11 research outputs found

    Experimental characterisation of the motion of an inverted pendulum

    Full text link
    [EN] : In this paper, we present a home-made experimental set-up to study the falling movement of an inverted pendulum. The experimental set-up allows preparing a laboratory session for first year Physics or Engineering students. This set-up has been used in the Bachelor's Degree in Mechanical Engineering at the School of Design Engineering of the Universitat Politècnica de València. The experimental data are fitted to the theoretical equation of motion, obtaining a very good agreement between experiment and theory. In addition, direct measurement of the parameters involved in the equations was carried out, showing a very good agreement with the calculated parameters.Gómez Tejedor, JA.; Mollar, M.; Monsoriu Serra, JA. (2015). Experimental characterisation of the motion of an inverted pendulum. En 1ST INTERNATIONAL CONFERENCE ON HIGHER EDUCATION ADVANCES (HEAD' 15). Editorial Universitat Politècnica de València. 588-592. https://doi.org/10.4995/HEAD15.2015.331OCS58859

    Design of an Adaptive Super-Twisting Control for the Cart-Pole Inverted Pendulum System

    Get PDF
    A cart-pole inverted pendulum system is one of the underactuated systems that has been used in many applications. This research aims to study the design and the effectiveness of the Adaptive Super-Twisting controller to stabilize the system by comparing it with other previous control methods. A stabilization control of the pendulum upright using the Adaptive Super-Twisting algorithm (ASTA), was investigated. The proposed controller was designed based on the decoupling algorithm method to solve the coupled control input in the system model. We then compared the proposed stabilizing controller with first-order sliding mode control (FOSMC) and Super-Twisting algorithm (STA) in Matlab/Simulink simulation and realistic computer simulation. We developed the computer simulation using anyKode Marilou software, which adopted Open-Dynamic Engine (ODE) as a physics engine. In Matlab/Simulink simulation, we considered three different scenarios: a nominal system, a system with uncertainty, and a disturbed system. Meanwhile, in a computer simulation, we only presented the comparison of different controllers' performances for the realized system. Both results showed that the three controllers could stabilize the pendulum upright with a 0.1 rad initial angular position around the vertical axis. Under the same conditions, the ASTA and STA controllers had similar performances; they both have less chattering and faster convergence than the FOSMC approach. However, the FOSMC approach had the least energy delivered and smallest errors than the other two approaches

    An experimental study for stabilization of inverted pendulum

    Get PDF
    Stabilization of Inverted Pendulum is defined as a very basic classical control problem in Control System. The Dynamics of Cart Inverted Pendulum is related to many real life applications like missile launching system, balancing systems like human walking, Aircraft landing pad in sea etc. This is a highly Unstable and non-linear system. This system is a under actuated system and also a non-minimum phase system so design a Controller for Inverted Pendulum System is very complex. This thesis includes system and hardware description of Inverted Pendulum System, Dynamics of the system, State space model, Derivation of Transfer Functions. In Past a lot of research work has already been done in Inverted Pendulum for development of Control Strategy. Here in this thesis we have done a very small work to design Control Strategy and also validate them with real-time experiments. In this thesis two-loop PID, PID+PI & LQR control have been implemented for Inverted Pendulum System and this control strategies gives satisfactory respons

    Dynamics and control of a 3D pendulum

    Full text link
    Abstract — New pendulum models are introduced and stud-ied. The pendulum consists of a rigid body, supported at a fixed pivot, with three rotational degrees of freedom. The pendulum is acted on by a gravitational force and control forces and moments. Several different pendulum models are developed to analyze properties of the uncontrolled pendulum. Symmetry assumptions are shown to lead to the planar 1D pendulum and to the spherical 2D pendulum models as special cases. The case where the rigid body is asymmetric and the center of mass is distinct from the pivot location leads to the 3D pendulum. Rigid pendulum and multi-body pendulum control problems are proposed. The 3D pendulum models provide a rich source of examples for nonlinear dynamics and control, some of which are similar to simpler pendulum models and some of which are completely new. I

    Energy-Based Control for the Cart-Pole System in Implicit Port-Hamiltonian Representation

    Get PDF
    This master thesis is devoted to the design, analysis, and experimental validation of an energy-based control strategy for the well-known benchmark cart-pole system in implicit Port-Hamiltonian (PH) representation. The control scheme performs two tasks: swingup and (local) stabilization. The swing-up controller is carried out on the basis of a generalized energy function and consists of bringing the pendulum trajectories from the lower (stable) position to a limit cycle (homoclinic orbit), which passes by the upright (unstable) position, as well as the cart trajectories to the desired point. The (local) stabilizing controller is designed under a novel algebraic Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) technique and ensures the upright (asymptotic) stabilization of the pendulum as well as the cart at a desired position. To illustrate the effectiveness of the proposed control scheme, this work presents simulations and real-time experiments considering physical damping, i.e., viscous friction. The results are additionally contrasted with another energy-based control strategy for the cart-pole system in explicit Euler-Lagrange (EL) representation.Diese Masterarbeit widmet sich dem Entwurf, der Analyse und der experimentellen Validierung einer energiebasierten Regelstrategie für das bekannte Benchmarksystem des inversen Pendels auf einem Wagen in impliziter Port-Hamiltonscher (PH) Darstellung. Das Regelungssystem erfüllt zwei Aufgaben: das Aufschwingen und (lokale) Stabilisierung. Das Aufschwingen erfolgt auf Grundlage der generalisierten Energiefunktion und besteht darin, sowohl die Trajektorien des Pendels von der unteren (stabilen) Position in einen Grenzzyklus (homokliner Orbit) zu bringen, wobei die (instabile) aufrechte Lage passiert wird, als auch den Wagen in einer gewünschten Position einzustellen. Die (lokale) Regelung zur Stabilisierung ist nach einer neuartigen algebraischen Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) Methode konzipiert und gewährleistet die aufrechte (asymptotische) Stabilisierung des Pendels sowie die Positionierung des Wagens an einem gewünschten Referenzpunkt. Um die Funktionalität des entworfenen Regelungssystems zu veranschaulichen, werden in dieser Masterarbeit Simulationen und Echtzeit-Experimente unter Berücksichtigung der physikalischen Dämpfung, d.h. der viskosen Reibung, vorgestellt. Die Ergebnisse werden zusätzlich mit einem weiteren energiebasierten Regelungsansatz für das System des inversen Pendels auf einem Wagen in expliziter Euler-Lagrange (EL) Darstellung verglichen.Tesi

    On Stabilization of Cart-Inverted Pendulum System: An Experimental Study

    Get PDF
    The Cart-Inverted Pendulum System (CIPS) is a classical benchmark control problem. Its dynamics resembles with that of many real world systems of interest like missile launchers, pendubots, human walking and segways and many more. The control of this system is challenging as it is highly unstable, highly non-linear, non-minimum phase system and underactuated. Further, the physical constraints on the track position control voltage etc. also pose complexity in its control design. The thesis begins with the description of the CIPS together with hardware setup used for research, its dynamics in state space and transfer function models. In the past, a lot of research work has been directed to develop control strategies for CIPS. But, very little work has been done to validate the developed design through experiments. Also robustness margins of the developed methods have not been analysed. Thus, there lies an ample opportunity to develop controllers and study the cart-inverted pendulum controlled system in real-time. The objective of this present work is to stabilize the unstable CIPS within the different physical constraints such as in track length and control voltage. Also, simultaneously ensure good robustness. A systematic iterative method for the state feedback design by choosing weighting matrices key to the Linear Quadratic Regulator (LQR) design is presented. But, this yields oscillations in cart position. The Two-Loop-PID controller yields good robustness, and superior cart responses. A sub-optimal LQR based state feedback subjected to H∞ constraints through Linear Matrix Inequalities (LMIs) is solved and it is observed from the obtained results that a good stabilization result is achieved. Non-linear cart friction is identified using an exponential cart friction and is modeled as a plant matrix uncertainty. It has been observed that modeling the cart friction as above has led to improved cart response. Subsequently an integral sliding mode controller has been designed for the CIPS. From the obtained simulation and experiments it is seen that the ISM yields good robustness towards the output channel gain perturbations. The efficacies of the developed techniques are tested both in simulation and experimentation. It has been also observed that the Two-Loop PID Controller yields overall satisfactory response in terms of superior cart position and robustness. In the event of sensor fault the ISM yields best performance out of all the techniques
    corecore