80 research outputs found

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    Exploiting Fine-Grain Concurrency Analytical Insights in Superscalar Processor Design

    Get PDF
    This dissertation develops analytical models to provide insight into various design issues associated with superscalar-type processors, i.e., the processors capable of executing multiple instructions per cycle. A survey of the existing machines and literature has been completed with a proposed classification of various approaches for exploiting fine-grain concurrency. Optimization of a single pipeline is discussed based on an analytical model. The model-predicted performance curves are found to be in close proximity to published results using simulation techniques. A model is also developed for comparing different branch strategies for single-pipeline processors in terms of their effectiveness in reducing branch delay. The additional instruction fetch traffic generated by certain branch strategies is also studied and is shown to be a useful criterion for choosing between equally well performing strategies. Next, processors with multiple pipelines are modelled to study the tradeoffs associated with deeper pipelines versus multiple pipelines. The model developed can reveal the cause of performance bottleneck: insufficient resources to exploit discovered parallelism, insufficient instruction stream parallelism, or insufficient scope of concurrency detection. The cost associated with speculative (i.e., beyond basic block) execution is examined via probability distributions that characterize the inherent parallelism in the instruction stream. The throughput prediction of the analytic model is shown, using a variety of benchmarks, to be close to the measured static throughput of the compiler output, under resource and scope constraints. Further experiments provide misprediction delay estimates for these benchmarks under scope constraints, assuming beyond-basic-block, out-of-order execution and run-time scheduling. These results were derived using traces generated by the Multiflow TRACE SCHEDULING™(*) compacting C and FORTRAN 77 compilers. A simplified extension to the model to include multiprocessors is also proposed. The extended model is used to analyze combined systems, such as superpipelined multiprocessors and superscalar multiprocessors, both with shared memory. It is shown that the number of pipelines (or processors) at which the maximum throughput is obtained is increasingly sensitive to the ratio of memory access time to network access delay, as memory access time increases. Further, as a function of inter-iteration dependency distance, optimum throughput is shown to vary nonlinearly, whereas the corresponding Optimum number of processors varies linearly. The predictions from the analytical model agree with published results based on simulations. (*)TRACE SCHEDULING is a trademark of Multiflow Computer, Inc

    Fault tolerance issues in nanoelectronics

    Get PDF
    The astonishing success story of microelectronics cannot go on indefinitely. In fact, once devices reach the few-atom scale (nanoelectronics), transient quantum effects are expected to impair their behaviour. Fault tolerant techniques will then be required. The aim of this thesis is to investigate the problem of transient errors in nanoelectronic devices. Transient error rates for a selection of nanoelectronic gates, based upon quantum cellular automata and single electron devices, in which the electrostatic interaction between electrons is used to create Boolean circuits, are estimated. On the bases of such results, various fault tolerant solutions are proposed, for both logic and memory nanochips. As for logic chips, traditional techniques are found to be unsuitable. A new technique, in which the voting approach of triple modular redundancy (TMR) is extended by cascading TMR units composed of nanogate clusters, is proposed and generalised to other voting approaches. For memory chips, an error correcting code approach is found to be suitable. Various codes are considered and a lookup table approach is proposed for encoding and decoding. We are then able to give estimations for the redundancy level to be provided on nanochips, so as to make their mean time between failures acceptable. It is found that, for logic chips, space redundancies up to a few tens are required, if mean times between failures have to be of the order of a few years. Space redundancy can also be traded for time redundancy. As for memory chips, mean times between failures of the order of a few years are found to imply both space and time redundancies of the order of ten

    Combining FPGA prototyping and high-level simulation approaches for Design Space Exploration of MPSoCs

    Get PDF
    Modern embedded systems are parallel, component-based, heterogeneous and finely tuned on the basis of the workload that must be executed on them. To improve design reuse, Application Specific Instruction-set Processors (ASIPs) are often employed as building blocks in such systems, as a solution capable of satisfying the required functional and physical constraints (e.g. throughput, latency, power or energy consumption etc.), while providing, at the same time, high flexibility and adaptability. Composing a multi-processor architecture including ASIPs and mapping parallel applications onto it is a design activity that require an extensive Design Space Exploration process (DSE), to result in cost-effective systems. The work described here aims at defining novel methodologies for the application-driven customizations of such highly heterogeneous embedded systems. The issue is tackled at different levels, integrating different tools. High-level event-based simulation is a widely used technique that offers speed and flexibility as main points of strength, but needs, as a preliminary input and periodically during the iteration process, calibration data that must be acquired by means of more accurate evaluation methods. Typically, this calibration is performed using instruction-level cycleaccurate simulators that, however, turn out to be very slow, especially when complete multiprocessor systems must be evaluated or when the grain of the calibration is too fine, while FPGA approaches have shown to performbetter for this particular applications. FPGA-based emulation techniques have been proposed in the recent past as an alternative solution to the software-based simulation approach, but some further steps are needed before they can be effectively exploitedwithin architectural design space exploration. Firstly, some kind of technology-awareness must be introduced, to enable the translation of the emulation results into a pre-estimation of a prospective ASIC implementation of the design. Moreover, when performing architectural DSE, a significant number of different candidate design points has to be evaluated and compared. In this case, if no countermeasures are taken, the advantages achievable with FPGAs, in terms of emulation speed, are counterbalanced by the overhead introduced by the time needed to go through the physical synthesis and implementation flow. Developed FPGA-based prototyping platform overcomes such limitations, enabling the use of FPGA-based prototyping for micro-architectural design space exploration of ASIP processors. In this approach, to increase the emulation speed-up, two different methods are proposed: the first is based on automatic instantiation of additional hardware modules, able to reconfigure at runtime the prototype, while the second leverages manipulation of application binary code, compiled for a custom VLIW ASIP architecture, that is transformed into code executable on a different configuration. This allows to prototype a whole set of ASIP solutions after one single FPGA implementation flow, mitigating the afore-mentioned overhead.A short overview on the tools used throughout the work will also be offered, covering basic aspects of Intel-Silicon Hive ASIP development toolchain, SESAME framework general description, along with a review of state-of-art simulation and prototyping techniques for complex multi-processor systems. Each proposed approach will be validated through a real-world use case, confirming the validity of this solution

    Combining FPGA prototyping and high-level simulation approaches for Design Space Exploration of MPSoCs

    Get PDF
    Modern embedded systems are parallel, component-based, heterogeneous and finely tuned on the basis of the workload that must be executed on them. To improve design reuse, Application Specific Instruction-set Processors (ASIPs) are often employed as building blocks in such systems, as a solution capable of satisfying the required functional and physical constraints (e.g. throughput, latency, power or energy consumption etc.), while providing, at the same time, high flexibility and adaptability. Composing a multi-processor architecture including ASIPs and mapping parallel applications onto it is a design activity that require an extensive Design Space Exploration process (DSE), to result in cost-effective systems. The work described here aims at defining novel methodologies for the application-driven customizations of such highly heterogeneous embedded systems. The issue is tackled at different levels, integrating different tools. High-level event-based simulation is a widely used technique that offers speed and flexibility as main points of strength, but needs, as a preliminary input and periodically during the iteration process, calibration data that must be acquired by means of more accurate evaluation methods. Typically, this calibration is performed using instruction-level cycleaccurate simulators that, however, turn out to be very slow, especially when complete multiprocessor systems must be evaluated or when the grain of the calibration is too fine, while FPGA approaches have shown to performbetter for this particular applications. FPGA-based emulation techniques have been proposed in the recent past as an alternative solution to the software-based simulation approach, but some further steps are needed before they can be effectively exploitedwithin architectural design space exploration. Firstly, some kind of technology-awareness must be introduced, to enable the translation of the emulation results into a pre-estimation of a prospective ASIC implementation of the design. Moreover, when performing architectural DSE, a significant number of different candidate design points has to be evaluated and compared. In this case, if no countermeasures are taken, the advantages achievable with FPGAs, in terms of emulation speed, are counterbalanced by the overhead introduced by the time needed to go through the physical synthesis and implementation flow. Developed FPGA-based prototyping platform overcomes such limitations, enabling the use of FPGA-based prototyping for micro-architectural design space exploration of ASIP processors. In this approach, to increase the emulation speed-up, two different methods are proposed: the first is based on automatic instantiation of additional hardware modules, able to reconfigure at runtime the prototype, while the second leverages manipulation of application binary code, compiled for a custom VLIW ASIP architecture, that is transformed into code executable on a different configuration. This allows to prototype a whole set of ASIP solutions after one single FPGA implementation flow, mitigating the afore-mentioned overhead.A short overview on the tools used throughout the work will also be offered, covering basic aspects of Intel-Silicon Hive ASIP development toolchain, SESAME framework general description, along with a review of state-of-art simulation and prototyping techniques for complex multi-processor systems. Each proposed approach will be validated through a real-world use case, confirming the validity of this solution

    Using Trace Scratchpads to Reduce Execution Times in Predictable Real-Time Architectures

    Full text link

    Vector-thread architecture and implementation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 181-186).This thesis proposes vector-thread architectures as a performance-efficient solution for all-purpose computing. The VT architectural paradigm unifies the vector and multithreaded compute models. VT provides the programmer with a control processor and a vector of virtual processors. The control processor can use vector-fetch commands to broadcast instructions to all the VPs or each VP can use thread-fetches to direct its own control flow. A seamless intermixing of the vector and threaded control mechanisms allows a VT architecture to flexibly and compactly encode application parallelism and locality. VT architectures can efficiently exploit a wide variety of loop-level parallelism, including non-vectorizable loops with cross-iteration dependencies or internal control flow. The Scale VT architecture is an instantiation of the vector-thread paradigm designed for low-power and high-performance embedded systems. Scale includes a scalar RISC control processor and a four-lane vector-thread unit that can execute 16 operations per cycle and supports up to 128 simultaneously active virtual processor threads. Scale provides unit-stride and strided-segment vector loads and stores, and it implements cache refill/access decoupling. The Scale memory system includes a four-port, non-blocking, 32-way set-associative, 32 KB cache. A prototype Scale VT processor was implemented in 180 nm technology using an ASIC-style design flow. The chip has 7.1 million transistors and a core area of 16.6 mm2, and it runs at 260 MHz while consuming 0.4-1.1 W. This thesis evaluates Scale using a diverse selection of embedded benchmarks, including example kernels for image processing, audio processing, text and data processing, cryptography, network processing, and wireless communication.(cont.) Larger applications also include a JPEG image encoder and an IEEE 802.11 la wireless transmitter. Scale achieves high performance on a range of different types of codes, generally executing 3-11 compute operations per cycle. Unlike other architectures which improve performance at the expense of increased energy consumption, Scale is generally even more energy efficient than a scalar RISC processor.by Ronny Meir Krashinsky.Ph.D

    KAVUAKA: a low-power application-specific processor architecture for digital hearing aids

    Get PDF
    The power consumption of digital hearing aids is very restricted due to their small physical size and the available hardware resources for signal processing are limited. However, there is a demand for more processing performance to make future hearing aids more useful and smarter. Future hearing aids should be able to detect, localize, and recognize target speakers in complex acoustic environments to further improve the speech intelligibility of the individual hearing aid user. Computationally intensive algorithms are required for this task. To maintain acceptable battery life, the hearing aid processing architecture must be highly optimized for extremely low-power consumption and high processing performance.The integration of application-specific instruction-set processors (ASIPs) into hearing aids enables a wide range of architectural customizations to meet the stringent power consumption and performance requirements. In this thesis, the application-specific hearing aid processor KAVUAKA is presented, which is customized and optimized with state-of-the-art hearing aid algorithms such as speaker localization, noise reduction, beamforming algorithms, and speech recognition. Specialized and application-specific instructions are designed and added to the baseline instruction set architecture (ISA). Among the major contributions are a multiply-accumulate (MAC) unit for real- and complex-valued numbers, architectures for power reduction during register accesses, co-processors and a low-latency audio interface. With the proposed MAC architecture, the KAVUAKA processor requires 16 % less cycles for the computation of a 128-point fast Fourier transform (FFT) compared to related programmable digital signal processors. The power consumption during register file accesses is decreased by 6 %to 17 % with isolation and by-pass techniques. The hardware-induced audio latency is 34 %lower compared to related audio interfaces for frame size of 64 samples.The final hearing aid system-on-chip (SoC) with four KAVUAKA processor cores and ten co-processors is integrated as an application-specific integrated circuit (ASIC) using a 40 nm low-power technology. The die size is 3.6 mm2. Each of the processors and co-processors contains individual customizations and hardware features with a varying datapath width between 24-bit to 64-bit. The core area of the 64-bit processor configuration is 0.134 mm2. The processors are organized in two clusters that share memory, an audio interface, co-processors and serial interfaces. The average power consumption at a clock speed of 10 MHz is 2.4 mW for SoC and 0.6 mW for the 64-bit processor.Case studies with four reference hearing aid algorithms are used to present and evaluate the proposed hardware architectures and optimizations. The program code for each processor and co-processor is generated and optimized with evolutionary algorithms for operation merging,instruction scheduling and register allocation. The KAVUAKA processor architecture is com-pared to related processor architectures in terms of processing performance, average power consumption, and silicon area requirements

    Performance Aspects of Synthesizable Computing Systems

    Get PDF
    • …
    corecore