984 research outputs found

    Collaborative Intrusion Detection in Federated Cloud Environments

    Get PDF
    Moving services to the Cloud is a trend that has steadily gained popularity over recent years, with a constant increase in sophistication and complexity of such services. Today, critical infrastructure operators are considering moving their services and data to the Cloud. Infrastructure vendors will inevitably take advantage of the benefits Cloud Computing has to offer. As Cloud Computing grows in popularity, new models are deployed to exploit even further its full capacity, one of which is the deployment of Cloud federations. A Cloud federation is an association among different Cloud Service Providers (CSPs) with the goal of sharing resources and data. In providing a larger-scale and higher performance infrastructure, federation enables on-demand provisioning of complex services. In this paper we convey our contribution to this area by outlining our proposed methodology that develops a robust collaborative intrusion detection methodology in a federated Cloud environment. For collaborative intrusion detection we use the Dempster-Shafer theory of evidence to fuse the beliefs provided by the monitoring entities, taking the final decision regarding a possible attack. Protecting the federated Cloud against cyber attacks is a vital concern, due to the potential for significant economic consequences

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well

    Improving resilience in Critical Infrastructures through learning from past events

    Get PDF
    Modern societies are increasingly dependent on the proper functioning of Critical Infrastructures (CIs). CIs produce and distribute essential goods or services, as for power transmission systems, water treatment and distribution infrastructures, transportation systems, communication networks, nuclear power plants, and information technologies. Being resilient, where resilience denotes the capacity of a system to recover from challenges or disruptive events, becomes a key property for CIs, which are constantly exposed to threats that can undermine safety, security, and business continuity. Nowadays, a variety of approaches exists in the context of CIs’ resilience research. This dissertation starts with a systematic review based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) on the approaches that have a complete qualitative dimension, or that can be used as entry points for semi-quantitative analyses. The review identifies four principal dimensions of resilience referred to CIs (i.e., techno-centric, organizational, community, and urban) and discusses the related qualitative or semi-quantitative methods. The scope of the thesis emphasizes the organizational dimension, as a socio-technical construct. Accordingly, the following research question has been posed: how can learning improve resilience in an organization? Firstly, the benefits of learning in a particular CI, i.e. the supply chain in reverse logistics related to the small arms utilized by Italian Armed Forces, have been studied. Following the theory of Learning From Incidents, the theoretical model helped to elaborate a centralized information management system for the Supply Chain Management of small arms within a Business Intelligence (BI) framework, which can be the basis for an effective decision-making process, capable of increasing the systemic resilience of the supply chain itself. Secondly, the research question has been extended to another extremely topical context, i.e. the Emergency Management (EM), exploring the crisis induced learning where single-loop and double-loop learning cycles can be established regarding the behavioral perspective. Specifically, the former refers to the correction of practices within organizational plans without changing core beliefs and fundamental rules of the organization, while the latter aims at resolving incompatible organizational behavior by restructuring the norms themselves together with the associated practices or assumptions. Consequently, with the aim of ensuring high EM systems resilience, and effective single-loop and double-loop crisis induced learning at organizational level, the study examined learning opportunities that emerge through the exploration of adaptive practices necessary to face the complexity of a socio-technical work domain as the EM of Covid-19 outbreaks on Oil & Gas platforms. Both qualitative and quantitative approaches have been adopted to analyze the resilience of this specific socio-technical system. On this consciousness, with the intention to explore systems theoretic possibilities to model the EM system, the Functional Resonance Analysis Method (FRAM) has been proposed as a qualitative method for developing a systematic understanding of adaptive practices, modelling planning and resilient behaviors and ultimately supporting crisis induced learning. After the FRAM analysis, the same EM system has also been studied adopting a Bayesian Network (BN) to quantify resilience potentials of an EM procedure resulting from the adaptive practices and lessons learned by an EM organization. While the study of CIs is still an open and challenging topic, this dissertation provides methodologies and running examples on how systemic approaches may support data-driven learning to ultimately improve organizational resilience. These results, possibly extended with future research drivers, are expected to support decision-makers in their tactical and operational endeavors

    Evolution of security engineering artifacts: a state of the art survey

    Get PDF
    Security is an important quality aspect of modern open software systems. However, it is challenging to keep such systems secure because of evolution. Security evolution can only be managed adequately if it is considered for all artifacts throughout the software development lifecycle. This article provides state of the art on the evolution of security engineering artifacts. The article covers the state of the art on evolution of security requirements, security architectures, secure code, security tests, security models, and security risks as well as security monitoring. For each of these artifacts the authors give an overview of evolution and security aspects and discuss the state of the art on its security evolution in detail. Based on this comprehensive survey, they summarize key issues and discuss directions of future research

    Deployment of Next Generation Intrusion Detection Systems against Internal Threats in a Medium-sized Enterprise

    Get PDF
    In this increasingly digital age, companies struggle to understand the origin of cyberattacks. Malicious actions can come from both the outside and the inside the business, so it is necessary to adopt tools that can reduce cyber risks by identifying the anomalies when the first symptoms appear. This thesis deals with the topic of internal attacks and explains how to use innovative Intrusion Detection Systems to protect the IT infrastructure of Medium-sized Enterprises. These types of technologies try to solve issues like poor visibility of network traffic, long response times to security breaches, and the use of inefficient access control mechanisms. In this research, multiple types of internal threats, the different categories of Intrusion Detection Systems and an in-depth analysis of the state-of-the-art IDSs developed during the last few years have been detailed. After that, there will be a brief explanation of the effectiveness of IDSs in both testing and production environments. All the reported phases took place within a company network, starting from the positioning of the IDS, moving on to its configuration and ending with the production environment. There is an analysis of the company expectations, together with an explanation of the different IDSs characteristics. This research shows data about potential attacks, mitigated and resolved threats, as well as network changes made thanks to the information gathered while using a cutting edge IDS. Moreover, the characteristics that a medium-sized company must have in order to be adequately protected by a new generation IDS have been generalized. In the same way, the functionalities that an IDS must possess in order to achieve the set objectives were reported. IDSs are incredibly adaptable to different environments, such as companies of different sectors and sizes, and can be tuned to achieve better results. At the end of this document are reported the potential future developments that should be addressed to improve IDS technologies further

    A Systematic Literature Survey of Unmanned Aerial Vehicle Based Structural Health Monitoring

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are being employed in a multitude of civil applications owing to their ease of use, low maintenance, affordability, high-mobility, and ability to hover. UAVs are being utilized for real-time monitoring of road traffic, providing wireless coverage, remote sensing, search and rescue operations, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. They are the next big revolution in technology and civil infrastructure, and it is expected to dominate more than $45 billion market value. The thesis surveys the UAV assisted Structural Health Monitoring or SHM literature over the last decade and categorize UAVs based on their aerodynamics, payload, design of build, and its applications. Further, the thesis presents the payload product line to facilitate the SHM tasks, details the different applications of UAVs exploited in the last decade to support civil structures, and discusses the critical challenges faced in UASHM applications across various domains. Finally, the thesis presents two artificial neural network-based structural damage detection models and conducts a detailed performance evaluation on multiple platforms like edge computing and cloud computing

    Proceedings of the 10th International Conference on Ecological Informatics: translating ecological data into knowledge and decisions in a rapidly changing world: ICEI 2018

    Get PDF
    The Conference Proceedings are an impressive display of the current scope of Ecological Informatics. Whilst Data Management, Analysis, Synthesis and Forecasting have been lasting popular themes over the past nine biannual ICEI conferences, ICEI 2018 addresses distinctively novel developments in Data Acquisition enabled by cutting edge in situ and remote sensing technology. The here presented ICEI 2018 abstracts captures well current trends and challenges of Ecological Informatics towards: • regional, continental and global sharing of ecological data, • thorough integration of complementing monitoring technologies including DNA-barcoding, • sophisticated pattern recognition by deep learning, • advanced exploration of valuable information in ‘big data’ by means of machine learning and process modelling, • decision-informing solutions for biodiversity conservation and sustainable ecosystem management in light of global changes

    Proceedings of the 10th International Conference on Ecological Informatics: translating ecological data into knowledge and decisions in a rapidly changing world: ICEI 2018

    Get PDF
    The Conference Proceedings are an impressive display of the current scope of Ecological Informatics. Whilst Data Management, Analysis, Synthesis and Forecasting have been lasting popular themes over the past nine biannual ICEI conferences, ICEI 2018 addresses distinctively novel developments in Data Acquisition enabled by cutting edge in situ and remote sensing technology. The here presented ICEI 2018 abstracts captures well current trends and challenges of Ecological Informatics towards: • regional, continental and global sharing of ecological data, • thorough integration of complementing monitoring technologies including DNA-barcoding, • sophisticated pattern recognition by deep learning, • advanced exploration of valuable information in ‘big data’ by means of machine learning and process modelling, • decision-informing solutions for biodiversity conservation and sustainable ecosystem management in light of global changes

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems
    • …
    corecore