.07
0.00
0.19
0.72
0.25
0.11

0.40

0.23

0.24

0.03
0.01
0.06
0.11
0.12
0.23
0.27
0.01
0.02
0.09
0.05
0.14
0.07
0.12
0.22
0.08

RT/H

FP

0.47
0.12
0.36

0.12

0.52

.73
.27
.43

o O o o

41

0.57

o

.54

.33

.06

.19

o O o o

.18

.18

.74

63

o o o o

.64

o

.34

0.63
0.32
0.53
0.31
0.71

3AP

2FP

0.40
0.36
0.25
0.52
0.56
0.73
0.57
0.43
0.41
0.31

0.88
0.80
0.73
0.68
0.55
0.28
0.25
0.43
0.22
0.84
0.75
0.80
0.41
0.61
0.55
0.68
0.63
0.84
0.72
0.74
0.43
0.55

AL
0.01
0.00
0.09
0.04

0.08

0.00

.70
.25
.13
.25

o O o o o

.07

0.12
0.07
0.38
0.12
0.04
0.01
0.08
0.15
0.04
0.33
0.23
0.01
0.02
0.03
0.00
0.13
0.05
0.20
0.06
0.15
0.13

H/RT

FP

0.19
0.32

.40
.70
.27

o o o o

44

o

.28

0.44
0.41
0.48
0.48

0.12

.29
.57
.67

o o o o

.64

o

.50

o

.34

o

.34

0.74

2FP
0.12

0.32

.59
.70
.58

o o o o

47

o

.24

91

76

.48

.73

o o o o o

.64

o

.29

079

083

052

074

054

065

0.52

0.87

0.63

0.77

0.51

0.55

AL
0.01
0.00
0.06
0.03
0.10
0.00
0.22
0.75

0.30

0.20

0.05
0.45
0.24
0.09
0.12
0.05
0.00
0.09
0.12
0.05
0.34
0.26
0.01
0.01
0.08
0.00
0.16
0.05
0.17

0.08

H/H

FP
0.04
0.57
0.12
0.29

.65
.50
.75
.32
.50
.31

O O o o o o o

.24

o

.51

.60

47

.57

.50

O O o o o

47

0.12
021
0.30
0.77
0.69
0.67
0.49
0.47
0.40
0.68
0.31
0.74
0.29
0.79
0.43

0.44

2FP

0.06

0.31
0.29

0.65

0.68

0.52

0.51
0.92
0.77
0.57
0.73
0.64
0.23
0.16
0.59
0.33
0.80
0.84
0.87

o

.60

o

.59

0.82

99



Wi-Fi & Altimeter - Townhouse

Location / Test

Dining Room
Entrance
Kitchen
Living Room
Living Room 2
Main Hallway
M aster

M aster 2
Spare

Spare 2
Stairwell

Upstairs Hallway

Totals

Location / Test

Dining Room
Entrance
Kitchen
Living Room
Living Room 2
Main Hallway
M aster

M aster 2
Spare

Spare 2
Stairwell

Upstairs Hallway

Totals

RT/RT
AL 1 FP
0.43 0.97
0.21 0.38
0.27 0.68
0.42 0.98
0.92 0.97
0.00 0.22
0.50 0.54
0.55 0.97
0.39 0.64
0.25 0.47
0.51 0.51
0.16 0.83
0.38 0.68
RT/RT
AL 1 FP
0.22 0.99
0.21 0.47
0.39 0.64
0.54 0.92
0.85 0.99
0.13 0.55
0.41 0.45
0.57 0.74
0.60 0.86
0.37 0.70
0.91 0.91
0.24 0.86
045 0.76

1AP
RT/H L
AL FP
0.44 0.92
0.19 0.52
0.27 0.70
0.40 0.95
0.92 0.96
0.19 0.36
0.48 0.52
0.55 0.95
0.41 0.66
0.27 0.55
0.51 0.51
0.06 0.83
0.39 0.7
2AP
RT/H
AL 1 FP
0.18 0.99
0.18 0.34
0.59 0.81
0.60 0.95
0.96 0.99
0.08 0.50
0.38 0.44
0.57 0.71
0.53 0.92
0.45 0.73
0.91 0.91
0.13 0.93
0.46 0.77

H/RT L
AL FpP
0.49 1.00
0.27  0.40
0.30 0.70
0.36 0.98
1.00 1.00
0.00 o.15
0.42 0.65
0.50 0.99
0.40 0.63
0.20 o0.48
0.57 0.57
0.16 0.82

1039 0.7
H/RT
AL 1 FP
0.09 0.97
0.38 0.54
0.53 0.66
0.56 0.94
0.89 1.00
0.11 0.50
0.35 0.37
0.61 0.74
0.62 0.92
0.37 0.71
0.95 0.95
0.28 0.85
0.48 0.76

H/H

AL
0.51
0.31
0.32
0.36
1.00
0.18

0.40

0.41
0.23

0.24

0.42

H
AL

0.08

0.57
0.99
0.07
0.32
0.59

0.95
0.22
0.48

L FP
1.00
0.42
0.70
0.97
1.00
0.32
0.62
0.99
0.64
0.51
0.57

0.80

0.71

/H
1 FP
1.00
0.52
0.72
0.94
1.00
0.46
0.39
0.72
0.97
0.75
0.95
0.88
0.77

100



Location / Test

Dining Room
Entrance
Kitchen
Living Room
Living Room 2
Main Hallway
M aster

M aster 2
Spare

Spare 2
Stairwell

Upstairs Hallway

Totals

RT/RT
AL 1 FP
0.70 0.99
0.43 0.85
0.44 0.88
0.65 0.96
0.78 0.95
0.24 0.77
0.44 0.79
0.58 0.87
0.72 0.90
0.63 0.82
0.99 0.99
0.48 0.80

0.59 0.88

RT/H
AL 1 FP
0.77 0.97
0.39 0.73
0.66 o0.93
0.77 0.99
0.88 0.99
0.31 0.89
0.46 0.82
0.64 0.91
0.73 0.96
0.84 0.92
0.99 0.99
0.40 0.80

0.65 0.91

H/RT

1

AL FpP
067 0.98
0.47 0.84
0.66 o0.93
0.66 1.00
0.80 0.97
0.26 0.81
039 0.68
0.64 0.96
0.74 0.93
0.82 0.89
0.99 0.99
0.51 0.78
0.6 0.9

H/H

AL
0.71

0.72

o

41
.67
71
.90
.99

© o o o o

44

0.6

1 FP

o

.97
.81
.79
.97
.98
.93

© O o o o o

.99
0.78

0.01



Wi-FiI & Altimeter - Middlesex College

Location /Test

AL
MC 2nd Floor North 0.11

MC 2nd Floor North Center 0.32

MC 2nd Floor Side Stairwell 0.15
MC 2nd Floor South 0.00
MC 2nd-3rd Side Stairwell 0.65
MC 3rd Floor North 0.00
MC 3rd Floor Side Stairwell 0.15
MC 3rd Floor South 0.10
MC214 0.12
M C215 Entrance 0.10
MC215 Point 1 0.03
M C215 Point 2 0.42
M C215 Point 3 0.40
MC235 Back 0.00
MC235 Entrance 0.00
MC235 Front 0.04
MC235 Front 2 0.00
MC239 0.23
MC240 Angelas Desk 0.09
MC240 Entrance 2 0.12
MC240 Jamies Desk 0.21
MC240 My Desk 0.19
MC316 Back 0.00
M C316 Entrance 10.00
M C316 Front 0.16
MC316 Front 2 0.00
MC320 Back 0.02
MC320 Back Entrance 0.04
MC320 Entrance 0.00
MC320 Front 0.02
MC336 Entrance 0.03
MC336 Point 1 0.00
MC336 Point 2 0.00
MC336 Point 3 0.03

Totals (Average) 0.11

RT/RT

FP

0.62

0.65

0.29
0.20
0.12

0.40
0.71
0.63

.06
.19
.28

o o o o

.26

.38

o O o o

.31

o

.26

0.25
0.38
0.17

0.12
0.45

0.05
0.29

FP

0.19

0.66

.13
.65
.32
.67
.18

o O O o o o

41

o

.33

0.70
0.68
0.35
0.36
0.49
0.30
0.39
0.86
0.52
0.63

0.46

0.68

.29
44
.57

o o o o

41

49

o

o

42
.49

o

AL
0.05

0.03
0.08

0.66
0.04

0.16

0.09

0.05

0.02
0.10
0.32

0.50

0.01
0.02
0.10
0.14

0.04
0.10
0.09
0.23
0.19

0.45
0.05
0.20
0.04
0.01
0.04
0.01
0.01
0.12
0.05
0.01

0.09

0.12

RT/H

FP
0.10
0.33
0.27
0.19
0.66
0.27
0.23
0.15
0.08
0.23
0.35
0.55
0.68
0.28
0.16
0.13
0.59

0.07

0.22

0.31
0.78
0.41
0.49
0.55
0.33
0.38
0.38
0.32
0.35
0.07
0.58

2FP
0.10
0.38
0.54
0.19
0.66
0.29
0.62
0.16

0.32

0.40
0.56
0.68

0.75

0.67

0.22

0.43
0.82
0.59

0.83

0.66

0.61
0.55
0.63
0.50
0.59

AL
0.04
0.36

0.12
0.03
0.71

0.00
0.10
0.11
0.03

0.08

0.01
0.60
0.61

0.00
0.00
0.04
0.00
0.22
0.08
0.11
0.30

0.12
0.00
0.00
0.23
0.00
0.06
0.02
0.00
0.01
0.01
0.00
0.00

0.03

0.12

H/RT

0.70
0.28
0.20
0.71
0.23
0.14
0.12
0.09
021
0.37
0.85
0.73
0.15
0.26
0.05
0.22
0.35
0.15
0.12
0.31

0.26

.18
.36
.26
.43

O O o o o

.26

o

.15

2FP
0.23
0.73
0.54
0.20
0.71

0.30

0.34
0.26

0.73
0.68

0.78

0.34
0.28
0.44
0.90
0.47
0.74

0.46

0.21
0.41
0.55
0.48
0.61
0.49
0.55

0.49
0.50

AL
0.03
0.14

0.00
0.11
0.72

0.01
0.12
0.07

0.01
0.01

0.08

0.65
0.01
0.03

0.11
0.16

0.01
0.05
0.05
0.34
0.11
0.28
0.04
0.23
0.00
0.01
0.00
0.00
0.01
0.03
0.01
0.00

0.05

0.11

H/H

FP

0.38
0.19
0.27
0.72

0.23
0.21
0.11

0.27
0.58
0.74
0.18
0.25
0.15

0.13
0.13
0.08
0.34
0.30
0.74
0.38
0.43
0.49
0.19
41
.33
45
.28
0.03
0.55

0.42
0.47
0.27
0.72
0.30
0.68
0.12
0.37
0.28
0.32
0.58
0.74

0.69

0.68

0.67

0.29
0.85
0.53
0.79
0.61
0.89
0.73
0.32
0.52
0.59
0.64
0.56
0.37

0.56

102



Location /Test

MC 2nd Floor North

MC 2nd Floor North Center

MC 2nd Floor Side Stairwell

MC 2nd Floor South

MC 2nd-3rd Side Stairwell

MC 3rd Floor North

MC 3rd Floor Side Stairwell

MC 3rd Floor South
MC214

M C215 Entrance

M C215 Point 1

M C215 Point 2

M C215 Point 3

M C235 Back
MC235 Entrance
MC235 Front
MC235 Front 2
MC239

MC240 Angelas Desk
MC240 Entrance 2
MC240 Jamies Desk
MC240 My Desk

M C316 Back

M C316 Entrance
MC316 Front

M C316 Front 2
MC320 Back
MC320 Back Entrance
MC320 Entrance
MC320 Front
MC336 Entrance
MC336 Point 1
MC336 Point 2

MC336 Point 3
Totals (Average)

AL
0.05

0.05
0.01

0.97

0.16

0.12
0.35

0.09
0.02
0.19
0.24
0.01
0.07
0.45
0.33
0.17
0.27
0.22
0.03
0.10
0.03
0.39
0.05
0.09
0.16
0.08
0.02

0.03
0.18

RT/RT

FP
0.35
0.55
0.23
0.81
0.97
0.38
0.33
0.49
0.24
0.56
0.50
0.80
0.69
0.42
0.18
0.63
0.54
0.25
0.24
0.52
0.45
0.33
0.56
0.58
0.62
0.73
0.62
0.70
0.92
0.40
0.51
0.27
0.56

0.13
0.50

2FP
0.49

0.81
0.97
0.39
0.67
0.53
0.78
0.69
0.50
0.80
0.69

0.69

0.68
0.55
0.43
0.88
0.93
0.46
0.72
0.84
0.90
0.82
0.77
0.86
0.96
0.64
0.86
0.78
0.57

0.38
0.69

0.08
0.49

0.36
0.49
0.22
0.01
0.21
0.27
0.04
0.08
0.39
0.26

0.50
0.38
0.00
0.12
0.06
0.36
0.00
0.15
0.20
0.10
0.02

0.03
0.20

RT/H

FP
0.36
0.57

0.36

0.86

0.29
0.58

0.88
0.41
0.19
0.66
0.56
0.31
0.21
0.51
0.51

0.81
0.84
0.73
0.88
0.74
0.78
0.92
0.57
0.49
0.25
0.63

0.12
0.57

2AP
2FP AL
0.36 0.05
0.65 0.04
0.55 0.00
0.86 o0.08
0.98 0.99
0.39 0.03
0.74 0.2
0.61 0.36
0.87 0.06
0.89 0.41
069 0.07
0.96 0.42
0.88 o0.38
0.74 0.08
0.34 0.00
0.75 0.19
0.70  0.31
067 0.02
0.39 0.2
0.90 0.49
0.97 0.33
0.41 0.23
0.88 0.28
0.98 0.25
0.93 001
0.89 0.03
0.85 0.04
0.89 0.35
0.96 0.04
0.84 0.14
0.9t 010
0.80 0.13
0.64 0.02
0.45 0.00
0.75 0.18

H/RT

FP
0.54

0.93
0.99
0.44
.30
.71
.14
.57
0.45
0.89
0.72

0.68
0.63
0.26
0.30
0.53
0.53
0.39
0.65
0.59
0.59
0.73
0.70
0.70
0.91
0.49
0.49
0.29
0.57

0.19
0.54

2FP
0.54
0.65
0.49
0.93
0.99
0.44
0.80
0.72
0.91
0.67
0.45
0.89
0.72
0.71
0.50
0.75
0.70
0.60
0.59
0.87
0.99
0.53
0.82
0.87
0.96
0.83
0.77
0.92
0.95
0.73
0.93
0.82
0.57

0.30
0.73

AL
0.01
0.10
0.00
0.03
0.99
0.04
0.16
0.46
0.05
0.43
0.12
0.38
0.50
0.16
0.00
0.20
0.34
0.01
0.12
0.45
0.31
0.24
0.42
0.30
0.00
0.13
0.11
0.37
0.02
0.14
0.09
0.11
0.02

0.00
0.20

H/H

FP
0.41
0.53
0.43
0.95
0.99
0.47
0.33
0.78
011
0.72
0.64
0.95
0.87

0.39
0.80
0.66
0.28
0.29
0.49
0.40
0.41
0.80
0.72
0.68
0.85
0.78
0.79
0.90
0.69
0.52
0.28
0.63

0.18
0.59

2FP
0.42
0.67
0.60
0.95
0.99
0.48
0.85
0.79
0.87
0.80
0.64
0.95
0.87
0.67
0.50
0.83
0.71
0.62
0.58
0.94
0.99
0.54
0.92
0.95
0.99
0.91
0.87
0.96
0.90
0.84
0.90
0.79
0.63

0.29
0.77
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Location / Test

MC 2nd Floor North

MC 2nd Floor Nortn Center

MC 2nd Floor Side Stairwell

MC 2nd Floor South

MC 2nd-3rd Side Stairwell

MC 3rd Floor North

MC 3rd Floor Side Stairwell

MC 3rd Floor South
MC214

M C215 Entrance

M C215 Point 1

M C215 Point 2

M C215 Point 3
MC235 Back

MC235 Entrance
MC235 Front
MC235 Front 2
MC239

MC240 Angelas Desk
MC240 Entrance 2
MC240 Jamies Desk
MC240 My Desk

M C316 Back

M C316 Entrance
MC316 Front
MC316 Front2
MC320 Back

MC320 Back Entrance
MC320 Entrance
MC320 Front

MC336 Entrance
MC336 Point 1
MC336 Point 2

MC336 Point 3
Totals (Average)

AL

0.17
0.11
0.22
1.00

.16

o

o

.60

o

.60

o

.29

0.21
0.07
0.18
0.35
0.05
0.06
0.12
0.17
0.13
0.47
0.37
0.11
0.17
0.36
0.39
0.01
0.21
0.11
0.17
0.02

0.03
0.25

RT/RT

FP
0.68
0.63
0.33

0.78
1.00

.61
.79
.64

o O o o

.90

o

.83

o

91

.38
.38
.67

o O o o

.69

0.22
0.72
0.34
0.36
0.79

0.76

0.68

.54
.36
.63

o O o o

.63

o

.34

2FP

0.65
0.51
0.78
1.00
0.65
0.73
0.79
0.96
0.92
0.86
0.91

.85
.69
.74

o O o o

.79

0.90

0.88
0.90
0.82
0.89
0.86
0.78
0.95
0.85
0.70
0.94
0.66

0.85
0.79

AL

0.08
0.12
0.19
1.00
0.11
0.39
0.64
0.57
0.37
0.56
0.06
0.51
0.34
0.11
021
0.42
0.01
0.08
0.13
0.18
0.13
0.61
0.44
0.17
0.21
0.40
0.49
0.00
0.24
0.14
0.21
0.02
0.02

0.27

RT/H

FP
0.74

0.60

0.77

1.00

0.84
0.59
0.97
0.87
0.97
0.94

o

.84
.83

o o

.14

o

.36

0.88
0.87
0.59
0.86
0.86
0.73
0.87
0.59
0.46
0.71
0.63

0.37
0.67

3AP

2FP
0.75
0.61
0.65
0.77
1.00
0.75
0.85
0.85
0.93
0.97
0.87
0.97
0.94
0.92
0.78
0.85
0.89
0.70
0.50
0.94
0.93
0.52
0.95
0.97
0.87
0.93
0.90
0.89
0.93
0.98
0.81
0.95
0.65

0.91
0.84

AL
0.20

0.26

0.30
1.00
0.12

0.63
0.47
0.56
0.17
0.52

0.11
0.32
0.01
0.07
0.09
0.21
0.19
0.54
0.60
0.10
0.20
0.42
0.59
0.00
0.31
0.14
0.28
0.06

0.03
0.29

H/RT

0.70
0.46
0.73
1.00
0.77

0.68

0.99
0.91
0.95
0.99
0.48
0.43
0.73

021
0.73
0.34
0.54
0.89
0.93
0.72
0.71
0.88
0.76
0.93
0.61
0.45
0.63
0.67

0.39
0.69

2FP
0.85
0.73
0.63
0.73
1.00
0.77
0.82
0.89
0.99
0.99
0.95
0.95
0.99
092
0.76
0.77
087
0.68
0.56
0.98
0.99
0.61
0.98
0.97
0.84
0.94
0.91
0.85
0.96
1.00
0.79
0.94
0.67

0.86
0.86

AL
0.16
021
0.14
0.27
1.00
0.11
0.42
0.63
0.68
0.50
0.57
0.08
0.56
0.47
0.04
0.09
0.30
0.00
0.08
0.10
0.21

0.59
0.66
0.12
0.33
0.50
0.61
0.00
0.36
0.21
0.30
0.05

0.01

0.31

H/H

FP
0.79
0.66
0.41
0.72
1.00
0.81
0.70
0.94
0.68
1.00
0.95
0.98
0.99
0.57
0.52
0.84
0.81
0.15
0.21
0.73
0.34
0.56
0.87
0.97
0.78
0.84
0.93
0.74
0.93
0.57
0.52
0.67
0.65

0.44
0.71

2FP
0.81
0.68
0.70
0.72
1.00
0.81
0.81
0.94
1.00
1.00
0.96
0.98
0.99
0.97
0.75
0.84
0.87
0.70
0.57
1.00
1.00
0.63
0.99
0.99
0.86
0.96
0.96
0.87
0.94
1.00
0.85
0.97
0.65
0.88

0.87
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Wi-Fi, Altimeter & Scene Analysis - Townhouse

Location / Test

RT/RT RT/H H/RT H/H

AL 1 FP AL FpP AL FpP AL 1 FP
Dining Room 0.64 0.88 0.72 0.85 0.79  0.90 0.80 0.90
Entrance 0.45 0.81 0.44 0.78 0.48 0.85 0.44 0.89
Kitchen 0.24 0.56 0.35 0.65 0.22 o050 0.21 0.52
Living Room 0.64 0.88 0.73 0.88 0.63 0.91 0.64 0.91
Living Room 2 0.97 0.98 0.97 0.98 1.00 1.00 1.00 1.00
Main Hallway 0.26 0.43 0.30 0.44 0.43 0.53 0.44 0.54
M aster 0.00 0.87 0.68 o0.90 0.79 0.94 0.81 0.97
M aster 2 0.64 0.78 0.72 0.80 0.61 0.76 0.65 0.77
Spare 0.20 0.89 0.22 o0.95 0.19 0.87 0.22 0.87
Spare 2 0.39 0.89 057 0.94 0.43 0.91 0.57 0.94
Stairwell 0.64 0.64 0.64 0.64 0.60 0.60 0.59 0.59
Upstairs Hallway 0.56 0.83 0.65 0.84 0.66 o0.85 0.73 0.85
Totals 047 079 058 08 057 08 059 081

Location / Test
RT/RT RT/H H/RT H/H
1 1

AL FpP AL 1 FP AL Fp AL 1 FP
Dining Room 0.74 0.98 0.80 0.99 0.77 0.97 0.77 0.99
Entrance 0.67 0.97 0.87 0.98 0.65 0.99 0.72 0.99
Kitchen 0.72 0.88 0.77 0.91 0.75 0.87 0.80 0.94
Living Room 0.81 0.96 0.89 0.96 0.84 0.97 0.87 0.97
Living Room 2 0.90 0.99 0.97 0.99 0.93 0.99 0.96 0.99
Main Hallway 0.27  0.39 0.45 0.47 0.23 0.25 0.25 0.25
M aster 030 0.88 0.32 0.94 0.32 0.94 0.26 0.98
M aster 2 0.87 0.93 0.99 0.99 0.96 0.99 0.99 1.00
Spare o.61 1.00 0.68 100 o073 100 o.76 1.00
Spare 2 0.71  0.96 0.82 0.97 0.70  0.93 0.74 0.91
Stairwell 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95
Upstairs Hallway 0.67 0.96 0.96 100 o080 o0.98 0.92 0.99

Totals 069 09 079 093 072 09 075 001



Location / Test

RT/RT RT/H H/RT H/H

AL 1 FP AL 1 FP AL 1 FP AL 1 FP
Dining Room 0.83 0.99 0.86 0.99 0.83 1.00 0.87 1.00
Entrance 0.65 100 o.73 100 o.64 1.00 0.65 1.00
Kitchen 0.72 0.96 0.83 0.98 0.81 0.98 0.84 0.98
Living Room 0.77 0.96 0.88 0.96 0.83 0.99 0.89 0.99
Living Room 2 0.86 1.00 0.96 1.00 0.89 1.00 1.00 1.00
Main Hallway 0.58 0.82 0.71 0.93 0.76 0.88 0.81 0.89
M aster 0.66 0.99 0.62 100 o.78 0.99 0.73 1.00
M aster 2 0.91 0.99 0.99 0.99 0.90 1.00 0.96 1.00
Spare 0.62 1.00 o0.92 100 o.87 1.00 0.92 1.00
Spare 2 0.87 1.00 0.97 1.00 0.93 1.00 0.98 1.00
Stairwell 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Upstairs Hallway 0.85 0.91 0.93 0.95 0.89 0.93 0.96 0.96

Totals 0.78 097 087 098 084 093 088 0.98
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Wi-Fi, Altimeter & Scene Analysis - Middlesex College

Location /Test LAP
RT/RT RT/H H/RT H/H
1 2 1 1 1

AL FP FP AL FP 2FP AL FP 2FP AL FP 2FP
MC 2nd Floor North 0.04 0.30 0.31 0.03 0.17 0.18 0.02 0.27 0.28 0.02 0.26 0.27
MC 2nd Floor North Center 0.11 0.61 0.64 0.12 0.61 0.64 0.12 0.70 0.71 0.09 0.69 0.69
MC 2nd Floor Side Stairwell 0.16 0.16 0.36 0.22 0.24 0.52 0.19 0.19 0.49 0.22 0.22 0.60
MC 2nd Floor South 0.01 0.45 0.45 0.01 0.42 0.42 0.00 0.36 0.36 0.00 0.34 0.34
MC 2nd-3rd Side Stairwell 0.76 0.76 0.76 0.76 0.76 0.76 0.75 0.75 0.75 0.75 0.75 0.75
MC 3rd Floor North 0.07 0.41 0.41 0.06 0.64 0.64 0.01 0.40 0.40 0.00 0.39 0.39
MC 3rd Floor Side Stairwell 0.16 0.19 0.79 017 0.32 0.84 0.14 0.15 0.83 0.11 0.23 0.89
MC 3rd Floor South 0.15 0.19 0.21 0.22 0.25 0.27 0.12 0.13 0.14 0.20 0.21 0.22
MC214 0.07 0.18 0.44 0.17 0.24 0.46 0.11 0.18 0.40 0.18 0.21 0.52
M C215 Entrance 0.11 0.26 0.28 0.06 0.28 0.42 0.18 0.32 0.32 0.09 0.45 0.48
M C215 Point 1 0.09 0.31 0.37 0.12 0.41 0.46 0.06 0.31 0.38 0.06 0.41 0.48
M C215 Point 2 0.04 0.28 0.28 0.03 0.39 0.39 0.01 0.24 0.24 0.02 0.39 0.39
M C215 Point 3 0.27 0.38 0.38 0.54 0.64 0.64 0.23 0.30 0.30 0.44 0.51 0.51
MC235 Back 0.01 0.21 0.80 0.14 0.38 0.88 0.01 0.22 0.68 0.27 0.60 0.97
MC235 Entrance 0.01 0.16 0.60 0.03 0.24 0.68 0.01 0.10 0.68 0.04 0.26 0.61
MC235 Front 0.02 0.28 0.40 0.01 0.70 0.77 0.02 0.32 0.43 0.01 066 0.72
MC235 Front 2 0.01 0.17 0.34 0.15 0.36 0.60 0.00 0.39 0.55 0.15 0.61 0.76
MC239 0.16 0.24 0.41 0.15 0.24 0.42 0.13 0.33 0.49 0.08 0.29 0.51
MC240 Angelas Desk 0.14 0.17 032 0.07 0.17 0.37 0.15 0.19 0.28 0.10 0.15 0.25
MC240 Entrance 2 0.12 0.23 0.62 0.07 0.27 0.53 0.05 0.19 0.53 0.03 0.22 0.47
MC240 Jamies Desk 0.11 0.22 0.83 0.06 0.13 0.76 0.08 0.11 0.77 0.08 0.09 0.80
MC240 My Desk 0.18 0.35 0.45 0.18 0.25 0.36 0.28 0.28 0.39 0.11 0.18 0.30
MC316 Back 0.00 0.38 0.75 0.42 0.76 0.89 0.00 0.53 0.81 0.32 0.82 0.89
MC316 Entrance 0.09 0.30 0.60 0.10 0.53 0.85 0.02 0.24 0.67 0.16 0.53 0.80
MC316 Front 0.03 0.24 0.68 0.06 0.52 0.93 0.04 0.22 0.75 0.04 0.54 0.91
MC316 Front 2 0.00 0.25 0.60 0.06 0.64 0.85 0.00 0.31 0.66 0.00 0.61 0.89
MC320 Back 0.11 0.32 0.48 0.14 0.38 0.71 0.10 0.40 0.54 0.08 0.41 0.76
MC320 Back Entrance 0.15 0.42 0.37 0.14 0.49 0.61 0.07 0.25 0.36 0.12 0.35 0.65
MC320 Entrance 0.18 0.37 0.66 0.16 0.60 0.83 0.13 0.38 0.65 0.09 0.63 0.88
MC320 Front 0.08 0.44 0.46 0.13 0.66 0.75 0.06 0.41 0.48 0.13 0.61 0.77
MC336 Entrance 0.01 0.17 0.34 0.01 0.23 0.37 0.00 0.10 0.37 0.00 0.26 0.33
MC336 Point 1 0.00 0.15 0.51 0.29 0.34 0.55 0.00 0.08 0.45 0.38 0.39 0.72
MC336 Point 2 0.00 0.27 0.35 0.01 0.58 0.61 0.00 0.15 0.21 0.17 0.52 0.57
MC336 Point 3 0.00 0.14 0.52 0.05 0.41 0.72 0.00 0.14 0.48 0.08 0.42 0.63
Totals (Average) 0.10 0.29 0.49 0.15 0.42 0.61 0.09 0.28 0.49 0.14 0.42 0.61



Location /Test

MC 2nd Floor North

MC 2nd Floor North Center

MC 2nd Floor Side Stairwell

MC 2nd Floor South

MC 2nd-3rd Side Stairwell

MC 3rd Floor North

MC 3rd Floor Side Stairwell

MC 3rd Floor South
MC214

M C215 Entrance

M C215 Point 1

M C215 Point 2

M C215 Point 3
MC235 Back
MC235 Entrance
MC235 Front
MC235 Front 2
MC239

MC240 Angelas Desk
MC240 Entrance 2
MC240 Jamies Desk
MC240 My Desk
MC316 Back
MC316 Entrance
MC316 Front
MC316 Front 2
MC320 Back
MC320 Back Entrance
MC320 Entrance
MC320 Front
MC336 Entrance
MC336 Point 1
MC336 Point 2

MC336 Point 3
Totals (Average)

AL

0.16
0.17
0.05
0.97
0.12
0.41
0.38
0.26
0.12
0.10
0.11
0.46
0.16
0.03
0.01
0.24
0.20
0.05
0.15

0.24

0.38
0.27
0.10
0.04
0.37
0.32
0.13
0.15
0.02
0.36
0.04

0.12
0.21

RT/RT

FP
0.30
0.85
0.23
0.66
0.97
0.76
0.56
0.52
0.32
0.55
0.68
0.88

0.38
0.84
0.40
0.30
0.18
0.54
0.42
.33
.73
.59
.12
0.71
0.61

o

.69

o

.75

o

.39

2FP
0.32
0.92
0.33
0.66
0.97
0.76
0.91
0.52
0.75
0.64
0.68
0.88

96
.69
91
91

o O o o o

.49

o

.31

0.49

0.96

0.87

0.82

0.81

0.83

0.80

0.98

0.85

0.53
0.75

o

.73

AL
0.14
0.03
0.27
0.00
0.98
0.04
0.58
0.47
0.31
0.13
0.12
0.05
0.68
0.14
0.12
0.00

0.35

0.08
0.24

0.01
0.46
021
0.08
0.19
0.03
0.59
0.11
0.11

0.25

RT/H

FP
0.30
0.92
0.35
0.60
0.98
0.74
0.64
0.55
0.34
0.72
0.88

0.95

.46
.56
.96
.48

o O o o o

.37

o

.16

0.88
0.85
0.96
0.87
0.57
0.86
0.81
0.86
0.57
0.68
0.58

0.53

0.66

2AP
2FP AL
0.33 0.10
096 0.00
0.42 0.17
0.68 0.02
0.98 0.99
0.74 0.02
0.89 0.45
0.55 0.36
0.84 0.32
0.78 0.18
0.88 o0.05
0.95 0.08
0.89 0.44
0.97 0.17
0.76  0.08
0.98 0.02
0.98 0.29
0.55 0.27
026 011
0.90 0.26
0.84 0.29
0.56 0.49
0.99 0.51
0.98 0.34
o.96 0.12
0.92 0.03
0.86 o0.37
0.92 0.38
0.99 0.12
097 021
0.66 0.02
0.82 0.53
0.62 0.02
0.77 0.16
0.80 0.23

H/RT

FP
0.23
0.91
0.24
0.79

0.99

0.88

.45
.33

o o o

.50

o

.62

0.52

o

44

.38

.24

.61

o o o o

.52

o

.50

o

.69

o

.14

o

.76

.75

71

.35

o o o o

.57

o

.50
.60

o

2FP
0.24
0.96
0.33

0.99
0.88
0.96
0.45
0.82
0.57
0.62
0.85
0.84

0.97

0.68

0.52
0.32
0.94

o

.99

o

.94

o

.83

o

.89
096
0.89
0.61
0.81
0.41

0.66

0.76

AL
0.09
0.00
0.17
0.03
1.00
0.01
0.58
0.35
0.32
0.20
0.11
0.06
0.69
0.10
0.11
0.01

.33
.08
27

o O o o

27

0.11
0.00
0.41
0.33
0.04
0.21
0.02
0.66
0.06

0.14
0.26

H/H

FP
0.23
0.92
0.24
0.82
1.00
0.88
0.68

0.36
0.67
0.84
0.91

0.52

0.88
0.50
0.43
021
0.67
0.56

0.55

0.86

0.79
0.71
0.89
0.72
0.73
0.52
0.70

0.66

2FP
0.23
0.97
0.31
0.82
1.00
0.88

0.40
0.90
0.71

o

91

o

.94

.99

71

91

o o o o

.97

0.96

0.97

0.64

0.99

0.95

0.94

0.92

0.89

0.96

o

.70

o

.84
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Location /Test

MC 2nd Floor North

MC 2nd Floor North Center

MC 2nd Floor Side Stairwell

MC 2nd Floor South

MC 2nd-3rd Side Stairwell

MC 3rd Floor North

MC 3rd Floor Side Stairwell

MC 3rd Floor South
MC214

M C215 Entrance
MC215 Point 1

M C215 Point 2

M C215 Point 3
MC235 Back
MC235 Entrance
MC235 Front
MC235 Front 2
MC239

MC240 Angelas Desk
MC240 Entrance 2
MC240 Jamies Desk
MC240 My Desk

M C316 Back

M C316 Entrance

M C316 Front
MC316 Front 2
MC320 Back
MC320 Back Entrance
MC320 Entrance
MC320 Front
MC336 Entrance
MC336 Point 1
MC336 Point 2

MC336 Point 3
Totals (Average)

AL
0.53

0.35

0.99
0.06
0.57
0.38
0.47

0.11
0.35
0.11

0.10

.51
.53
42

o o o o

.14

.08

o

0.10

RT/RT

FP

0.73

0.79

o

.62

.63

.51
.90

o O o o

.89

0.54
0.62
0.90

0.10

0.63
0.77
0.94
0.76
0.77
0.55

.82
.65
.63

o O o o

.67

o

.53

2FP

0.82

0.66

.70
.75
.64
.85
.90

o o o o o o

.89

o

.95

o

91

91

89

.93

o o o o

.98

o

.62

0.89

0.69

0.86

0.87
0.99
0.96
0.80

0.86

0.83

AL
0.49
0.36
0.78
0.15
0.99
0.02
0.56
0.52
0.47
0.05
0.49
0.11
0.45
0.12
0.40
0.23
0.43
0.43
0.10
0.03
0.34
0.66
0.72
0.14
0.17
0.05
0.12
0.20
0.02
0.15
0.12

0.65

0.15
0.32

RT/H

FP
0.72

.76
.58
.76

o O o o

.48

o

.95

0.99
0.59
0.74
0.99

0.12

o

.74

o

.84

0.88

0.76
0.84
0.78
0.78
0.78

2FP

0.72

0.91

.76
71

17

o o o o

91

o

.95

0.99

1.00

.69
.39
.95

o o o o

.94

o

.79

0.85
0.92

1.00
0.99
0.91
0.97

0.84

0.88
0.88

AL
0.49
0.34
0.53
0.13
1.00
0.02
0.63
0.58
0.49
0.09
0.37
0.12
0.39
0.21
0.31
0.07
0.39
0.39
0.14
0.05
0.20
0.69
0.61
0.47
0.11
0.02
0.14
021
0.03
0.23
0.11
0.74
0.03

0.27
0.31

H/RT

FP
0.65

0.74

0.53
0.66
1.00
0.73
0.66
0.81

0.50
0.93
0.86

0.96

o

12

.43

.15
.79

o O o o

44

o

.83

0.80

0.82

0.64

0.80

0.87

0.75

0.70

0.67

0.78

2FP
0.65
0.80
0.60
0.66
1.00
0.73
0.81
0.81
0.98
0.94
0.86
0.96
0.98
0.96
0.88
0.97
0.98
0.66
0.44
0.98
0.99
0.86

0.99

0.90
0.85
0.92
0.99
0.99
0.78
0.78

0.86

AL
0.51
0.37
0.65
0.13
1.00
0.02
0.58
0.62
0.48
0.06
0.43
0.11
0.40
0.19
0.41
0.10
0.44
0.44
0.15
0.05
021
0.76
0.66
0.46
0.09
0.01
0.14
0.20
0.04
0.13
0.11
0.68
0.03

0.30
0.32

H/H

FP
0.67
0.81
0.65
0.68
1.00
0.73
0.63
0.83
0.48

0.96

0.88

0.98
0.62
0.74
0.98
0.76
0

47

0.88
0.82
0.99
0.84

0.86

0.84
0.76
0.79
0.76
0.83

2FP
0.67
0.85
0.69
0.68
1.00
0.73
0.77
0.83
0.98
0.96
0.88
0.97
0.98
0.99

0.89
1.00
1.00

0.98
0.99
0.90
0.99
0.99
0.90
0.91
0.83
0.90
0.99
0.97

0.86

0.83

0.88
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Appendix B

Hybrid Application Overview

Figure B-I: Screenshot of Developed Application

NN Sy he =

» Capability to turn on/off AP Scan
« Can Vary refresh rate of Wi-Fi AP scan (minimum 5 seconds)
» Ability to filter Access Points based on network name dynamically

» Enable and disable estimated location and AP data logging



« Dynamically change from different location estimation algorithms (CoO, 1AP, 2AP
and 3AP fingerprints)

« Ability to perform fingerprint scans. The user can select how many Wi-Fi AP scans
to perform to calculate an average received signal strength for each AP. The user also
enters a relative location name for the fingerprint scan and its associated scene type.
A Floor value is also inserted, however the user must currently edit the DB after by
entering the correct floor.

« Additional fingerprint scans can be completed at the same relative location. The
repeated scans average, minimum average and maximum average signal values are
calculated and updated for each additional fingerprint scans

» Fingerprint Scans add all detected AP’s MAC address to the DB. The user has to edit
the DB after by entering the installed location of the AP. This is the information used
for the Cell of Origin (CoO) algorithm.

« History information is applied to both the AP scan and locations estimates to evalu-
ate the effectiveness at reducing fluctuating signal noise.

0 Real Time Scan / Real Time Location

0 Real Time Scan / History Location
0 History Scan/ Real Time Location
0

History Scan / History Location

SErreabhsas Sk Yhee =

« Ability to turn on/off Scene Analysis

» Reads the scene classification file (scene type and confidence) created by the JAVA
application that uses the generated/selected PIXIT Classifier

e Maintains history of the last three scene classifications. Ifthey are all the same then a
slight increase in likelihood is applied to those locations with the same scene. Other-
wise no increase is applied.

« Ability to reduce location likelihood for estimated locations that have an associated

scene type with minimal classification confidence
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« Applies an generated image classifier to a captured images from the webcam

Outputs the probability of each scene in the images classifier for captured image

Maintains last classified image results log and history log

Ability to load different images classifier

Ability to apply an additional classifier to the same captured image

AAMm Sk yhee =

» Ability to turn on/off Altimeter Scan

Reads the Altimeter value from a Zlog Altimeter every X seconds

Currently the user sets the current floor, which is used to filter out locations on the

incorrect floor

A sliding window of three scans is used to detect relative height change in altimeter
value. A change in + or - 10 feet determines the user has changed floors and current

floor is adjusted accordingly

History log
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Glossary

AP - Access Point
Wireless LAN transmitter/receiver that acts as a connection between wireless
clients and wired networks
CCTV - Closed-Circuit Television
CMYK - Cyan, Magenta, Yellow, Black colour space
CoO - Cell of Origin
A fingerprinting technique that uses’ the strongest RSSI value from AP to de-
termine location
FP - Fingerprint
One or more identifying characteristics that can be used to infer location
GPS - Global Positioning System
HSV - Hue, Saturation Value colour space or HSB
HSB - Hue, Saturation, Brightness colour space or HSV
INS - Inertia Navigation System
LAN - Local Area Network
MAC - Media Access Control
A unique device identifier
QoS - Quality of Service
RBG - Red, Blue Green colour space
RFID - Radio Frequency IDentification
RSSI - Received Signal Strength Indicator
Is a measurement of the received radio signal strength from an AP
Wi-Fi - Wireless Fidelity
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