
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

8-1-1991

Exploiting Fine-Grain Concurrency Analytical Insights in Exploiting Fine-Grain Concurrency Analytical Insights in

Superscalar Processor Design Superscalar Processor Design

Pradeep K. Dubey
Purdue University

George B. Adams III
Purdue University

Michael J. Flynn
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Dubey, Pradeep K.; Adams, George B. III; and Flynn, Michael J., "Exploiting Fine-Grain Concurrency
Analytical Insights in Superscalar Processor Design" (1991). Department of Electrical and Computer
Engineering Technical Reports. Paper 746.
https://docs.lib.purdue.edu/ecetr/746

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages

EXPLOITING FINE-GRAIN CONCURRENCY:

ANALYTICAL INSIGHTS IN

SUPERSCALAR PROCESSOR DESIGN

Pradeep K. Dubey

George B. Adams III

Michael J. Flynn *

School of Electrical Engineering

Purdue University

West Lafayette, Indiana 47907

Purdue University

TR-EE 91-31

August 1991

* Department of Electrical Engineering, StanfordUniversity

ii

ACKNOWLEDGEMENTS

The authors thank Prof. Henry Dietz, Prof. Jose Fortes, Prof. Mike Atallah, Prof.

Arup Bose, and Raymond Kamin, all of Purdue University.

We also thank Dr. James T. Kuehn at the Supercomputing Research Center in

Bowie, Maryland, and the management at the University Computing Center at the

California State University, Sacramento, for making their Multiflow computers available

for this research. Finally, we thank Mr. Kent G. Fielden of Intel Corporation, Santa Clara

for making available technical documentation crucial to the experiments.

U i

TABLE OF CONTENTS

Page

LIST OF TABLES.. vi

LIST OF FIGURES v iii

LISTOF SYMBOLS xvii

ABSTRACT...... xxi

CHAPTER I INTRODUCTION.............. I

1.1 Motivation..... I
1.2 Review of Concurrency Representation,

Detection and Scheduling Techniques................... 2
1.2.1 RepresentingConcurrency.................. 3
1.2.2 Dependencies 5
1.2.3 Detecting, Dispatching and Scheduling

ConcurrentOperations....................... 9
1.2.4 ImplementationTradeoffs 20
1.2.5 Sum m ary........................... 24

1.3 DissertationOverview.. 30

CHAPTER 2 OPTIMAL PIPELINING 32

2.1 Introduction.......................... .. 32
2.1.1 Previous Research 33

2.2 A Generic Model 34
2.3 Inferences 38

2.3.1 Correspondence with Previously Published
Experimental R esults................................. 53

2.4 Potential Improvements to the M odel..................... 53
2.5 Summary 55

CHAPTER 3 BRANCHSTRATEGIESrMODELLINGAND
OPTIMIZATION 59

3.1 Inttoduction 59
3.1.1 PreviousResearch...................... 59

3.2 TheM odel.. 60
3.3 ClassificationofBranchStrategies........................... 62
3 4 BranchPrediCtion 65
3.5 Results 70

3.5.1 Inferences........................ 70

iv

3.6 HybridStrategies 76
3.6.1 Inferences... 77

3.7 Sum m ary.............. 81

CHAPTER 4 SUPERPIPELINED VERSUS SUPERSCALAR 82

4.1 Introduction.. 82
4.2 Superpipeline/Superscalar Tradeoff M odel... . 82
4.3 Performance Lim its.............. 85
4.4 ModellingResourceUtilization..................................... 89
4.5 Summary 90

CHAPTER 5 INSTRUCTION WINDOW SIZE TRADEOFFS AND
CHARACTERIZATION OF PROGRAM PARALLELISM.... . 91

5.1 Introduction...................................... 91
5.2 The Analytic Performance Model 92
5.3 C ostofB ranches.... 98

5.3.1 CalculatingMispredictionDelayResulting
from Speculative Execution.. . 99

5.3.2 Alternate Computation for P u , 101
5.3.3 Dynamic Scheduling with Finite Lookahead 103

5.4 Experimental Results 103
5.5 Potential Improvements to the M odel................... 113
5.6 Sum m ary........................ 120

CHAPTER 6 SPECTRUM OF CHOICES: SUPERPIPELINED,
SUPERSCALAR OR MULTIPROCESSOR? 122

6.1 Introduction........ 122
6.2 DelaysAssociatedwithMultiprocessors 122

6.2.1 Dependency Delay 124
6.2.2 OperandFetch Delay 126

6.3 Utilization Constraints 126
6.3.1 Characteristics of Utilization Curves 127
6.3.2 Alternate Characterization of Program Parallelism............ 129

6.4 Results 132
6.5 CombinedSystems ..— 139
6.6 Summary 142

CHAPTER 7 CONCLUSIONS 143

7.1 Summary 143
7.2 Contributions 144

CHAPTER 8 FUTURE RESEARCH...................... ... 146

8.1 Out-of-sequence Execution Versus
LocalityofO perandReferences... 146

8.2 Cosi/Performance Tradeoffs for Concurrency Detection
in Different Execution Phases......... 153

Page

V

Page

8.3 OtherM easuresforDistancebetweenlnstructionPairs......................... 154
8.4 Recursive Performance Modelling 154

LIST OF REFERENCES...... 157

APPENDICES
AppendixA 163
Appendix BI.............. 182
Appendix C (158 page source code listing; not included) 194

LIST OF TABLES

Table Page

1.1 Gomparisonofconcurrencydetectionandschedulingstrategies...................... 11

2.1 Nomenclature and nominal values of model parameters..... 37

2.2 Normalized throughput (Gnorm) versus static overhead (c) 39

2.3 Normalized throughput (Gnorm) versus dynamic overhead (k)..... 39

2.4 Normalized throughput (Gnorm) versus constant term of the
utilization model (Mmax) 40

2.5 Normalized throughput (Gnorm) versus first-order coefficient of the
utilization model (v).. 40

2.6 Normalized throughput (Gnorm) versus second-order coefficient of
the utilization model (r) 41

2.7 Throughput gain (AG) versus static overhead (c)....................... 45

2.8 Throughput gain (AG) versus dynamic overhead (k) 45

2.9 Throughput gain (AG) versus constant term of the utilization model
(Mmax) ••••••••..•— 46

2.10 Throughput gain (AG) versus first-order coefficient of the utilization
model (v)......................... 46

2.11 Throughput gain (AG) versus second-order coefficient of the
utilization model (r) 47

2.12 Normalized throughput (Gnorm) versus branch frequency (b)................. 56

2.13 Normalized throughput (Gnorm) versus segment slowdown
frequency (x) .. 56

3.1 Classificationofbranchstrategies... 63

vi

Table Page

3.2 Table of definitions...................... 68

3.3 Nottiinal values of model parameters................ ... »... 71

5.1 Benchmarks used in this study...... 104

6.1 Nominal values of model parameters describing hardware and
program characteristics 133

6.2 Optimum number of pipelines versus ratio of memory access delay,
dc, to network access delay factor, dcn....................................... 138

Appendix
Table

A. I COmmonly used symbols............................ 166

B I Additional benchmarks used in this study................................. 182

LIST OF FIGURES

Figure Page

LI Computation graph (b), Precedence matrix (c) and Petri net (d) for
the sample code sequence in (a).. 6

1.2 AND/OR graph (b) for the code sequence in (a). Assuming a
machine with two add/subtract and two multiply/divide units. Input
dependence ignored.. 8

1.3 Available design choices for superscalar processors............... 26

1.4 Classificationofschedulingstrategies................ 26

1.5 Speedup from out-of-order execution relative to in-order execution
as a function of pipeline depth..................... 27

1.6 Multiple instruction issue with out-of-order execution and with
scope limited to within the basic block; assuming single-cycle
functional unit processor (a) and multiple-cycle functional unit
processor (b). These graphs are derived from results reported in
[AKT86] 29

1.7 Architectural framework used for this research................................. 31

2.1 Normalized throughput (Gnorm) versus static overhead (c)...................... 42

2.2 Normalized throughput (Gnorm) versus dynamic overhead (k)................. 42

2.3 Normalized throughput (Gnorm) versus constant term of the
utilization model (u max) 43

2.4 Normalizedthroughput(Gnom)Versusfirst-Ordercoefficientofthe
utilization model (v)......... 43

2.5 Normalized throughput (Gnorm) versus second-order coefficient of
the utilization model (r) 44

2.6 Throughput gain (AG) versus static overhead (c).... .. 49

viii

' ix

2.7 Throughput gain (AG) versus dynamic overhead (k) 49

2.8 Throughput gain (AG) versus constant term of the utilization model
(Mmax)................................... 50

2.9 Throughput gain (AG) versus first-order coefficient of the utilization
model (v)j.. . 50

2.10 Throughput gain (AG) versus second-order coefficient of the
utilization model (r) 51

2.11 Optimal throughput gain (AGopt) versus static overhead (c)................. . 52

2.12 Normalized throughput (Gwrm) versus branch frequency (b) 57

2.13 Normalized throughput (Gnorm) versus segment slowdown
frequency (x)......................... 57

3.1 Instruction dependency in a pipeline... 61

3.2 Aninstructionpipeline.............. 61

3.3 A loopbuffer............... 64

3.4 Predict branch always taken with target copy (PTTC)................................ 66

3.5 Abrartchtargetbuffer........................... 67

3.6 Average branch delay versus successful branch probability for
PBNT, LB, PTTC, DB, TNTD, and BTB strategies............ 72

3.7 Average branch delay versus successful branch probability for
PBNT, PT A, FTOF, PBAT, and FBP strategies 72

3.8 Average number of wasted instruction fetches per branch versus
successful branch probability for PBNT, LB, PTTC, DB, TNTD, and
BTB strategies.. 73

3.9 Average number of wasted instruction fetches per branch versus
successful branch probability for PBNT, PTA, FTOF, PBAT, and
FBP strategies............................. 73

3.10 Merit ratio versus successful branch probability for PBNT, LB,
PTTC, DB, TNTD, and BTB strategies.................... 74

3.11 Merit ratio versus successful branch probability for PBNT, PT A,
FTOF, PBAT, and FBP strategies............. 74

Figure Page

X

3.12 Average branch delay versus successful branch probability for
PBNT, TTCDB, TTDLB, TNTLB, and TNBTB strategies................. . 78

3.13 Average number of wasted instruction fetches per branch versus
successful branch probability for PBNT, TTCDB, TTDLB, TNTLB,
and TNBTB strategies..................................... 78

3.14 Merit Ratio versus successful branch probability for PBNT, TTCDB,
TTDLB, TNTLB, and TNBTB strategies... . 79

3.15 Average branch delay versus number of stages for conditional
branch resolution for PBNT, TTCDB, TTDLB, TNTLB, and TNBTB
strategies.. 79

3.16 Average branch delay versus Loop/Target buffer hit probability for
LBi BTB, TTDLB, TNTLB, and TNBTB strategies..........................i....... 80

3.17 Average branch delay versus target fetch freeze probability for LB,
BTB, TTDLB, TNTLBi and TNBTB strategies...................... 80

Figure Page

4.1 Normalized throughput versus number of pipelines, with the
following nominal assumptions: data cache reference probability =
0.5, data cache miss probability = 0.05, data cache miss duration =
0.5 * operation delay, branch probability = 0.2, and branch delay =
0.15 * operation delay... . 86

4.2 Utilization versus number of pipelines (parameter values same as in
Figure 4.1)... 87

5.1 Illustration of dependencies determining conditional independence
probability, p ^ . Each single arc indicates a pair of instructions that
are given to be independent. The double arc denotes die
dependence in question forp,;* 94

5.2 Probability of scheduling k instructions for various values of p 5 and
a fixed instruction window size of 16 96

5.3 Probability of scheduling k instructions for various instruction
window sizes and p 5 =0.7....................-........... 97

5.4 Probability of scheduling k instructions for various instruction
window sizes andp 5 =0.8..— 97

5.5 Illustration of a program tree, a scheduled trace of execution, and
the assembly of wide instruction words with beyond-basic-block
scheduling... 100

Xl

5.6 Average misprediction delay versus program tree depth for branch
frequency, b = 0.2, average cost of damage undoing per percolation,
p. = I, and various percolation-distance distribution parameter, q,
values. The parameter q is a measure of beyond-basic-block
scheduling probability................................ 102

5.7 Measured instruction scheduling probability versus distance for the
Stanford, spice, fpppp, and tair benchmarks.... 106

5.8 M easuredinstructionschedulingprobabilityversusdistanceforlhe
applu, cgm, fftpde, and mgrid benchmarks............................ 106

5.9 Measured instruction scheduling probability versus distance for the
mdg, mg3d, and bdna benchmarks......... 107

5.10 Measured beyond-basic-block instruction scheduling probability
versus distance for the Stanford, spice, fpppp, and tair benchmarks.................. 109

5.11 Measured beyond-basic-block instruction scheduling probability
versus distance for the applu, cgm, fftpde, and mgrid benchmarks................. 109

5.12 Measured beyond-basic-block instruction scheduling probability
versus distance for the mdg, mg3d, and bdna benchmarks................................. 110

5.13 Predictedmispredictiondelaybasedon theempirically collectedpa,
distribution as a function of the amount of dynamic lookahead, in
terms of number of basic blocks for the Stanford, spice, fpppp, and
tair benchmarks... I l l

5.14 Predicted misprediction delay based on the empirically collected Po,
distribution as a function of the amount of dynamic lookahead, in
terms of number of basic blocks for the applu, cgm, fftpde, and
mgrid benchmarks................ I l l

5.15 Predicted misprediction delay based on the empirically collected p co
distribution as a function of the amount of dynamic lookahead, in
terms of number of basic blocks for the mdg, mg3d, and bdna
benchmarks.... 112

5.16 Throughput under resource and scope constraints for the Stanford
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.................... ... 114

5.17 Throughput under resource and scope constraints for the spice
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.............. 114

Figure Page

5.18 Throughput under resource and scope constraints for the jfpppp
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.................................... 115

5.19 Throughput under resource and scope constraints for the tair
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model... 115

5.20 Throughput under resource and scope constraints for the applu
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. Thecompiler outputw asinfluencedby resource
constraints that are not part of the model..... 116

5.21 Throughput under resource and scope constraints for the cgm
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model........................ 116

5.22 Throughput under resource and scope constraints for the fftpde
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model...................... 117

5.23 Throughput under resource and scope constraints for the mgrid
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model........................ 117

5.24 Throughput under resource and scope constraints for the mdg
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
Constraints that are not part of the model..... 118

5.25 Throughput under resource and scope constraints for the mg 3d
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model...................................... 118

5.26 Throughput under resource and scope constraints for the bdna
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model........................ 119

6.1 Combinedsystemarchitectureassumedbythemodels.......>.......... 123

xii

Figure Page

Xlll

6.2 Inter-iteration dependency............. 125

6.3 Sample code sequences with same a (= 0.1) but different amounts
of parallelism.................. 128

6.4 Assumedutilizationcurves.............. 130

6.5 a) Utilization versus instruction word width measured on the
Multiflow TRACE 28/200 computer and (b) utilization curves
derived from tables on pp. 214-217 of [Pol86];....... . 131

6.6 Impact of utilization on throughput for superpipelines............... 135

6.7 Maximum throughput (a) and optimum number of pipelines (b) as a
function o f the fraction of code that must be executed on a single
function unit (pipeline).. 136

6.8 Maximum throughput (a) and optimum number of pipelines (b)
versus ratio of memory access delay (dc) to network access delay
factor (dn)', dc values shown are 0.05 to 0.65 in increments of 0 .1 137

6.9 Maximum throughput (a) and optimum number of processors (b)
versus inter-iteration dependency distance; I ranges from 0 to 0.30 in
increments of 0.05..... 140

6.10 Throughput plot of combined system performance........................... 141

8.1 Twoexecution scenarios........................... 147

8.2 Reference pattern for a memory location bound to certain logical
operand.. 151

8.3 E n tiiesandex itsou to fdatacachefo ram em ory locationbound to
certain logical operand..................... 151

8.4 Dependeneeacrossiterations...................... 155

Figure Page

Appendix
Figitie

A. I Average branch delay versus number of substages in the instruction
fetch stage for PBNT, LB, PTTC, FBP, TNTD, and BTB strategies................ 174

A.2 Average number of wasted instruction fetches per branch versus
number of substages in the instruction fetch stage for PBNT, LB,
PTTC, FBP, TNTD, and BTB strategies.............................. ..:............. 174

xiv

A.3 Merit ratio versus number of substages in the instruction fetch stage
fo rPBNT,L B ,PTTC,FBPi TNTD, andBTB strategies......;............................... 175

A.4 Average branch delay versus number of stages for conditional
branch resolution for PBNT, LB, PTTC, FBP, TNTD, and BTB
strategies... 175

A 5 Average number of wasted instruction fetches per branch versus
number of stages for conditional branch resolution for PBNT, LB,
PTTC, FBP, TNTD, and BTB strategies............................. . 176

A. 6 Merit ratio versus number of stages for conditional branch
resolution for PBNT, LB, PTTC, FBP, TNTD, andB7B strategies................... 176

A.7 Average branch delay versus number of substages in the instruction
fetch Stage for PBNT, TTCDB, TTDLB, TNTLB, and TNBTB
strategies....... 177

A .8 Average number of wasted instruction fetches per branch versus
number of substages in the instruction fetch stage for PBNT,
TTCDB, TTDLB, TNTLB, and TNBTB strategies........................... 177

A.9 Merit ratio versus number of substages in the instruction fetch stage
for PBNT, TTCDB, TTDLB, TNTLB, and TNBTB strategies............. 178

A. 10 Average number of wasted instruction fetches per branch versus
number of stages for conditional branch resolution for PBNT,
TTCDB, TTDLB, TNTLB, and TNBTB strategies....................... . 178

A. 11 Merit ratio versus number of stages for conditional branch
resolution for PBNT, TTCDB, TTDLB, TNTLB, and TNBTB
strategies................... 179

A. 12 Average number of wasted instruction fetches per branch versus
Loop/Target buffer hit probability for LB, BTB, TTDLB, TNTLB,
and TNBTB strategies............... 179

A. 13 Merit ratio versus Loop/Target buffer hit probability for LB, BTB,
TTDLB, TNTLB, and TNBTB strategies....................... 180

A. 14 Average number of wasted instruction fetches per branch versus
target fetch freeze probability for LB, BTB, TTCDB, TTDLB,
TNTLB, and TNBTB strategies...................... 180

A. 15 Merit ratio versus target fetch freeze probability for LB, BTB,
TTCDB, TTDLB, TNTLB, and TNBTB strategies................. 181

Figure Page

B .l Measured instruction scheduling probability versus distance for
whetstone, tomcatv, appbt, appsp, and buk benchmarks.................................... 183

B.2 Measured instruction scheduling probability versus distance for
adm, qcd,track, and ocean benchmarks... 183

B.3 Measured instruction scheduling probability versus distance for
dyfesm, flo52, trfd, and spec77 benchmarks................'....... . 184

B.4 Measured beyond-basic-block instruction scheduling probability
versus distance for whetstone, tomcatv, appbt, appsp, and buk
benchmarks.. 184

B.5 Measured beyond-basic-block instruction scheduling probability
versus distance for adm, qcd, track, and ocean benchmarks........................ 185

B.6 Measured beyond-basic-block instruction scheduling probability
versus distance for dyfesm, flo52, trfd, and spec77 benchmarks........... . 185

B.7 Predicted misprediction delay based on the empirically collected P fst
distribution as a function of the amount of dynamic lookahead, in
terms of number of basic blocks for whetstone, tomcatv, appbt,
appsp, and buk benchmarks... . 186

■ ■ 1 : •' ' ' • ' t

B.8 Predictedm ispredictiondelaybasedontheem piricallycollectedpa,
distribution as a function of the amount of dynamic lookahead, in
terms of number of basic blocks for adm, qcd, track, and ocean
benchmarks.................. 186

' 'i. ■
B.9 Predicted misprediction delay based on the empirically collected p m

distribution as a function of the amount of dynamic lookahead, in
terms of number of basic blocks for dyfesm, flo52, trfd, and spec77
benchmarks..................... 187

B.10 Throughput under resource and scope constraints for the whetstone
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model....................... . 187

B.l I Throughput under resource and scope constraints for the tomcatv
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. Thecom pileroutputw as influenced byresource
constraints that are not part of the model....................... 188

B .12 Throughput under resource and scope constraints for the appbt
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model..................... 188

XV

Figure Page

> 'V .

B.13 Throughput under resource and scope constraints for the appsp
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.......................... 189

B.14 Throughput under resource and scope constraints for the buk
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model...............;....... 189

B.15 Throughput under resource and scope constraints for the adm
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.................. 190

B.16 Throughput under resource and scope constraints for the qcd
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model....................................... 190

B.17 Throughput under resource and scope constraints for the track
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model..... 191

B.18 Throughput under resource and scope constraints for the ocean
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model................ 191

B.19 Throughput under resource and scope constraints for the dyfesm
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model........................... 192

B.20 Throughput under resource and scope constraints for the flo52
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. Thecom pileroutputw asinfluenced byresource
constraints that are not part of the model...................... 192

B.21 Throughput under resource and scope constraints for the trfd
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model............................ 193

B.22 Throughput under resource and scope constraints for the spec??
benchmark; resources varied with instruction word width equal to
2.3.4.6, and 12. The compiler output was influenced by resource
constraints that are not part of the model..................................... 193

xvi

Figure Page

LIST OF SYMBOLS

Symbol _______ ■ ______Explanation ______• ■

T Latency of the instruction execution logic tree with
no pipelining (in time units)

At Clock period with pipelining (in time units)

g Latencyoftheinstructionexecutionlogictreewith
no pipelining (in units of gate delays)
also referred to as operation gate delay

Spipeiined Latency of the logic tree with pipelining
(in units of gate delays)

n Total number of operations

Tn Time to execute n operations

G Throughputinterm sofnum berofoperationspertim eunit

£ N um berofstagesinapipeline

k Numberofpipelines

N Number of processors in a multiprocessor system

W Sizeofaninstructionwindow

K Dynamicoverheadcoefficientforapipeline

c Constantoverheadforapipeline

Sopt Optimum number of segments for maximizing pipeline
throughput

Gnominai Pipeline throughput at nominal values of all parameters

Gnorm Pipeline throughput, normalized relative to GnormnaI

Pipeline throughput at s = S opt
(normalized with respect to Gwmina/)

Pipeline throughput at s =SsUbop
(normalized with respect to Gnomina/)

Pipeline throughput at s - S ovrop
(normalized with respect to Gwmina/)

Pipeline throughput at s = S nom

Pipeline throughput gain at s =Sopt
(normalized with respect to Gwm)

Pipeline throughput gain at s =Ssubop
(normalized with respect to Gwm)

Hpeline throughput gain at s =Sovrop
(normalized with respect to Gwm)

Resource utilization

Maximum possible resource utilization

First-order coefficient in the utilization equation

Second-order coefficient in the utilization equation

Utilizationfactorfortheparallelizablecodefor
pipeline stages

Utilization factor for the parallelizable code for
complete pipelines

Utilization factor for the parallelizable code for processors

Averagebranchdelay

Average number of wasted instructions per branch

Fraction of code that must be serially executed on one
pipeline

Fraction of code that must be serially executed on one
processor

Maximum degree of operation (pipeline) level parallelism

Maximum degree of iteration (processor) level parallelism

Distance between dependent instructions as a fraction of
the size of loop body

Fraction of branch delays overlapped with execution delays

%o Fraction of operand fetch delays overlapped with execution
delays

Branchfiequency

x ■■ Two-clock instruction frequency

(1-/0 Cache miss probability

m Frequency of memory reference per operation

y
Fractionofdataaccessestosharedvariables

db Fraction of operation gate delay required for branch
resolution

dm Multiple of operation gate delay required for cache miss
processing

dc Multiple of operation gate delay required for on-chip
cache access

Dl Average delay for wrongfully executed instructions per
incorrect branch prediction

[L Number of cycles for undoing the damage of a wrongfully
executed instruction

■ . 7W
Event that instructions I1 and Ij are mutually independent

P(X) Probabilityoftheeventx

P (I^y)

Pk (11» i%i ••* Av)

Scheduling probability of instruction/y w ith/o

Probability of having exactly k instructions dispatchable
with /o , in a window of size W

P>(i 1> ^2> •••> fiv) Probability of having k or more instructions dispatchable
with /o , in a window of size W

8k Throughput Of a k-pipeline processor ignoring any
dependency constraints

Gk Throughput of a k-pipeline processor under dependency
constraints

Dynamic distance between dependent instructions,
also used for inter-iteration dependency distance

XX

PS

Pta

Probability of conditional independence of instructions at a
distance of 8

Probability of scheduling instructions past 0) basic blocks

xxi

ABSTRACT

Dubey, Pradeep Kumar. Ph.D., Purdue University, August 1991. Exploiting Fine-Grain
Concurrency: Analytical Insights in Superscalar Processor Design. Major Professor:
George B. Adams III.

This dissertation develops analytical models to provide insight into various design
issues associated with superscalar-type processors, i.e., the processors capable of
executing multiple instructions per cycle. A survey of the existing machines and
literature has been completed with a proposed classification of various approaches for
exploiting fine-grain concurrency. Optimization of a single pipeline is discussed based on
an analytical model. The model-predicted performance curves are found to be in close
proximity to published results using simulation techniques. A model is also developed for
comparing different branch strategies for single-pipeline processors in terms of their
effectiveness in reducing branch delay. The additional instruction fetch traffic generated
by certain branch strategies is also studied and is shown to be a useful criterion for
choosing between equally well performing strategies.

Next, processors with multiple pipelines are modelled to study the tradeoffs
associated with deeper pipelines versus multiple pipelines. The model developed can
reveal the cause of performance bottleneck: insufficient resources to exploit discovered
parallelism, insufficient instruction stream parallelism, or insufficient scope of
concurrency detection. The cost associated with speculative (i.e., beyond basic block)
execution is examined via probability distributions that characterize the inherent
parallelism in the instruction stream. The throughput prediction of the analytic model is
shown, using a variety of benchmarks, to be close to the measured static throughput of
the compiler output, under resource and scope constraints. Further experiments provide
misprediction delay estimates for these benchmarks under scope constraints, assuming
beyond-basic-block, out-of-order execution and run-time scheduling. These results were
derived using traces generated by the Multiflow TRAQS SCHEDULING™ compacting C
and FORTRAN 77 compilers.

TRACE SCHEDULING is a trademark of Multiflow Computer, Inc.

xxii

A simplified extension to the model to include multiprocessors is also proposed.
The extended model is used to analyze combined systems, such as supeipipelined
multiprocessors and superscalar multiprocessors, both with shared memory. It is shown
that the number of pipelines (or processors) at which the maximum throughput is
obtained is increasingly sensitive to the ratio of memory access time to network access
delay, as memory access time increases. Further, as a function of inter-iteration
dependency distance, optimum throughput is shown to vary nonlinearly, whereas the
corresponding Optimum number of processors varies linearly. The predictions from the
analytical model agree with published results based on simulations.

I

CHAPTER I
INTRODUCTION

1.1 Motivation

Ever since the advent of first computer, while one group of designers concentrated
on achieving an equivalent performance at a lower cost, the other group endeavored to
deliver higher performance at affordable cost. In the world of microprocessors, some of
the latter group of designers are trying to gain a better understanding of the performance
achievable by concurrent execution o f scalar instructions. Processors capable of such
execution are referred to as superscalar in recent literature. Because most of the current
microprocessors (CISC or RISC) achieve an execution rate of one assembly level
instruction per clock, there is a keen interest in exceeding this rate by executing multiple
instructions per clock. Contribution to this ongoing research is the primary motivation of
this dissertation.

Performance studies can be broadly classified as either simulation-based or
analytical. Most of the work on processor performance has concentrated on the
simulation-based approach. The research presented in this dissertation seeks to
complement previous work by providing an alternative approach to study processor
performance based on relatively simple analytical models. Such models, when validated
through correlations with existing simulation-based performance predictions and with
empirical data when available, can provide valuable additional insights into performance
potential at a fraction of the time needed to run typical simulations or conduct
experiments to gather performance measurements.

Architects of next generation processors are often required to provide an as-far-as-
possible accurate performance estimate of the proposed design. Common performance
estimates these days for microprocessors are numbers such as, SPECmark, which is the
geometric mean of the SPEC ratios for the 10 CPU-intensive benchmarks that comprise
the SPEC suite. A SPEC ratio is the ratio of execution time for a given benchmark
relative to the execution time of that benchmark on a VAX 11/780 running the ULTRIX
3. IB operating system. (SPEC stands for the Systems Performance Evaluation
Cooperative.) The traditional performance modelling approach is to run traces of the
benchmarks on a low level model of the proposed next generation machine. While this
low level model of the new machine must be detailed enough to provide a sufficiently

2

accurate prediction, it has to be abstract enough to yield feasible simulation run time.

The simulation predicament can be resolved by noting that in moving to a next
generation machine design it is the machine architecture that is being redefined and the
benchmark traces being used as input may be unchanged. Therefore if the benchmarks
can be abstracted or characterized, there would be no need to go through tedious clock-
by-clock simulation. There are several ways to characterize a machine architecture, such
as the number of pipelines and processors, cache size, branch delay and so on, that can be
useful for estimating its performance potential. An analogous set of program features that
can serve as an indicator of its performance potential has been almost absent in the
published literature. The need for program characterization has also served as a
counterpoint motivation for this work.

1.2 Review of Concurrency-Representation,
Detection and Scheduling Techniques

Given a certain end-user task, the most obvious performance measure is the amount
of real time spent in performing the task. Consider the often-repeated question: Where
does the time go ? This total time is clearly the basis of perceived performance by the
end-user and is spent in following transformation stages:

(User level) Algorithm -> HLL -> Assembly -> Micro-instruction (Implementation level)
The sequential nature of above transformation clearly implies that time lost a t any stage
is lost fo r ever. In other words, an inefficiency introduced at the algorithm level can
never be recovered at the microcode level. Also, the representation at each level is
mostly sequential in nature (such as the line-by-line program representation in
FORTRAN or any assembly language). Most of the time this sequentiality is not
essential from correctness point of view but is simply imposed due to representational
syntax or resource constraints. Before considering ways of detecting and exploiting the
hidden concurrency, consider a concurrency representation framework that is not only
generic enough to be common to all these levels, but also specific enough to account for
the major time consuming phases at any given level of program transformation.

Assume that at any given stage, a program description consists of a set, {<))}, of
uniquely numbered operations. Each operation <|> is a member of a set {y} which defines
the instruction set architecture at that level. An interface space between any two levels
consists of the complete set of parameter values and storage contents shared between the
two levels for communicating the program transformation. For example, at the interface
of assembly and microcode, the interface space consists of the set of visible machine
registers, shared flag bits for assembly level conditional jump implementation as well as
the modifiable user memory space.

3

Program representation at each level can be described in terms of a generalized
AND/OR graph. Such graphs have been used in the past for search space representation
[Nil80]. The graph consists of nodes, / e {<j>}, such that there is a node corresponding to
each program operation. There is a directed arc from node i to node j if the operation
corresponding to node j is dependent on that corresponding to node L Simply stated, this
implies that operation j can not be initiated until the completion of operation i. Assume
that given any two operations, i and j, the boolean relation, D(Zj) which is true if j is
dependent on /, can always be evaluated. Two nodes m and n are considered mutually
independent if neither m is dependent on n nor n is dependent on m. Nodes with two or
more children are classified into AND nodes and OR nodes. A parent node with
mutually independent children nodes is called an AND node. Each OR node represents a
choice point, i.e., a conditional branch is made to one of the arcs depending on the user
input available at run time. For simplicity, define a node with a single child as an AND
node also. A solution subgraph is defined as a graph consisting of the (unique) start
node, such that if a node is an AND node, all the arcs originating from it are part of the
graph, whereas, if a node is an OR node, only one of the arcs originating from it is part of
the graph. Thus, at any level of representation there are multiple solution subgraphs. A
node at a given level can be considered a compact representation for a similar graph at
the following level.

All the operations linked by an AND arc from some node i, can be executed
concurrently following the evaluation of the parent node. Exploiting such concurrency at
higher levels (such as the algorithm level or the HLL level) is referred to as coarse grain
parallelism, whereas that at the lower levels (such as the assembly or microcode level) is
referred to as fine grain parallelism. The time spent in a path is simply the cumulative
sum of the time spent in evaluating each node along the path. The time spent at the user
level is the time spent in the longest path in the corresponding solution subgraph. This
longest path is referred to as the critical path in the discussion to follow. The
representation permits backward arcs for loop identification. Consequently, the critical
path in the solution subgraph is not necessarily a simple path.

In the next section, a wide variety of techniques available for exploiting fine grain
parallelism are examined. A brief introduction of data structures commonly used for
concurrency representation is discussed next, followed by a survey of a broad spectrum
of available design choices and implementation tradeoffs.

1.2.1 RepresentingConcurrency

A variety of data structures have been suggested for concurrency representation,
that is, modelling the inherent concurrency in a given computation sequence. All such
models must satisfy the conditions of determinacy and termination [KaM66]. Informally

4

stated, determinacy implies that the results that appear in the interface space are invariant
under the particular sequence (if any) in which the concurrent operations are executed.
In other words, a machine that is capable of simultaneously executing some or all of the
mutually independent operations should yield the same result as a purely sequential
machine executing the independent operations in some order. Termination means that
there are identifiable terminating conditions that occur after a finite number of steps.
Next consider some commonly used data structures.

Computation Graphs. Directed graphs, in spite of their irregular structures, have
received considerable attention because of their theoretical properties. Computation
graphs refer to labeled directed graphs that were first devised by Kaip and Miller
[KaM66]. Each node of the graph represents an operation, whereas, interpretation of
each edge is extended to represent a first-in first-out queue of data directed from one
node to another. A node evaluation involves taking a certain number of operands off the
incoming edge(s) and placing certain number of results on the outgoing edge(s). Thus, a
node can be fired (evaluated) only if the expected number of operands are available. To
keep track of the queue of data on each edge, a specific parameter tuple is associated with
each edge. TTiis simplified model was later expanded [BBE70] to include conditional
branching facilities.

Precedence Matrices. Another data structure that has been studied for concurrency
representation is the matrix [TjF73]. Unlike graphs, matrices have a regular structure
that makes them better suited for VLSI implementation. However, the number of matrix
elements required for a certain task representation grows as the square of the number of
operations in the task. Graphs, on the other hand, have a more space efficient
implementation. Each operation in a task /, corresponds to the i th row and i th column of
a matrix M. This matrix M is defined as a precedence matrix if it is a boolean matrix
such that, My = true if and only if (D (i , j) OR D (J,i)) is true i.e., if the instructions i and
j are not mutually independent. The precedence matrix is symmetric and hence can be
considered a triangular matrix with a zero diagonal, because an instruction does not
depend upon itself. In the case of graphs, a chain of dependency (for example, operation
k depends on / which in turn depends on /) is represented by a path from node i to node k
through node /, rather than a direct edge from / to k. Similarly, the precedence matrix
also does not contain entries to represent such dependency chains. For example, in this
case, although the entries, My and M/* are set true there is no entry for Myc. To get a
complete picture of the dependencies between, say, n operations, one needs to use the
matrix Mn, which is given by,M 1+M2+....+Mn. M r indicates the matrix M raised to the
power r and+ refers to the boolean OR operation.

Petri Nets. A Petri net is also a graphical representation of program behavior but
with directed edges between two different types of nodes. A node represented as a ‘O ’ is
called a place and a node represented as a T is called a transition. The places having
edges directed into a transition are called input places and those having edges directed

5

out of the transition are called output places. The places have the ability to hold tokens. A
transition having a token on each of its input places is considered active and can fire, (i.e.
be evaluated). The firing results in removal of a token from each input place and adding a
token to each output place. A Petri net with every place having exactly one transition
entering the place and only one transition leaving the place is called a marked graph and
is directly representable as a computation graph.

This is illustrated in Figure 1.1 by using these data structures to model the
concurrency available in the assembly code sequence given in Figure 1.1.a. While the
graph representation in Figure l.l.b is concise, the corresponding matrix representation
in Figure l.l.c has more elements but is quite regular in shape. A comparison of
computation graphs and Petri nets can be found in [Mil73], This paper also discusses in
detail a more general model called parallel program schemata, which includes the notion
of a random access memory accessible to the operation nodes for reading and writing.
The presence of an arc between two nodes in the graph representation indicates the
absence of concurrency, i.e., a dependency between the operations. Therefore,
maximizing concurrency implies minimizing dependency, which in turn may result in
reducing the critical path of the solution subgraph, and lowering the execution time.

1.2.2 Dependencies

An operation can be defined as a function, <j>(.), with source operands s \ , s 2, • • •,
also known as the function domain, and the result destinations (J)(I),()>(2), • • •, also
referred to as the range of the function. Thus, a typical operation evaluation consists of
reading the source operands, applying the specified function, and writing the result.
Consider two operations, <j)(- and <J>7, where (J)1- precedes <))7- in a purely sequential
execution. Data dependency between these operations results from overlapping ranges
and/or domains. If the range of (J)t- is same as that of <J>7, then (J)7- is said to be output
dependent on (J)t-. It is also called Write after Write dependency. If the range of (J)1- is the
same as the domain of <J>7, and there is no operation (J)*, which follows (J)t- but precedes (J>7,
such that (J)* is output dependent on (J)t- then (J>7 is said to be essentially dependent on (J)t-.
Such a dependency is also referred to as Read after Write dependency or flow
dependence. On the other hand, if the range of (J>7 is the same as the domain of (J)t-, (J)7- is
said to be order dependent on (J)t-, since the dependency exists only if the order specified
by the proper sequential execution is reversed. This is also known as Write after Read
dependency or anti-dependence. Finally, if the domain of (J)7 is the same as the domain
of (J)t-, (J)7- is said to be input dependent on (J)t-. Input dependence does not imply a lack of
concurrence unless there is a limit on simultaneous distribution of input to a number of
different operation evaluations.

©

O

6

1. ADD R l , R2, R3 ;R 3 := R 1 + R2
2. ADD R1,R4, R5 ; R 5 := R 1 + R2
3. ADD R 3,R 5,R 6 ;R 6 := R 3 + R5

(a)

ADD R1,R4,R5ADD R1,R2, R3

ADD R3, R5, R6

I 2 3
I 0 0 I
2 0 0 I
3 I I 0

(C)

R4

ADD R1,R4,R5ADD R1,R2,R3

R5

ADD R3,R5,R6
indicates a place with a token

indicates a place without a token

Figure 1.1 Computation graph (b), Precedence matrix (c) and Petri net (d) for
the sample code sequence in (a)

7

Resource dependency which is sometimes referred to as operational dependency,
among operations <j>,- and <j>y may exist if both correspond to the same function, <j>. Thus,
data-independent operations may not be executed concurrently if they must use the same
resource for evaluation. Concurrent evaluation of resource dependent operations is
possible if the resource can be shared by multiple operations with the same function or if
there are multiple resources. In other words, resource dependency implies lack of
concurrency only when the number of permissible concurrent operations is exceeded.
Generally speaking, resource dependency also includes the lack of requisite
interconnection paths to transmit source operands and/or results.

An operation node having an OR node as an ancestor may never need to be
evaluated if it is not part of the solution subgraph. In other words, an operation is
considered procedurally or control dependent on all the preceding conditional branch
instructions. Thus, while data and resource independence of two operations implies that
the operations are executable concurrently, procedural dependence tells whether they
even need to be executed. Figure 1.2.a lists a typical assembly code sequence, whereas,
the corresponding AND/OR graph is given in Figure 1.2.b illustrating the dependencies
explained above.

To further explore the nature of dependencies, consider an ideal machine with
infinite resources. On such a machine, it should always be possible to remap the range of
operation <)>y such that it does not overlap the domain of any of the preceding operations.
For example, in Figure 2.a R2 can be mapped to, say, R l I so that X3 is no longer order
dependent on XI. Similarly, it should always be possible to remap the range of any
operation such that it does not overlap the range of any of its followers. For example, the
destination register R2 can be mapped to, say, R12 so that X5 is no longer output
dependent on X3. Resource dependency becomes a non-issue in such an ideal
environment. Further, assume that whenever a choice point is encountered, resources can
be replicated such that different OR arcs can be concurrently explored until the control
dependency is resolved, at which time the incorrect paths can be discarded. As a result,
for an environment with infinite resources, procedural dependency does not imply lack of
concurrency either. In this environment only one type of dependency remains, essential
dependency. Hence, all dependencies other than the essential data dependency can be
considered different variations of resource dependency.

A solution subgraph may have cycles resulting from loop structures in the program,
consequently the critical path may consist of one or more iterations of certain sets of
nodes. Operations that belong to the same cycle but are data independent in different
iterations of the cycle are called cyclically independent. These operations may still be
resource or control dependent across different iterations and they may be data-dependent
in the same iteration. Next take a look at some important design choices for concurrency
detection and scheduling.

8

XO BEGIN
X l MUL R 1,R 2 ,R 3 R3 := R l * R2
X2 MUL R 4 ,R 5 ,R 6 R 6 := R 4 * R 5
X3 ADD R 7 .R 8 .R 2 R 2 := R 7 + R8
X4 SUB R 6 ,R 7 ,R 9 R9 := R6 - R7
X5 SUB R2, RlOt R2 R2 := R2 - RlO
X6 CMP R 9 ,0 set zero flag if R9 = 0
X7 JMPZ X9 Jump if zero flag set
X8 INC RlO RlO := RlO + I
X9 DIV R 1,R 2, R3 R3 := R l -5- R2
X 10: ADD R4, R 3,R 5 R5 := R4 + R3
X U : ADD R 6 ,R 3 ,R 7 R 7 := R 6 + R3
X12: ADD R 8 .R 3 .R 9 R 9 .- R 7 + R3

(a)

Figure 1.2 AND/OR graph (b) for the code sequence in (a). Assuming a
machine with two add/subtract and two multiply/divide units.
Input dependence ignored.

9

1.2.3 Detecting, Dispatching, and Scheduling Concurrent Operations

Concurrency detection implies examining a certain number of operations for
isolating the data-dependent pairs, whereas dispatching refers to issuing some or all of
these operations detected concurrent for scheduling. For example, say 16 instructions at a
time may be examined for concurrency detection but only the first 4 of them that are
found independent may be issued for scheduling. The distinction between detection and
dispatch is subtle and the distinction does not exist if all detected concurrent operations
can always be sent for scheduling. Scheduling is the process of assigning specific
operation functions and the corresponding source and result operands to designated
resources at designated times under the constraints imposed by data dependency and
limited number of resources.

An optimal schedule is defined as the one that minimizes the number of distinct
execution time slots and, ignoring resource limitations, it corresponds to a schedule
constrained solely by essential data dependency. This can be achieved by scheduling
together all operations that are essentially independent of all incomplete operations.
Thus, an optimal schedule minimizes the critical path length for the corresponding
solution subgraph leading to a compact (less deep) graph representation. Viewing each
operation as a task and each resource as a processor, the problem of resource constrained
processor scheduling, can be mapped to the optimal scheduling problem. The resource
constrainted processor scheduling problem is a known NP-complete problem [GaJ79].
Therefore, optimal scheduling is NP-complete also.

Although instruction is sometimes used to refer to multiple operations that have
been scheduled together, these are used interchangeably in this section except when the
distinction is critical.

Scope o f concurrency detection. Concurrency detection begins by examining a
consecutive set of operations from the serial execution sequence. The number of such
operations simultaneously examined for detecting a concurrent subset defines the scope
of concurrency detection. The larger the scope, the greater the probability of detecting a
larger subset of concurrent operations. Identifying a stream of instructions that would
necessarily be executed in sequence in a purely sequential execution is complicated due
to the presence of conditional branches. Such branches direct the execution sequence
along one of the multiple solution paths and the choice is known only at run time,
whereas concurrency detection must precede execution. A basic block is defined as a
maximal sequence of instructions containing a single conditional jump which is the last
instruction in the sequence. There may be one or more unconditional jumps within a
basic block.

Concurrency detection techniques can be classified into two categories depending
on whether the scope is limited to within the basic blocks or stretched across basic
blocks. The speedup achievable in the second category can be significantly more than

10

that obtainable in the first category, as evident from the comparison given in Table 1.1.
Experiments done by Tjaden and Flynn [TJF70] and Riseman and Foster [RiF72] are
some of the earliest results reported in the area of concurrency detection. In the first
published report on concurrent execution, Tjaden and Flynn predicted an average
speedup of about 1.86 through simulations in an IBM 7090 environment and lithiting the
scope to be within basic blocks. Riseman and Foster estimated an average speedup of 51
in an ideal environment with infinite resources. This showed that the speedup achievable
with scope not limited to basic blocks can be an order of magnitude better than that
possible with scope held within a basic block. A wide range of experiments reported so
far (refer to Table 1.1), confirm the range of speedups reported by Tjaden/Flynn and
Riseman/Foster.

Another important factor influencing the scope of concurrency detection is whether
the detection is being done at run time (dynamically) or at compile time (statically). At
run time only a fixed size instruction window can be used to examine a set of.
instructions, whereas at compile time potentially the entire program can be examined.
While static detection techniques can afford a larger scope, they are limited to compile
time information only. Dynamic techniques, with run time information available, are
limited to a much smaller scope. The complete machine state is known only at run time,
hence, an instruction sequence such as Multiply/Load/Multiply may create a resource
dependence at compile time but could be non-existent if the Load caused a cache miss
that sufficiently delayed the following Multiply. Wedig [Wed82] provides an analysis of
the complimentary nature of static and dynamic concurrency detection. Static techniques
restricted to basic blocks are also known as techniques for local code compaction,
whereas those extended across basic blocks are considered aimed at global code
compaction.

Level o f Concurrency Detection. Four different levels (or stages) of program
specification (transformation) were outlined at the beginning of Section 1.2. Attempts
have been made to detect concurrency at all four levels. Systolic architectures [Kun82]
exploit concurrency at the algorithm level. Data flow architectures (such as, [PHS85J)
and recent VLIW architectures attempt concurrency detection at the level of microcode.

Processors capable of concurrent execution of multiple scalar operations at the
assembly level have been referred to as superscalars (earliest reference to this term is
found in [AgC87]). Imagine concurrency detection at assembly level with a scope
limited to adjacent instructions only. Consider two adjacent divide operations:

DIV R l, R2, R3 ; R 3 : = R 1 / R 2
DIV Rl, R4, R5 ; R5 := Rl / R4

If the machine organization is restricted to a single divide unit, then these two divides
would be serialized. However, suppose each divide corresponds to several lines of
microcode and the concurrency detection is attempted at the microcode level. Now it is
certainly feasible to overlap certain micro operations corresponding to the two divides.

11

Table 1.1 Comparison of concurrency detection and scheduling strategies

Strategy
Scope

within/beyond

besic block

Level
high-level

ssnmbly

micro-code

Issue
se<pendai

out-of-order

Execution
Completion

sequential

out-of-order

Scheduling
strategy

Reported
Speedup

Tomasulo [Tom67] within assembly sequential * cm t-of-order data-flow n/a
Thornton [Tho70J within assembly sequential * sequential control-flow n/a

Tjaden/Flynn [TjF70] within assembly out-of-order out-of-order control-flow 1.86
Riseman/Foster [RiF72j beyond assembly out-of-order out-of-order control-flow 51.2

Tjaden [Tja72] witliin assembly out-of-order out-of-order control-flow 1.96

Kuck [KMC72] beyond high-level out-of-order out-of-order
§t*iic-i£rcam

static 8
Wedig [Wed82] beyond high-levd out-of-order out-of-order control-flow 3

Weiss/Smith [WeS84] within assembly out-of-order * out-of-order
static-stream

data-flow 1.58
Nicolau/Fisher [NiF84] beyond micro-code out-of-order out-of-order static 90

HPSm [PHS85J beyond micro-code out-of-order out-of-order

Trace

Scheduling

data-flow n/a
Uht [Uht86] beyond high-level out-of-order out-of-order control-flow 2

Hsu/Davidson [HsD86] beyond assembly out-of-order out-of-order
Itatic-Slaeam

static 1.3-3.9

Acosta et.al. [AKT86] within assembly out-of-order out-of-order

Decision

Tree

Scheduling

control-flow 2.79
SohWajapeyam [SoV 87] within assembly out-of-order * out-of-order data-flow 1.8

iWARP [Lam 8 8] beyond micro-code out-of-order out-of-order static 3

CYDRA [RYY89] beyond micro-code out-of-order out-of-order

Software

Pipelining

data-flow n/a
Smith et.al. [SJH89]

ideal fetch unit beyond assembly out-of-order out-of-order control-flow 2.3-4.1
non-ideal fetch unit beyond assembly out-of-order out-of-order control-flow 1.9-2.3

Jdmson [Joh91] beyond assembly out-of-order out-of-order control-flow 2

Note: Unless otherwise indicated, all control-flow strategies are based on dynamic instruction-stream.
Issue strategies marked with an asterisk (*) are limited to a maximum of one instruction per dock.
Other issue-strategies can issue mote than one instructions per clock.
Speed-ups given without a range are best-case speedups.
Speed-ups reported should be taken with caution, as they are not relative to the same baseline processor.

1 2

For example, it may be possible to load the source operands to the divider inputs or do
the divide-by-zero check on the second divide before the first one finishes. But in order
to be able to detect such opportunities, the scope of detection must go beyond adjacent
microcode lines. Thus, as the program transformation moves closer towards the machine
level away from the user level, potential parallelism goes up along with the scope
required for its; detection (which also makes the detection a harder task).

In an ideal sense, concurrency detection done at the microcode level with an infinite
scope has maximum potential. For example, in an extreme sense, this would even explore
the possible microcode overlap of two different sort operations specified at the highest
algorithmic level. But this also implies exposing lowest level machine resources at the
highest level of specification, which may not be desirable. While most of the concurrency
detection experiments have been attempted at the assembly level, certain techniques are
aimed at concurrency detection at the lowest level. Dynamic techniques of this type fall
into the classical data flow category [DeM74, ArG82], whereas some such recently
emerging static techniques are referred to as the VLIW approach [NiF84],

Very Long Instruction Word (VUW) machines are characterized by a central control
unit issuing each cycle a single wide instruction word consisting of independent
operations. Note that these instruction words are machine instructions (microcode lines)
and, hence, there is no additional level of interpretation involved. Similar to earlier
vector machines^ VLIW machines carry out many fine grained and tightly coupled
operations simultaneously, whereas, in contrast to the vector machines, these concurrent
operations are dissimilar and logically unrelated. Typical instruction word length for
some implementations ([Fis83], [CN088]) range from 512 to IK bits.

This horizontal format leads to poor code density in case the available parallelism is
Iimited- In an attempt to improve code density, iWARP [CGL89] relies on two
instruction formats. It uses a short instruction format in case of limited parallelism and a
long format otherwise. The Multiflow TRACE [CNO88] uses a variable length memory
representation that eliminates NOPs from the fixed length machine instruction format to
improve the code storage efficiency. There are two other important implications of such
a design strategy. Firstly, considering the fact that about 5 to 10 percent Of operations at
the lower levels (assembly or microcode) are conditional branches, a wide instruction
word would contain multiple independent conditional branches. Therefore, such
machines must be capable of performing tests for multi-way jumps to separate targets.
Secondly, the memory system should be capable of supporting multiple memory
references, which in turn should be scattered among different memory banks. Although
such concerns are current implementation barriers for VLJW machines, the problems
they represent are applicable to almost any approach to exploiting high fine grain
concurrency. Responding to interrupts with restartable machine state poses another
challenge for VLIWs and is discussed later.

13

Directly Executable Language machines. A machine architecture that retains all the
information of the high level language allowing greater possibility of concurrency
detection (done at the language level) has been proposed by Flynn and Hoevel [F1H79].
This representation, referred to as Directly Executable Language, provides a one-to-one
correspondence between the states in the high level language and the machine states.
Although at lower levels potentially more parallelism can be detected, this parallelism
besides being fine grain (for example, overlapping micro-ops as opposed to overlapping
say, FOR loop iterations) is also harder to detect. This is because at a machine level of
representation that does not bear direct correspondence with the high level
representation, most of the coarse grain concurrency information is not preserved in an
easily recognizable form. For example, a FOR loop iteration count is more easily
recognizable for concurrency at the language level than at the assembly level, and is still
more difficult to recognize at the microcode level. Wedig [Wed82] provides details of
concurrency detection at the language level.

Static Concurrency Detection and Scheduling. These techniques are based on
information available prior to run time. One of the earliest and most extensive works in
this area was done by Kuck and his colleagues [KMC72] for concurrency exploitation in
a serial language such as FORTRAN. Their work explores height reduction techniques
for program graphs, semantic analysis, and branch elimination to extract significant
amount of hidden parallelism. While some of the static optimizations are strictly aimed
at reducing non-essential data dependency and/or procedural dependencies and are thus
machine independent; others also rely on explicit information about machine resources to
resolve other dependencies.

Sometimes the range or domain of operations may be indirectly specified. For
example, instead of a direct specification, like R2 or A [2], the domain of the j th
operation may be A [/], whereas the range of a preceding i th operation may be A [m].
These two operations are data independent if the array indices m and I are not the same.
Because, m and I may be arbitrary expressions, this anti aliasing or disambiguation may
be difficult or even impossible to perform at compile time. In case of any doubt, the only
safe option is to assume dependence in such cases. At times, a simple analysis may
reveal the independence. For example, if m—2x+l and l=2y, then there are no integer
values of x and y such that m -l, since m is always odd and I is always even.

Baneijee [Ban79] has developed efficient algorithms for determining whether m and
/, where each is a polynomial, may imply reference to the same variable, and hence a
conflict. Nicolau [Nic89] proposes an alternative solution to the disambiguation problem.
This technique known as run time disambiguation, relies on assumptions about the run
time behavior of memory references to allow compile time code restructuring to extract
available concurrency. For example, based on run time statistics, suppose m and I are
most likely unequal. Given this information, the compiler is allowed to extract any
potential for concurrency resulting from this disambiguation, conditioned on the fact that

m*l. This conditional (IF mW) is evaluated at run time and if found to be untrue,
sequential execution proceeds as if no optimization was done. On the other hand, in the
more likely case of m*l, introduced optimization results in increased parallelism. The
overhead of additional condition evaluation may be nil if it can be overlapped with some

...V • ' - ■/-

previous operation.

A similar approach can be taken for evaluating conditional branches. On the basis
of run time statistics, the compiler can be made to pick the most likely branch path
resulting in a larger basic block size which in turn implies larger potential for concurrent
evaluation.

Trace Scheduling, developed by Fisher [Fis81], replaces block-by-block local code
compaction with simultaneous code compaction of a trace across many basic blocks. A
trace is defined as a loop free sequence of instructions which might be executed
sequentially for sOme choice of data. Improved performance is obtained by optimizing
along the trace most likely to be followed at run time. Heuristic or profile-based branch
predictions are used for picking the trace along the solution path with highest probability.
Such an approach is quite likely to result in schedules that will not correctly preserve the
semantics in case the less likely off-trace path is taken at run time. A post processing
phase inserts compensation code into the program graph on the off-trace branch edges to
undo these inconsistencies, thereby restoring program correctness. Such concurrency
detection has been typically attempted at the microcode level, and the large block size at
this level implies wide instruction machine word formats. For data-dependent conditional
branches, the fundamental assumption that there exists a most frequently executed
solution path is questionable. In such cases the overhead of compensation code can
offset any speedup in the off-trace paths.

After picking the most likely trace, trace scheduling generally does not distinguish
the off-trace paths on the basis of their probabilities. As a result, the schedule generated
is not very sensitive to the actual path probabilities. Hsu and Davidson [HsD86] propose
a refined heuristic that addresses this issue. This technique, decision tree scheduling,
while much more sensitive to actual path probabilities, is intended for code reordering to
make efficient use of guarded store and jump instructions. These guarded instructions
make efficient use of the delayed part of a conditional branch instruction (time slots
taken for the branch resolution). Each guarded instruction is accompanied by a guard
expression, which is just a boolean valued expression. Whenever, a guard expression
evaluates to fault, it inhibits writing the final result, i.e., the update of the interface space.
This effectively converts the guarded instruction into a NOP. The performance potential
of this strategy is a function of how many time slots are available during branch
resolution. The speedup reported for this technique in the Table 1.1 is based on a
pipeline uniprocessor model for the scalar portion of the GRAY-I computer with
branches taking a constant 14 cycles.

15

Iterative constructs, or loops, are very common in numerical applications, and so
deserve special attention. Two techniques have been most commonly used for loop
optimization: loop unrolling and software pipelining. Loop unrolling consists of
replicating the loop body n times, where n is the degree of unrolling. All conditional
branches are removed from the replicated blocks except for the last one, and the index
register increment is removed from all but the last replicated block. An advantage of this
approach is elimination of some conditional branches, resulting in larger basic block size
and hence the possibility for more speedup ([Nic89], [WeS87]). A disadvantage is that
unrolling expands object code size.

Software Pipelining refers to successive initiation of iterations of a loop at constant
intervals, even before the preceding iteration completes so that the loop throughput is
improved. Using this approach, unlike with other techniques, pipeline stages of the
functional units are not emptied at the iteration boundaries or some fixed multiple of
iteration boundaries (as is the case with loop unrolling). The objective is to minimize the
the interval at which the initiations take place. Such techniques are certainly not new and
have been explored in a generalized sense (for example, initiations do not have to be at
constant intervals and can instead follow a fixed pattern of intervals) for hardware
pipeline scheduling [PaD76]. However, Lam [Lam88] proposes software pipelining as an
effective and viable scheduling technique for VLIW processors.

Because the problem of finding an optimal schedule is NP-complete, static
scheduling techniques rely on heuristics to restrict the search space. A hierarchical
reduction scheme is proposed in [Lam88] to make software pipelining applicable to all
innermost loops including those with conditional statements. Conditional OR nodes of
the program graph are reduced to a single node with scheduling constraints representing
the union of the scheduling constraints of its children. In addition to cyclical data
dependency constraints, such a scheduling technique must also take into consideration
resource constraints. Assume the initiation interval is m. If a resource is in use by an
operation in some i th iteration, in some cycle s, it will also be in use by successive
iterations in cycles s+m,s+2m,.... and so on. Therefore, another operation belonging to
the i th iteration may not use the same resource in cycles s modulo m. This is known as
the modulo constraint [RaG81]. Software pipelining has been used for compile time
concurrency detection and scheduling on the iWARP machine [CGL89].

Another technique for detecting parallelizable loop iterations similar to run time
disambiguation is run time dependence checking [Nic89]. Unlike the former,
probabilistic estimates are not used, instead loops are prepared for run time dependence
checking. This is achieved by inserting appropriate code that helps perform automatic
dependence checking on different loop iterations and simultaneously schedules
independent iterations.

The scheduling techniques mentioned above are mostly applied at lower levels of
program transformation. Percolation scheduling can be used for program graph
compaction for extracting both fine grain as well as coarse grained parallelism. The
technique is based on certain core transformations which, when applied on adjacent
nodes, help percolate them towards the top of the program graph. The goal of such
transformations is to compact the program graph by moving operation nodes from the
bottom of the graph for grouping with independent operation nodes towards the top of
the graph. These transformations consist of various dependency checks and can be
combined with a variety of guidance rules to direct the optimization process. Details of
these transformations can be found in [Nic85].

At the micro operation level, as the nodes percolate up, nodes grouped together can
be treated as a long instruction word with independent operation fields. Thus, percolation
scheduling offers another alternative to code generation for the VLIW machines. While
trace scheduling explores the program graph in a top down fashion along a trace,
percolation scheduling searches the graph in a bottom up manner. If possible, operations
belonging; to different branch paths (traces) along with the condition for branch
resolution are evaluated simultaneously and the undesired result discarded.

Dynamic Concurrency Detection and Scheduling. Dynamic concurrency detection
techniques have the advantage of precise run time information for resolving
dependencies related to conditional branches and indirect memory references. Compile
time techniques, such as run time checking, although used during the compilation phase,
provide run time support for concurrency detection and it is generally believed that a
combination of Static and dynamic support has performance potential exceeding either
technique in isolation. A comparison of different dynamic techniques is given in
[AKT86]. The order in which compiled instructions are executed during a purely
sequential execution forms the dynamic instruction stream. The order in which
instructions are generated by the compiler, which is same as the order in which they
appear in system memory, forms the static instruction stream. Dynamic concurrency
detection is either performed on the dynamic instruction stream or on the static
instruction stream. The advantage of static stream analysis is reduced memory traffic,
because instead of a memory load of each instruction to be executed, static stream
detection works with a single load of the static sequence. Furthermore, static stream
analysis can achieve the same amount of concurrency as that using dynamic stream
analysis [Wed82].

Scheduling can either be done centrally at the time of decode, or in a distributed
manner in the functional units themselves. The former approach is called control flow
scheduling1, the latter is called dataflow scheduling.

There is a global station for control flow scheduling that receives information from the
functional unit to detect and dispatch independent instructions. One of the earliest
implementation of this idea is found in the CDC 6600, where the central station is called

17

a scoreboard [Tho70]. Under this scheme, an instruction to be executed on a functional
unit can be issued even if its source operands are not available. The unavailability of the
operand is indicated using a ready bit. As soon as the operand becomes available, the
functional unit producing it notifies the central scoreboard, which updates the
corresponding register and its associated ready bit. This updated information is also
conveyed to the waiting functional units. Some important features of this algorithm are:

1) There is no direct communication path among the functional units, they
communicate via the central station, the scoreboard,

2) Instruction dispatch (issue) logic blocks when it encounters an instruction that is
resource dependent or output dependent on a pending instruction,

3) An instruction Ij that is order dependent on an instruction I1 is allowed concurrent
execution with /,-, but the functional unit associated with Ij stays busy until the
execution o f /,• completes,

4) Dispatch logic is limited to one instruction per cycle.

Tjaden and Flynn [TjF70] suggest a lookahead scheme capable of more than one
instruction issue per cycle using a predecode stack as the central station. This stack stores
instructions in a modified format that explicitly encodes their dependency information.
This approach further relies on a register renaming technique to reduce dependencies. An
instruction that is independent of all instructions above it on the stack is dispatchable.
Simultaneous bit-by-bit compare is used to detect and dispatch independent instructions
on the stack. A stack size of around eight is found to be enough to extract all available
concurrency. Acosta, et. al. [AKT86] present another variation of this idea using a
dispatch, stack which reduces the associative compare overhead associated with the
former approach. In this case, the instruction format is further expanded to contain
counters for its source and destination registers. There is a counter with each source
register indicating how often it is designated as a destination registers in the preceding,
incomplete instructions on the stack. Two separate counters are used to track how many
times the destination register is designated as a source and destination register in
previous incomplete instructions. These counters are added to compute an issue index for
each instruction. This computation simplifies the issue logic. All instructions with null
issue index are simultaneously dispatchable. As instructions complete, the stack is
properly updated. Although the stack update requires content addressability, comparison
hardware required overall is likely to be less than the previous approach.

The techniques described so far all work with the dynamic instruction stream. One
of the first experiments using the static instruction stream for dynamic concurrency
detection and scheduling was reported by Tjaden [Tja72] using ordering matrices for
concurrency representation. This work was further extended by Wedig [Wed82]. An
important problem with static stream analysis is the complexity of representing machine
state at any time during execution. Instructions that complete execution have their

. ; 18

dependencies deactivated, so that they are excluded from further analysis. For
instructions that are executed multiple times, Tjaden associates a flag which is set on
instruction execution and allowed to be reset if the instruction is to be re-executed. This
avoids multiple loading of such instructions for concurrency detection. An alternative
representation is proposed by Wedig, that associates an execution vector With the task
being analyzed. The elements of these vectors keep track of number of times different
instructions have executed.

Unlike the control flow approach, dependency resolution for data flow scheduling is
distributed across different functional units. The IBM 360/91 [AST67] was the first
system to use data flow scheduling. Although the original algorithm was devised by
Tomasulo [Tom67] for the floating point unit of this machine, it can be easily generalized
to any system with multiple functional units. Under this scheme, each functional unit
contains a set of reservation stations, where instructions are held pending execution.
Each station Contains a field for each of its source operands and the result. Each operand
field either contains the operand value (if available) or it contains a tag indicating the
functional unit that is supposed to produce that value. Each machine register is
augmented by a busy bit. If this bit is clear, register contents are valid, else the register
contains a pointer or a tag to the functional unit that is expected to produce the result as
its next output. When a result is produced, a common data bus simultaneously relays it
to all reservation stations as well the machine register files, which use associative
comparison with their tags to read the result off the bus. As compared to Thornton’s
algorithm:

1) There is no central scoreboard and thus dependency resolution, where precedence is
Controlled by means of tags, takes place in a distributed manner.

2) A common data bus provides a direct communication path between functional units.

3) Automatic register renaming reduces order dependency. For example, in the
sequence shown in Figure 1.2.a, register R2 in instructions X l and X3 wbuld be
mapped to two reservation stations. As a result, not only execution of X l and X3
can be overlapped, but unlike Thornton’s approach, X3 can finish before X l
because the original contents of R2 have already been copied to the reservation
station of the functional unit executing XI. This resolves order dependencies.

4) Output dependency does not block instruction dispatching either, since the register
tag is always updated to point to the most recent functional unit from which the
result is expected.

5) Instruction issuing is blocked when there are no available reservation stations for
the desired functional unit. Issue rate is still limited to one instruction per cycle.

Weiss and Smith [WeS84] simulated performance of the CRAY-1 scalar
architecture using a variation of Tomasulo’s algorithm. The scheme proposed uses a tag
pool consisting of a finite set of tags for assigning destination tags, Therefore, unlike

19

• . . .
Tomasulo’s algorithm, the tags are not in one-to-one correspondence with the Reservation
stations, and instruction issue can also be blocked if there are no tags available in the
pool. This variation was based On the observation that only a subset of all possible
reservation station fields may be active simultaneously, hence the eoifihibn tag pool
would reduce the associative search overhead, in another experiment, they propose a tag
search table to eliminate the need for associative tag search. This restricts a particular tag
to be used with only one reservation station. The search table is indexed by tag value and
contains the address of the corresponding reservation station. A used bit associated with
every tag in the pool blocks its multiple usage. They found that even this restricted
version of Tomasulo’s algorithm retains much of the performance gain using the
associative version.

The work of Weiss and Smith was further extended by Sohi and Vajapeyam
[SoV87J. In addition to a separate tag unit, responsible for managing the tag pool, this
scheme contains another common pool for the reservation stations. As indicated earlier,
under Tomasulo’s algorithm instruction issue would block if there are no reservation
station available for the desired functional unit, even though there may be unused stations
with Other units. Therefore, a common pool of reservation stations that are dynamically
assigned, can be expected to provide improved performance.

At this point it can be seen that the machine organization starts to resemble that of
data flow computers, which are characterized by token issuing and matching units similar
to the tag pools described above. In the data flow model of computation [ArG82],
execution of an operation is only contingent upon the availability of its input operands
and a free functional unit. Thus, when implemented at a fine grain level, data flow tends
to expose all available concurrency in the program graph. Complete concurrency
exploitation at the machine level is facilitated by high level program specification using a
functional language. This has traditionally been met with reluctance in the user
community, since it implies setting aside a vast amount of software built over the years in
trad itional languages like FORTRAN, PASCAL, or C. F urtherm ore , programs w ritten in
functional languages tend to consume large amounts of memory space due to the single
assignment rule and copying of data arrays. Some recent experiments have relied on
some of the properties of the data flow model to utilize fine grain concurrency, while
keeping the traditional program specification at the high level.

Patt, et. al. [PHS85] report a variation of data flow referred to as restricted data flow
architecture. Unlike classical data flow machines, the data flow graph of only a small
subset of the program is kept in the machine at one time. Thus, fine grain parallelism
present in this active instruction window is utilized. A merger unit takes the data flow
graph of each instruction from the dynamic instruction stream, resolves any existing data
dependency using a variation of Tomasulo’s algorithm, and merges it into the data flow
graph resident in the active instruction window. An instruction that completes execution
is retired from the active window when all the preceding instructions have also retired.

Directed data flow, coined in connection with the Cydra-5 architectural design
[RYY89], refers to an architecture that supports the data flow model of computation in a
compiler directed fashion. The compiler support is similar in many ways to the VLIW
approach. In addition, it provides hardware support for overlapping execution of different
loop iterations. It combines the register storage and functional unit inputs land outputs
into a single entity referred to as the context register matrix. This provides a new context
for each new loop iteration. These iteration frames are dynamically allocated at run time.
Control dependencies are handled at the micro operation level by associating a predicate
with each operation. This predicate determines whether the corresponding operation
needs to be evaluated at all. As soon as all the control dependencies are resolved, the
predicate is set, which makes this operation immediately schedulable.

In-sequence or Out-of-sequence detection and scheduling. In-sequence detection implies
that concurrent instructions are restricted to be in monotonically increasing number
sequence, or in the sequence of a purely serial execution. As a result, the instructions are
examined in sequence, and detection and scheduling block every time a dependent pair is
encountered. Out-of-sequence detection and scheduling means out of order concurrent
instructions are allowed to be simultaneously executed. While, the former is simpler to
implement, the latter may have significantly higher concurrency potential in a large
scope. Foster and Riseman [FoR72] describe a preprocessing algorithm that generates a
reordered code sequence which has the property that if the instruction at the top of the
dispatch stack is found dependent and, hence, not immediately dispatchable, there will be
no instruction below it that is ready for dispatching.

Independent of whether instructions are issued in-order or out-of-order, they may be
allowed to complete in-order or out-of-order. The least restrictive option, that is allowing
Out-of-order instruction issue and out-of-order completion, exploits maximum
concurrency, A major difficulty with out-of-order execution is restoration of machine
state for restartability in case of interrupts.

1.2.4. Implementation Tradeoffs

Interrupt Handling. Interrupts pose a special challenge to architectures that overlap
executions of elementary operations. Interrupts can be defined as normally unexpected
events that are detected at run time and require modifications in the current execution
sequence. The unexpected nature of interrupts means that the program corresponding to
an interrupt service routine must be inserted arbitrarily into the executing program,
during its execution. This does not deserve any special attention for machines with purely
sequential execution, since it is accomplished simply by inserting a branch to the service
routine immediately after the execution of current operation. However, for machines that
overlap operation execution, an operation that is found independent of all incomplete

preceding operations and hence scheduled together with some operation <j>;, may be
dependent on a newly inserted (and hence incomplete) operation <|>* that belongs to the
interrupt service routine and precedes in purely sequential execution. Furthermore, on
machines that permit out-of-order execution, may have completed execution long
before ^ is detected, which can happen only after <)>* is inserted. As a result, any
schedule can potentially be rendered incorrect at run time if it does not include the
possibility of branch to service routines at arbitrary points of sequential order of
execution.

A possible solution to this problem can be to insert an OR node corresponding to a
possible branch to different service routines after every operation in the purely sequential
model of execution. While it would guarantee robust schedules under all combinations of
interrupts* it reduces the basic block size to one instruction. Such a Solution is
unacceptable. An alternate solution is to start with a program graph that excludes the OR
nodes corresponding to different interrupt possibilities. When the interrupt is detected,
the schedules are modified to incorporate the newly added nodes. This approach is
similar to trace scheduling, in that the emphasis is on concurrency exploitation along the
most likely program trace, which is the one with no interrupts or exceptions. As a result,
the additional overhead of providing compensation is incurred for any damage caused by
the wrong guess when an interrupt is detected. This need to compensate further implies a
delay between interrupt detection and recognition, where the recognition refers to start of
execution of the corresponding service routine. This delay is sometimes known as
interrupt latency.

At the time of interrupt recognition, if the state of the interface space is same as that
during a purely sequential execution, the corresponding interrupt is called a precise
interrupt. Precise interrupts have a long latency, since the recognition takes place only
after the effects on the interface space of all the operations following the interrupt
detection point have been undone. Not only this repair is expensive to implement, it has
an unavoidable adverse side effect on performance because the operations undone need
to be reexecuted. Not all interrupts require a complete restoration of machine state to
that of a strictly sequential execution for program correctness. There are cases when a
partial or even zero recovery would be acceptable, which leads to the concept of
imprecise interrupt. Such interrupts allow the state of interface space at the time of
recognition to be different from that during a strictly sequential execution. An imprecise
interrupt can have its own degree of impreciseness depending on the difference between
the two interface spaces.

Interrupts can also be classified into two categories depending on whether they are
caused by an event internal or external to the program execution. Examples of internal
interrupts (also known as exceptions) include events such as divide by zero, a page fault
on an operand fetch, or an incorrect branch prediction. External interrupts are events
such as, an I/O interrupt or a request to relinquish a shared bus.

Implementation o f Precise interrupts. Smith and Pleszkun [SmP85] present
implementation details for different strategies aimed at implementing precise interrupts
in pipelined processors. The options suggested there can be broadly classified into two
categories:

1) Reorder buffer. This strategy employs buffers to reorder the updates to the interface
space such that an operation is allowed to update the space only if all the preceding
operations have completed without any exceptions. The results waiting in the
reorder buffer are unavailable for further computation, hence, although simpler to
implement, this scheme forces in-order completion of instructions and the
associated performance degradation. Variations on this scheme try to provide
associative search ability in the reorder buffer to be able to bypass the interface
space for items waiting in the buffer to be committed [SmP85j. The
implementation cost of such variations is high.

2) History buffer. These buffers are used to keep a copy of the original contents of the
registers and memory locations that get updated. When an instruction successfully
completes execution, the corresponding history buffer entry is deleted. On
detecting an interrupt, the offending instruction is used to index the buffer for
restoring the machine state as if none of the following instructions had any effect on
the interface space.

Sohi and Vajapeyam [SoV87] and Hwu and Patt [HwP87] have suggested further
variations of above ideas.

Implementation o f imprecise interrupts. Although these are much simpler to implement,
there are tradeoffs. Once an interrupt is detected either all operations in progress can be
aborted, or they can be allowed to run to completion before interrupt recognition, or the
entire machine state can he saved so that the program execution can be restarted at the
point of interrupt after servicing the interrupt. The first option has minimum latency, but
suffers from the performance loss of reexecuting the partially executed operations. The
third option suffers from the cost of saving the entire machine state. Thus, the second
option offers a good compromise. In case of VLIW machines, where each instruction
word issued consists of several independent operations, sometimes not all the
information needed to carry an operation to completion is issued at the same time
[RYY89]. In such cases, care has to be taken to selectively mask operations which would
initiate new operations and allow only operations which are needed for completing the
pendingones.

Concurrent and overlapped execution. The methods discussed so far have emphasized
detection and concurrent execution of independent operations. Consider two operations
<(),• and <f>y at a given level (say, assembly level) of program transformation, and the
corresponding set of sub operations <|>,i, • • • <)>;*,;• • • and • • • fy/, •• • after
transformation to a lower level (say, the microcode level) of representation. It is quite

'-V.' 23

possible that <|>j and <J>y are detected as dependent but some sub-operations '4ik add fyi are
found independent, and hence executed concurrently. The simultaneous execution of
and <j)jt, while a concurrent execution at the lower level, contributes to overlapped
execution of <)>,• and <))j at the higher level. If certain set of sub-operations is repeatedly
used during the transformation in a regular sequence (for example, fetch the instruction,
fetch the operand, execute the operation), it lends itself very naturally to a pipelined form
of implementation.

Resource utilization has not been an explicit concern so far. It has been implicitly
assumed that care has been taken to ensure proper utilization of resources at all levels. In
fact, it is this very concern that manifests itself in the form of resource dependency. In
order to achieve a cost-performance balance that is globally optimum, system resources
at every level should be locally optimized, too. At times when concurrent execution is
sacrificed in favor of better resource utilization, the performance penalty resulting from
the resource dependency can be mitigated by using an optimized pipelined design for the
existing resource. Thus, a combination of concurrent and overlapped (pipelined)
execution holds the key to an optimal design. Machines with wider instruction words
tend to have a slower clock period to be able to generate control signals for the additional
hardware. A pipeline with twice the number of segments can potentially have about the
same throughput as two pipelines of half the size. However, under less than ideal
conditions, doubling the number of segments does not mean halving the clock period.
Only if the optimal performance obtainable from one pipeline is significantly IeSs than
that from two would a resource duplication would be justified. Experiments done by
Sohi and Vajapeyam [SoV89] report the performance potential of machines with
restricted instruction word width and deeper pipelines.

Instruction fetch Limitations and Branches. The adverse impact of conditional branches
in introducing control dependencies and thereby limiting the ability to lookahead has
been discussed in detail in the previous sections. There are two other overheads that are
associated With both conditional and unconditional branches: target address C alculation
and target fetch. In order to sustain a steady rate of multiple instruction issue per Clock
the system must also be capable of fetching multiple instructions at a time, to avoid
starvation. This is easily done with a wide memory (cache) interface when the
instructions to be fetched form a contiguous block of code with a known starting address.
This is not the case when a branch is encountered.

For example, suppose a system is capable of simultaneously fetching six contiguous
instructions and the third instruction in a group happens to be an unconditional branch.
This means the last three instructions are incorrectly fetched and would need to be
refetched after calculating the branch target. Compile time preprocessing can be used to
alleviate the situation. A technique known as target copying is used to modify the
instruction sequence by copying several lines of code from the branch target to the
address locations immediately following the branch instruction. In the preceding

example, the compiler can copy three lines of code from the branch target to the
locations right after the branch instruction. As a result, all the six instructions fetched
simultaneously from contiguous locations are valid. This further allows the overlap of
target address calculation with processing of the instructions copied from the target, so
that contiguous fetches can continue without any interruption from the target address.

A similar approach can also be taken for conditional branches using static branch
prediction techniques and target copying for branches predicted to be taken. A drawback
of this technique is the resulting code expansion. Smith, et. al. [SJH89] and Johnson
[Joh91] report a variety of experiments exploring the impact of such instruction fetch
limitations on potential speedup using dynamic detection and scheduling techniques.
Instruction fetch inefficiencies caused by branch delays and instruction misalignment are
reported to be the primary performance impediments.

Operand fetch Limitations. A typical instruction requires more than one operand. A
steady rate Of, say, x instruction executions per clock can only be supported if the system
is also capable of supplying operands in excess of x per clock (more likely 2x operands
per clock). Unlike instruction fetches, operand fetches are from non-contiguous memory
locations and a significant number of operand fetches refer to recently computed results
still residing in a local register file. The approaches taken to address this problem either
at the main memory interface or at the register file interface fall into two categories:
multi-ported shared bank or single-ported multiple banks. A bank can be either a main
memory (or cache) module or a register file. A multi-ported shared bank has better
utilization than single-ported multiple banks, but is normally a costlier implementation.
This tradeoff has been studied in detail for evaluating alternatives for a shared memory
implementation for a multiprocessor system and a recent study of this tradeoff apllied to
register file implementation appears in [SoV89].

Johnson [Joh91] provides a quantitative comparison for four major hardware
features for exploiting instruction level parallelism at the assembly level: out-of-order
execution, register renaming, branch prediction, and a four-instruction decoder. The
conclusions are derived from trace driven simulation in a general purpose environment.
The incremental speedup due to out-of-order execution, given the other three features, is
found to be in the range of 1.5; that due to register renaming and branch prediction is
reported in the range of 1.3. These features are interdependent. As a result, these
incremental speedups can not be considered in isolation.

1.2,5 Summary

This section surveys the wide variety of options available for representing,
detecting, and scheduling concurrent instructions. Data structures for concurrency
representation including dependency graphs, ordering matrices, and petti nets were

■ ■ ' '

described. Dependencies are grouped into data dependency, control dependency and
resource dependency. The available design choices have been classified in categories
related to the scope (within or beyond basic blocks), level (high level, assembly, or
microcode level), time (compile time or run time) and order (in-order or out-of-order) of
detection, scheduling, and completion (Figure 1.3). Run time scheduling techniques are
further classified into centralized control flow and distributed data flow approaches. This
set of available options is illustrated in Figure 1.4. Certain important implementation
tradeoffs were analyzed, including those related to interrupt handling and to instruction
and operand fetch limitations.

The data presented in Table 1.1 show a broad range of potential speedup; however,
if the reports of Riseman and Foster [RiF72] and Nicolau and Fisher [NiF84] are
excluded, the picture is more limited. These two studies can be interpreted as
performance limits without implementation constraints. Exclusive of these two reports,
the reported speedup speedup varies from about 1.8 to 8 times that of execution on
conventional pipelined systems. The results of some of these studies can be summarized
as follows:

In-order versus out-of-order execution. The advantage of out of order execution is
strongly dependent on the depth of the execution pipeline. The longer the delay in
executing various operations, the more significant the advantage of out of order
execution. If all instructions execute in unit time and they are decoded every time unit in
order, then there will be no advantage to their execution out of order. The longer the
delay in execution, the more the advantage realized in the additional overlap provided by
their out of order execution. In other words, deeper pipelines are more effective in
utilizing the additional parallelism exposed by out-of-order execution. A similar
observation is made by Sohi and Vajapeyam [SoV89], in a somewhat different context.
They report the effectiveness of deeper pipelines in utilizing the parallelism exposed by
loop unrolling or multiple operation issue. Based on reported results [AKT86, SoV87J, a
performance plot of the type shown in Figure 1.5 can be expected. Out-of-order
execution when applied to a pipeline of depth about three achieves roughly 20 percent
speedup relative to machines with same pipeline latency and in-order execution. A
pipeline as deep as 8 or 10 stages may achieve a relative speedup as high as 50 percent.
A deeper pipeline has disadvantages associated with its poorer utilization due to longer
flush times during branches. As a result, the low latency processor will still have
superior performance speedup.

Multiple instruction issue with out-of-order execution. In this situation there are two
variables: the number of instructions that are inspected for independence during the
decode stage, and the number of detected independent instructions that actually can be
issued for execution. Again, the results of Acosta [AKT86] seem representative. Figure

25

Design Choices

Scope

witinnbeyond

basic basic
block block

Level Time Order

High Microcode Compile Run
level Assembly time time

Scheduling Completion

X
In-order Out-of-order

Figure 1.3 Available design choices for superscalar processors.

Scheduling Strategies

Static

Trace Percolation Software
scheduling Scheduling pipelining

Dynamic

Control Data

flow flow

Classical Reduced Directed

data flow data flow data flow

Figure 1.4 Classification of scheduling strategies.

27

Relative
Speedup

Pipeline depth

Figure 1.5 Speedup from out-of-order execution relative to in-order execution
as a function of pipeline depth.

1.6.a shows the maximum available speedup given an ideal processor. For the ideal
processor the baseline execution (speedup = 1) represents either in-order or out-of-order
execution, since all the execution units execute with a unit delay. Issuing two
instructions indicates a potential speedup of slightly less than 1.75 over the baseline.
Issuing four instructions provides almost 2.5 speedup. The limit of the speedup is 2.8.
Note that potentially almost all of the advantage is gained by inspecting eight instructions
and issuing four. For Acosta [AKT86], the speedup is limited by basic block size,
because scope of concurrency detection is limited to within the basic block. This is
generally consistent with most earlier studies showing maximum speedup potential
somewhere in the range of 1.5 to 3. When more reasonable hardware constraints are
placed on the processor model [AKT86], as shown in Figure 1.6.b, the relative speedups
remain much the same as ideal. However, some of the relative advantages shift. Now,
whenever limited to single instruction issue per clock, out-of-order issue and execution
achieves a 40 percent performance improvement over the baseline case of in-order issue
and execution. An intermediate performance point (not shown in the figure) would be
sequential issue with out-of-order completion, as in the CRAY-1. Speedup in this case is
typically around 20 percent [AKT86]. Still, the overall speedup potential is limited to
about 2.5 and most of the gain is again achievable with an instruction window o f about
eight instructions.

Software Assistance. Achieving significant speedup requires techniques that allow
concurrency detection beyond the basic block. This can be done in hardware, in software,
or both. Hardware alone, because of the complexity involved, seems to have limited
potential. Using combinations of hardware and software techniques, it may be possible
to achieve speedups of four to eight times [Wed82]. Parallelism and speedup uncovered
by software duplicates in part the parallelism uncovered by the hardware. In one
experiment in this area, Wedig [Wed82] reports an overall speedup in hardware plus
software detection of concurrency of three, but the hardware or software alone would
have accomplished a speedup of two. Thus, software detection of concurrency is
potentially complementary to hardware, but overlap is present. The system designer
should carefully partition the problem of concurrency detection lest duplicate effort
detect the same events.

Finally, branches pose a significant bottleneck to concurrent execution. Future
research needs to be directed to compile time and run time effort to reduce the branch
overhead and to implementations that can simultaneously resolve multiple branches to
independent targets. Memory system design would also be considerably affected by
concurrent execution. The discussion in this chapter has ignored the details of the
memory system enhancements essential to sustaining instruction and operand throughput.
To map the simultaneous memory requests to independent memory banks would be vital
to achieving Overall performance improvement. On the other hand, loops (especially for

29

Relative
Speedup

Relative
Speedup

window size = 32

window size = 8

unlimitedBaseline

Maximum number of instructions issued per cycle

window size = 32

window size = 8

unlimitedBaseline

Maximum number of instructions issued per cycle

(b)

Figure 1.6 Multiple instruction issue with out-of-order execution and with
scope limited to within the basic block, relative to a processor with
in-order execution and single instruction issue per cycle; assuming
single-cycle functional unit processor (a) arid multiple-cycle
functional unit processor (b). These graphs are derived from
results reported in [AKT86].

scientific applications) hold significant speedup potential due to their regular dependency
and control structure. A combination of complementary compile time and run time
support may be the key to concurrency extraction and for resolving most of the
performance barriers.

30

1.3 DissertationOverview

The research described in subsequent chapters assumes a common architectural
framework shown in Figure 1.7. Under ideal conditions, the organization ' s capable of
providing a throughput of k results per cycle. For k = I, the system reduces to the
classical single pipeline architecture. Chapter 2 concentrates on optimizing the
performance of a single pipeline. Optimization of a pipeline here refers to partitioning
the pipeline into the number of segments such that overall throughput is maximized.
Architectures that opt for deeper single pipeline as opposed to multiple pipelines have
been referred to as superpipeline architectures. Branches pose a serious performance
bottleneck for such pipelined machines, as they interrupt the sequential flow o f the
instruction stream. Chapter 3 builds a common analytical platform for comparing
different branch strategies in use for single-pipeline processors. Commonly-used branch
strategies reduce the branch delay by predicting a certain execution path and continue to
fetch along the predicted path. In case of incorrect prediction, the instructions fetched
along the predicted path are wasted. Chapter 3 also examines this associated cost of
wasted instruction fetches. Chapter 4 considers the cost-performance tradeoffs between
the superscalar and superpipeline architectures. Performance of superscalars is critically
dependent on the utilization of the multiple resources. The essential and control
dependencies in the instruction stream are the primary limiting factor against die perfect
utilization of the k pipelines. Chapter 5 proposes an analytical model for these program
dependencies. The inputs to the proposed model also provide characterization of the
inherent parallelism in program traces. A number of benchmarks are characterized using
the Multiflow TRACE compiler. This characterization is used for predicting the
attainable speedup under resource and scope constraints. The predicted speedup is close
to the actual measured throughput of the compiler generated traces. Chapter 6 discusses
a simplified extension of the model to include multiprocessors. The extended model is
used to analyze combined systems, such as a superpipelined multiprocessor and a
superscalar multiprocessor. Chapter 7 summarizes the work and the contributions of
dissertation. Finally, Chapter 8 outlines some ideas for future work in this area.

Main Memory

I instruction /cycle I operand /cycle

k instructions /cycle

k instructions /cycle

k instructions /cycle

k pipelines
s stages each

i-cache d-cache

Branch Target Buffer

i-window
(W instructions)

k results /cycle

Figure 1.7 Architecturalframeworkusedforthisresearch

CHAPTER 2
OPTIMAL PIPELINING

2.1 Introduction

Pipelining is one of the most attractive and widely used design alternatives in high­
speed computer systems as it offers a potential speedup of s when s pipeline stages are
used. This chapter is an attempt to understand the tradeoffs and overhead that limit this
theoretical speedup. A mathematical model is developed to provide insight into the
effective roles played by different parameters involved.

The following are the main practical constraints that limit the performance of
pipelined processors:

i) Instruction dependencies. An instruction may be dependent on previous
instructions for either data or control. This may cause less than full utilization of the
pipeline.

ii) Resource conflicts. An instruction may require the use of a certain pipeline resource
during the same period as an earlier instruction; thus necessitating a delay in its
start. This can also limit utilization of the pipeline [KuS86].

iii) Latch overhead. This places some constraints on the maximum clock frequency
that can be used. There are three main components of this overhead [KuS86]:

a) propagation delay through the latch,

b) data skew resulting from the difference between the minimum and maximum
Signal propagation times through various logic paths, and

c) clock skew between the different stages of the pipeline.

iv) Partitioning overhead. A pipeline stage must consist of an integer number of gate
levels, hence the propagation delay of a pipeline stage is quantized, which may
reduce the maximum clock frequency used for the entire pipeline.

v) Setup, or flush time, overhead. The larger the pipeline the more the time required to
fill it and flush it. This time can have a significant effect on the overall throughput.
Note that apart from the initial setup time, additional flushes result from instruction
dependency.

vi) Control path limitations. The time required to generate control signals for die
pipeline stages also determines a minimum data path delay within any pipeline
segment [KuS86].

The above constraints may be typed as those that limit the full utilization of the
pipeline and those that limit the maximum clock frequency. Besides the constraints
mentioned above, insufficient utilization of a pipeline can also result from not having
enough data to keep the pipeline full. Such a restriction arises frequently in systems
where full utilization of a computational resource is limited by, for example, insufficient
I/O bandwidth.

2.1.1 PreviousResearch

A significant body of work has been reported on detecting pipeline hazards,
resulting from instruction dependency or resource conflict, and optimal scheduling
[Sha77, TjF70J. However, most of these studies assumed no restriction on clock period.
In the area of latch timing, Cotten [Cot65] and Hallin and Flynn [HaF72] developed
some basic latch timing constraints. Hallin and Flynn’s work was extended by Fawcett
[Faw75]. Kunkel and Smith [KuS86] further analyzed Fawcett’s constraints and also
provided some CRAY-IS simulation results to illustrate the effect of different overheads.
They simulated the specific case of the polarity-hold latch with a single-phase clock.

The following latch timing constraints [Faw75, HaF72] form the basis for analyzing
and modelling the latch overhead:

I) Minimum clock high time: The clock pulse must be wide enough to ensure that
valid data is latched,

ii) Maximum clock high time: The clock pulse must be shorter than the minimum
propagation delay from the input of one latch to the input of the next, and

iii) M inim um dock period: The minimum clock period must be longer than the
maximum propagation delay from the input of one latch to the input of the next, to
ensure valid data is latched.

Kunkel and Smith [KuS86] begin with performance measurements assuming no
latch overhead. Next, they include the data skew component of latch overhead. Finally,
clock skew is incorporated, first assuming two-level fanout and then assuming four-level
fanout circuitry. In each case scalar, vector, and combined loops are used as the three
kinds of inputs. Based on these results they conclude that 8 to 10 levels of gate delay per
segment yields optimum, combined (scalar and vector) performance.

Kunkel and Smith do not provide much insight into the factors governing the nature
of the performance curves, i.e., the reasons behind certain characteristics displayed by the

performance measurements. This omission provides the motivation for this chapter:

“ Can a theoretical model be developed that will include different overheads
associated with a generic pipeline and provide insights which will help predict the nature
of modulations in the performance curve and the optimal performance?”

The next section presents a theoretical model aimed at better understanding of the
behavior of a single-pipeline architecture.

. 34

2.2 AGenericModel

Let T be the latency of a logic tree without any pipelining. If the tree is divided into
s segments, without considering any kind of overhead, the clock period with pipelining is

At= TIs .

Considering full utilization, throughput G is

G = IZAr .

Pipeline utilization can be quantified in terms of a utilization parameter, u defined as

U = S a v IS ,

where Sav is the average number of segments active at a time.

Thus, U=O for unutilized pipelines and u = I for fully utilized pipelines. Therefore,
actual throughput can be written

G = UlAt . {2.1}

Equation (2.1) represents the effect of pipeline limitations that result in inefficient
utilization of the pipeline.

The actual clock period would not simply be inversely proportional to the number
of segments, but rather involve certain overhead components. Pipeline overheads can be
grouped into the following two categories:

a) Static overhead (c): This overhead is associated with each pipeline stage and is
independent of the number of partitions of the pipeline. Propagation delay overhead
(through the stage latch) and the clock-skew overhead fall in this category.

b) Dynamic overhead (k): This overhead is a function of the number of partitions of
the pipeline, i.e., it is a function of s. Data skew overhead, setup and flush time
overhead, and partitioning overhead belong to this category.

With static and dynamic overheads included clock period, At becomes

35

At= k (77s) + c . {2.2}

Under ideal conditions, i.e., without any overhead, K =I and c = 0 . For example,
consider some Of the timing constraints developed by Kunkel and Smith [KuS86] on the
basis of earlier work in this area by Fawcett [HaF72]. Assuming polarity-hold latches
and a single-phase clock, after satisfying the constraints mentioned in Section 2.1.1, the
minimum clock period with pipelining, as derived in [KuS86], is

Af = (n + 2) tmax , {2.3}

where n is the number of gate levels between latches (excluding two levels of gate delay
in the latch itself) and tmax is the maximum gate delay.

Using the terminology developed in this section, Equation (2.3) can be written as

At= Tls + 2 tmax

after separating the constant overhead term. In order to satisfy the lower bound on clock
period (third constraint in Section 2.1.1), there must be a minimum number of gate levels
between latches for proper operation. Thus, if s is large, delay padding may be required.
Again, repeating the result derived by Kunkel and Smith [KuS86], assuming wife-delay­
padding, the clock period in this range is

Af = (l - p) 7 7 s + (6 - 4 p) f max , {2.4}

where (I is the ratio of minimum gate delay to maximum gate delay. This indicates a
dynamic overhead, K = 1-p, and a static Overhead, c = 6-4p. Interestingly, K is less than I
in this example. Recall that Equation (2.4) is valid only when using delay padding to
satisfy the constraint on the minimum number of gate levels between latches. Since s is
typically large in this circumstance, any apparent reduction in At due to reduced K is
more than offset by a larger constant Overhead term c, as compared to Equation (2.2)
under ideal conditions.

Combining Equations (2.1) and (2.2),

G u
k (T/s) + c

The number o f segments which maximizes the throughput can be obtained by solving,

——=Q=c u s 2 + k T us + u k T , {2.6}
os

where u is the first order derivative of u with respect to s. The above equation does not
presume any specific utilization pattern. Hence, it can be used for any known utilization
pattern.

Clearly pipeline utilization is a function of the number of pipeline segments. In
Only the simplest problem, a linear function u = b - a s (where a and b are arbitrary

constants) can be expected. Normally, shorter pipelines are easily filled and hence result
in higher utilization. As the number of segments starts to go up, utilization starts to drop
in a nonlinear manner. There is an upper limit to pipeline Utilization independent of the
number of segments which can be set, for example, by the maximum memory bandwidth.
This maximum utilization, umax, is independent of s. As loading in a program
environment is likely to cause at least a second order term, in this chapter a second order
utilization pattern is assumed for the purpose of simulation, thus,

36

: : .. . • v; ■ ■ U = Umm^ r s 2-VS . (2.7}

Therefore/

'./ ■ V / . Il 4 {2.8}

where the coefficients r and V are constants for any given program envirtiiunent. These
can be empirically determined and depend upon the amount of vectorization and
instruction dependency in a given program, in addition to other factors. In Equation (2.7),
/•represents the effect of increasing dependency and issuing delay between instructions.
For example, a two segment pipeline can only have a single stage dependency but with
increasing number of segments, utilization would tend to drop due to increased
dependency. Variable v represents the first order coefficient in the utilization model.

This is one of the simpler possible models for program utilization. The second
order equation has been chosen only so that, as the number of Segments changes, the
utilization changes at a varying rate. Any equation of order two or more can caiptufe this
effect. Alternative and more complicated approaches to modelling pipeline utilisation
are discussed in the following chapters.

Using Equations (2.7) and (2.8), Equation (2.6) can be simplified to,

e s 3 + f s 2 + g s + h= 0 , {2.9}

where

e = I r c

* j ■ -; ■
/ = c v + 3 k 7> ■' .

g = 2 KT v

h = - 0 W) KT .

Equation (2.9) can be solved to obtain the optimal number of partitions, Sopt under
different conditions of utilization and overhead parameters. This equation is used to
generate performance tables (Tables 2.2 - 2.6) and corresponding graphs (Figures 2.1 -
2.5) to illustrate sensitivity with respect to each parameter. Utilization coefficients have
been varied over a range such that the utilization given by Equation (2.7) is between 0

Table 2.1 Nomenclature and nominal values of model parameters.

Explanation Symbol Nominal
value

Latencyofthelogictree T IOOns

Nominalnumberofsegments Snom 5

Throughput of the pipeline G ;

Optimum number of segments Sopt . ^
Constant term in the utilization equation ^max 0.6
First-order coefficient in the utilization equation V 0,0.01

Second-order coefficient in the utilization equation r 0.004

Constant overhead term C IOns

Dynamic overhead term K 1.3

Branch frequency b 0.1

Two-clock instruction frequency X 0.1
Throughput at nominal values of all parameters G nominal
Throughput, normalized relative to G wowJpw/ Gnorm ■; . ;■ .
Throughput at S = Sopt, normalized relative to Gwomow/ Gopt

■

Throughput at S = SsuI30p =1, normalized relative to Gwowjwo/ G Subop
Throughputat S = S ovrop =10, normalized relative to Gwowjwo/ Govrop /
ThroughputatS=Swow Gnom
Throughput gain at S = Sopt, relative to Gwow A G opt

Throughput gain at S = SsuI30p =1, relative to Gwow A G sû op
Throughput gain at S = Sovrop =10, relative to Gwom AGovrop

and I.

A given partitioning of a pipeline can be considered sub-optimal or over-optimal
depending on whether the number of segments in the pipeline is less than or more than
the optimal number of segments, respectively. Performance measurements have been
taken at sub-optimal, optimal, and over-optimal points. All the throughput measurements
are normalized with respect to GnomInaI, which represents the throughput at certain
nominal valups of all parameters, as listed in Table 2.1.

There are clearly other options for normalization. The chosen option is preferred
assuming an interest in estimating throughput with respect to an existing (nominal)
computer design. Under the nominal conditions here, static overhead is assumed to be
about one tenth of the period without pipelining. Dynamic overhead is assumed to be 1.3,
as compared to I in the ideal case. The assumed nominal values of the utilization
coefficients result in about half utilization of the pipeline.

Suppose there is an existing pipeline design with a certain number of segments,
Snom, and corresponding throughput, Gnom. Now, if the number of partitions is changed
to s with corresponding throughput G, then the throughput gain in moving from Snom to s

pipeline segments can be defined as the ratio

AG = GIGnom . {2.10}

Tables 2.7 through 2.11 and the corresponding graphs, Figures 2.6 through 2.10
show the sensitivity of this gain as a function of overhead and utilization coefficients.
All the gain calculations are with respect to a reference pipeline having number of
segments ,W« = 5.

38

2.3 Inferences

The effects of the overhead and the utilization coefficients on the actual
(normalized) throughput can be summarized as:

i) As the static overhead (c) increases, the optimum throughput (Gopt) and the
optimum number of partitions (Stvt) decreases. From Figure 2.1, it can be seen that
for small values of c, changes in c have a predominant effect. This indicates the
possibility of dramatic change in the optimal throughput (Gopt), as well as optimal
partitioning (Sopt) , if a balanced clock (negligible unintended skew) is disturbed.

ii) As the dynamic overhead (k) increases, Gcpt decreases whereas, unlike the previous
case, Sopt increases. From Figure 2.2, it can be seen that similar to the earlier case, a
given A k has more effect when K is small than when it is large. In a typical system
where K is close to I, and c is close to 0, on comparing Figures 2.1 and 2.2, it can be

Table 2.2 Normalized throughput (Gruirm) versus static overhead (c).

Static
overiiead,

c (ns)

Optimal
number of
segments,

Sopt

Normalizedthroughput

Gsubop Gopt Govrpp ;
0 6.29 0.36 1.47 0.62
10 5.51 0.33 1.01 0.35
20 5.03 0.31 0,78 0.24
30 4.69 0.29 0.64 0.19
40 4.44 0.28 0.55 0.15
50 4.23 0.26 0.48 0.13
60 4.05 0.25 0.43 0.11
70 3.91 0.23 0.39 0.10
80 3.78 0.22 0.35 0.09
90 3.66 0.21 0.32 0.08
100 3.56 0.20 0.30 0.07

Table 2.3 Normalized throughput (Gnorm) versus dynamic overhead (k)

Dynamic
overhead,

' V. K

Optimal
number of
segments,

^opi

Normalizedthroughput

Gsubop Gopt Govrop
1.00 5.34 0.43 1.20 0.40
1.10 5.40 0.39 1.13 0.38
1.20 5.46 0.36 1.07 0.36
1.30 5.51 0.33 1.01 0.35
1.40 5.55 0.31 0.96 0.33
1.50 5.59 0.29 0.91 0.32
1.60 5.62 0.28 0.87 0.31
1.70 5.65 0.26 0.83 0.30
1.80 5.68 0.25 0.79 0.29
1.90 5.71 0.23 0.76 0.28
2.00 5.73 0.22 0.73 0.27

40

Table 2.4 Normalized throughput (Gnorm) versus constant term of the
utilization model (Umax).

Constant
term of the
util, model,

W max

Optimal
number of
segments,

$opt

Normalized throughput

& subop Gopt Govrop
1.00 7.08 0.56 2.06 1.74
0.95 6.91 0.53 1.92 1.57
0.90 6.73 0.51 1.78 1.39
0.85 6.54 0.48 1.64 1.22
0.80 6.35 0.45 1.51 1.04
0.75 6.15 0.42 1.38 0.87
0.70 5.95 0.39 1.25 0.70
0.65 5.73 0.36 1.13 0.52
0.60 5.51 0.33 1.01 0.35
0.55 5.27 0.31 0.89 0.17
0.50 5.02 0.28 0.78 0.00

Table 2.5 Normalized throughput (Gnorm) versus first-order coefficient of the
utilization model (v).

: First-order
coeff. of the
util, model,

V

Optimal
number of
segments,

sopt

Normalized throughput

GSubop G0pt Govrop
0.0010 6.09 0.34 1.14 0.66
0.0030 5.96 0.34 1.11 0.59
0.0050 5.82 0.34 1.08 0.52
0.0070 5.69 0.34 1.05 0.45
0.0090 5.57 0.34 1.02 0.38
0.0110 5.45 0.33 1.00 0.31
0.0130 5.33 0.33 0.97 0.24
0.0150 5.21 0.33 0.95 0.17
0.0170 5.09 0.33 0.92 0.10
0.0190 4.98 0.33 0.90 0.03

41

Table 2.6 Normalized throughput (Gwrm) versus second-order coefficient of
the utilization model (r).

Second-order
coeff. of the
util, model,

r

Optimal
number of
segments,

$opt

Normalizedthroughput

Gsubop G opt G 0Vrop

0.0005 11.03 0.34 1.57 1.57
0.0010 9.02 0.34 1.40 1.39
0:0015 7.90 0.34 1.29 1.22
0.0020 7.14 0.34 1.21 1.04
0.0025 6.58 0.34 1.15 0.87
0.0030 6.15 0.34 1.09 0.70
0.0035 5.80 0.34 1.05 0.52
0.0040 5.51 0.33 1.01 0.35
0.0045 5.26 0.33 0.97 0.17
0.0050 5.04 0.33 0.94 0.00

Normalized

•norm

Figure 2.1 Normalizedthroughput(Gnom)Versusstaticoverhead(C).

Normalized

•norm

Figure 2.2 Normalized throughput (Gnom) versus dynamic overhead (k) .

43

Normalized
throughput,

Number of segments, s

Figure 2.3 Normalized throughput (Gnorm) versus constant term o f the
Utilizationmodel(Mmax).

v = 0.019Normalized
throughput, I

norm

v = 0.001

10

Number of segments, s

Figure 2.4 Normalized throughput (Gnorm) versus first-order coefficient of the
utilization model (v).

44

r = 0.0005

Normalized
throughput, I -

norm
r = 0.0050

Number of segments, s

Figure 2.5 Normalized throughput (Gnorm) versus second-order coefficient of
the utilization model (r).

Table 2.7 Throughput gain (AG) versus static overhead (c).

Static
overhead,

Optimal
number of Throughput gain

■ • segments, '
c (ns) s opt ^G su b o p A Gopt A G ovrop

0 6.29 0.26 1.06 0.44
10 5.51 0.33 1.01 0.35
20 5.03 0.40 1.00 0.31
30 4.69 0.46 1.00 0.29
40 4.44 0.51 1.01 0.28
50 4.23 0.55 1.02 0.27
60 4.05 0.59 1.02 0.26
70 3.91 0.63 1.03 0.26
80 3.78 0.66 1.04 0.25
90 3.66 0.69 1.05 0.25
100 3.56 0.71 1.05 0.25

Table 2.8 Throughput gain (AG) versus dynamic overhead (k).

Dynamic
overhead,

K

Optimal
number of
segments,

$opt

Throughput gain

A G subop AGopt AGovr0p
1.00 5.34 0.36 1.00 0.33
1.10 5.40 0.35 1.01 0.34
1.20 5.46 0.34 1.01 0.34
1.30 5.51 0.33 1.01 0.35
1.40 5.55 . 0.33 1.01 0.35
1.50 5.59 0.33 1.01 0.36
1.60 5.62 0.32 1.01 0.36
1.70 5.65 0.32 1,01 0.36
1.80 5.68 0.32 1.02 0.37
1.90 5.71 0.31 1.02 0.37
2.00 5.73 0.31 1.02 0.37

46

Table 2.9 Throughput gain (AG) versus constant term of the utilization
model («max).

Constant
term of the
util, model,

^ max

Optimal
number of
segments,

Sopt

Throughput gain

A G su^ p A G opt A G ovrop

1.00 7.08 0.30 1.09 0.92
0.95 6.91 0.30 1.08 0.88
0.90 6.73 0.30 1.07 0.83
0.85 6.54 0.31 1.06 0.78
0.80 6.35 0.31 1.05 0.72
0.75 6.15 0.32 1.04 0.65
0.70 5.95 0.32 1.03 0.57
0.65 5.73 0.33 1.02 0.47
0.60 5.51 0.33 1.01 0.35
0.55 5.27 0.34 1.00 0.20
0.50 5.02 0.36 1.00 0.00

Table 2.10 Throughput gain (AG) versus first-order Cdefficieht of the
utilization model (v).

First-order
coeff. of the
util, model,

V

Optimal
number of
segments,

Sopt

Throughput gain

A G subop A G opt A G ovrop

0.0010 6.09 0.31 1.03 0.60
0.0030 5.96 0.31 1.03 0.55
0.0050 5.82 0.32 1.02 0.49
0.0070 5.69 0.33 1.02 0.44
0.0090 5.57 0.33 1.01 0.38
0.0110 5.45 0.34 1.01 0.32
0.0130 5.33 0.34 1.00 0.25
0.0150 5.21 0.35 1.00 0.18
0.0170 5.09 0.36 1.00 0.11
0.0190 4.98 0.37 1.00 0.04

47

Table 2.11 Throughput gain (AG) versus second-order coefficient of the
utilization model (r).

Second-order
coeff. of the
util, model,

r

Optimal
number of
segments,

$opt

Throughputgain

A G subop A G ppt A G o v rop

0.0005 11.03 0.28 1.32 1.31
0.0010 9.02 0.29 1.20 1.19
0.0015 7.90 0.30 1.13 1.07
0.0020 7.14 0.30 1.09 0.94
0.0025 6.58 0.31 1.06 0.80
0.0030 6.15 0.32 1.03 0.66
0.0035 5.80 0.33 1.02 0.51
0.0040 5.51 0.33 1.01 0.35
0.0045 5.26 0.34 1.00 0.18
0.0050 5.04 0.35 1.00 0.00

concluded that a given Ac would normally have stronger impact on system
performance than an equivalent Ak.

iii) As utilization (u) increases, Gopt as well as Sopt increase. A study of Figures 2.3 -
2.5 leads to the conclusion that: higher-order coefficients have a stronger effect on
optimal partitioning (Sopt) and on the optimal throughput (Gopt) as compared to the
lower-order coefficients. In other words, higher-order coefficients would require
tighter control in order to maintain a certain level of performance. Also, for large s
the slope of the performance curves (i.e., 9GIds) in Figure 2.3 becomes highly
insensitive to the variations in Umaxt the constant term in the utilization model. A
mathematical explanation for this, although not presented here, can be derived from
the expression for dG/ds given in a later section.

The following conclusions can be made from the gain plots:

i) As the static overhead (c) increases, gain increases for less than the existing
nominal number of segments, (Snomt see Table 2.1). For more than Snom segments,
gain decreases with increasing c (Figure 2.6). A gain can be considered an incentive
if it is greater than I. Thus, with increasing static overhead, there is higher
incentive to modify an existing (reference) pipeline to have a lesser number of
segments. This behavior is seen as a result of Sopt going down with increasing c.

ii) As the dynamic overhead (k) increases, gain decreases for fewer than the reference
number, Snom of segments. For more than the existing number of segments, gain
increases with increasing K (Figure 2.7). Therefore, with increasing k , there is less
incentive to change an existing pipeline to a smaller number of segments and vice
versa.

iii) As the utilization (u) increases, gain decreases for less than the existing number of
segments. For more than the reference number of segments, gain increases with
increasing utilization (Figures 2.8 - 2.10). Again, because Sopt increases with higher
utilization, there is increasing incentive to redesign an existing pipeline to have a
larger number of segments. Note that a variation in any of the utilization
coefficients has a stronger performance impact on the system with large number of
segments than the system with fewer segments.

An interesting but not obvious property of the throughput gain plots is the non­
monotonicity of the optimal gain. Look at the plot for gain versus static overhead (Figure
2.6). It can be seen that the optimal (maximal) gain is at its minimum for a fixed static
overhead, when c is at 20ns. Figure 2.11 shows the effect of utilization change on the
optimal gain minima. If the utilization is increased, a shift of minima is noticed to when c
is at 50ns.

Therefore, for a certain change in the static overhead c, say from c = 25ns to 45ns,
scalar code (smaller utilization) can show an increase in optimal gain, whereas vector

48

49

t-

Number of segments, s

Figure 2.6 Throughput gain (AG) versus static overhead (c).

K = 2.0
K = 1.0Throughput

gain,
AG

K = 2.0

Number of segments, s

Figure 2.7 Throughput gain (AG) versus dynamic overhead (k),

50

Throughput
gain,
AG

Figure 2.8 Throughput gain (AG) versus constant term of the utilization
model (Mmax).

1.5

1 -
'ITiroughput

gain,
AG

0 .5 -

0

Number of segments, s

Figure 2.9 Throughput gain (AG) versus first-order coefficient of the
utilization model (v).

v = 0.001v = 0.019

v = 0.001
v = 0.019

I

r = 0.0005

Throughput l _
gain,
AG

0 .5 -

r = 0.0050

r = 0.0050r = 0.0005

Number of segments, s

Figure 2.10 Throughput gain (AG) versus second-order coefficient of the
utilization model (r).

1 .2 -

1 .16-

Optimal 1 .12-
• .

gain, \
A Oopt 1.08 - \

1 .04- V

Second-order coefficient
of the utilization model

(see Equation 2.5),
r =0.0040

r = 0.0025

I I I T
10 20 30 40 50

I I T
70 80 90 100

Static overhead, c

Figure 2.11 Optimal throughput gain (AGopt) versus static overhead (c)

code (higher utilization) continues to show a decrease in the optimal gain. A similar
effect is observed in Kunkel and Smith’s simulation results, when as a result of moving
from 2-level fanout clock skew overhead (i.e., a clock distribution logic with 2 levels of
gate delay) to 4-level fanout clock skew overhead (in other words, moving to higher
constant overhead), scalar optimal gain increases, whereas the vector optimal gain
decreases. The optimal gain minima occurs when Sopt drops to Snom. Since Sopt is greater
for a vector environment, with an increase in c it drops to Snom later than in the case of a
scalar environment

.53

2.3.1 Correspondence with Previously Published Experimental Results

As illustrated in Section 2.2, the minimum clock period expressions in the Kunkel
and Smith’s paper [KuS86] can be rearranged to highlight static and dynamic overhead
terms. In the range where s is large, inclusion of data skew overhead decreases the
dynamic overhead (k) , while the static overhead (c) increases. The decrease in K and the
increase in c, both result in a reduced throughput gain reported by Kunkel and Smith.
Also, there is dramatic reduction in actual throughput because of a change in c from zero
to a positive non-zero value. The increase in static overhead (c) also reduces the optimum
number of segments, s opt. This reduction in s opt becomes noticeable for the scalar code
in their study. But for the vector code, because of higher utilization than the scalar code,
s opt still stays high enough to be unnoticed. Inclusion of clock skew overhead further
increases the constant overhead (c) and hence, Sopt continues to move towards a smaller
number of segments. With increasing static overhead, throughput gain continuously
increases in the suboptimal region, whereas it decreases in the over-optimal region of all
the performance tables obtained in [KuS86].

2.4 PotentiallmprovementstotheM odel

The definition of the utilization parameter, u , as given in relation to its role in
Equation (2.1) best fits the case of pipelines where each segment always takes only one
clock period to perform its operation. Such pipelines are typically at the subsystem level,
e.g., a floating point multiplier pipeline. If pipelines have variable delay, where a
segment may take more than one clock to complete, are included then u as defined earlier
does not fit the need. For example, if every stage takes 2 clocks then though the
utilization as defined may be I (or 100 percent), the throughput would only be I result
every 2 clocks and not I result every clock, as given by Equation (2.1). Such pipelines
are typically at the system level, e.g., an instruction fetch-decode-execute pipeline.

54

In Equation (2.1), in a more generic sense, pipeline utilization (u) should be thought
of as the factor by which the maximum possible throughput (I /At) is modified to yield
the actual throughput (G). Actual throughput is strictly determined by the rate at which
the outputs are available from the last segment. If any data item takes more than one
clock in die last segment, a decrease in throughput results. Similarly, if any data item
takes more than one clock in any segment, say segment /, the effect of this slowdown of
segment i will ripple through the pipeline and result in the same slowdown at the last
segment, segment s, after (s-i) clocks. Assume that while the effect of slowdown of one
stage is rippling to the final stage, there is no other stage that slows down. Under these
conditions, the following equation provides a model for u,

u = - ---------------- 4 " 7 ---------------- {2 .11}
l + (s-l)£ > + X X V - D x i j

i= l j =2

where b is the average number of setup and flush sequences per data item, J is the
maximum number of cycles any data item spends in any segment, and xKj is the
probability that a data item takes j cycles in the i th segment.

For example, consider a 5-stage instruction pipeline in an environment such that an
average of I out of every 10 instructions takes 2 clocks in the execution stage (last
segment) and I out of every 10 instructions is a branch instruction. Then, S = 5, £>=0.1,
/ = 2 , X s^=O.!, and, * 1,2 =*2,2 =*3,2 =*4,2 = 0- This gives u = 10/15. Any random
sequence of 10 instructions would be expected to lose 4 clocks during a branch and I
clock due to a 2-elock instruction and, hence, take 15 clocks.

For further analysis, assume a simplified view of an instruction pipeline such that
J = 2 and for any segment i, 2 =x. As an example, if the i th segment refers to the
operand fetch stage, x refers to the fraction of instructions spending an additional clock
during operand fetch. Typically, each stage would have its own independent fraction of
instructions which occupy the stage for more than one clock; because this is not critical
to the current discussion, additional variables are not introduced, From Equation (2.11)

I
U l + (s - l) b +sx

Therefore, throughput can be written

I * I
l + (s-l)£>+sx k (7 7 s) + c

For maximum throughput,

(2 . 12)

{2.13}

Sopt
(l-b)K T
(.x+b)c

{114}

55

As static overhead (c) approaches zero, the optimum number of segments (Sopt)

approaches infinity. As observed before, for small values, c has a dominant effect.
Tables 2.12 and 2.13 and corresponding graphs, Figures 2.12 and 2.13, show the
variation in normalized throughput as a function of the number of pipeline segments. As
branch frequency (b) decreases, Sopt and corresponding optimal throughput both increase.
In other words, for a fixed partitioning, the pipeline becomes suboptimal as b decreases.
The same observation holds for segment slowdown frequency (x).

Effect o f Buffering: So far, additional buffering at a segment output has been
ignored. In the presence of such buffers, slowdown of an intermediate segment does not
necessarily slow down the final segment. Although it is quite often used in system-level
pipelines (e,g., instruction FIFO), its inclusion would considerably complicate the model.
The solution to a general model of this type can be derived using queueing theory
techniques.

Second-order Effects: The utilization model assumed in Section 2.2 also hides
certain second-order details. For example consider the rate of change of throughput with
respect to s. From Equations (2.1) and (2.2),

dG _ u ukT
ds T S2At2

{2.15}

Considering the given utilization model, with increasing s, the first term in the Equation
(2.15) becomes more and more negative, whereas the second term becomes less and less
positive. In other words, dG/ds monotonically decreases with increasing s leading to
diminishing return (reduced throughput improvement) with increasing s. In an actual
environment this may not be the case. Utilization of a pipeline does not necessarily go
down with an increasing number of segments. For example, if a larger number of
partitions leads to better mapping of the reservation tables (i.e., better resource
allocation), utilization might even go up. Also, for the same number of segments,
utilization may change in a statistical and/or periodic fashion. If these possibilities are
incorporated into the utilization model, throughput curves could potentially have multiple
maxima and minima and there would be points of maximum and minimum return from
incremental change in partitioning.

2.5 Summary

This chapter provides an approximate model of the behavior of a pipeline and the
understanding of the factors involved in determining the optimal performance. In spite of
its simplicity, the model can be considered a useful first-order tool for comparative study

56

Table 2.12 Normalized throughput (Gnorm) versus branch frequency (b).

Branch
frequency,

b

Optimal
number of
segments,

$opt

Normalized throughput

G Suhop & opt Govrop

0.02 10.30 0.44 1.36 1.36
0.04 9.44 0.44 1.26 1.26
0.06 8.74 0.44 1.18 1.17
0.08 8.15 0.44 1.10 0.09
0.10 7.65 0.44 1.04 1.03
0.12 7.21 0.44 0.99 0.97
0.14 6.83 0.44 0.94 0.91
0.16 6.48 0.44 0.90 0.86
0.18 6.17 0.44 0.86 0.82
0.20 5.89 0.44 0.83 0.78

Table 2.13 Normalized throughput (Gnorm) versus segment slowdown
frequency (x).

Segment
slowdown

Optimal
number of Normalized throughput

frequency, segments,
X I-<*> Gsuhop G opt Govrop

0.02 9.87 0.48 1.42 1.42
0.04 9.14 0.47 1.30 1.29
0.06 8.55 0.46 1.20 1.19
0.08 8.06 0.45 1.11 1.10
0.10 7.65 0.44 1.04 1.03
0.12 7.29 0.44 0.98 0.96
0.14 6.98 0.43 0.93 0.90
0.16 6.71 0.42 0.88 0.85
0.18 6.46 0.41 0.84 0.80
0.20 6.24 0.41 0.80 0.76

: 1 .5 - J
Normalized
throughput, I -

•norm

0 .5 -

Number of segments, s

Figure 2.12 Normalized throughput (Gnorm) versus branch frequency (b).

1.5-1

Normalized
throughput, I -

GyjKorm

Number of segments, s

Figure 2.13 Normalized throughput (Gnorm) versus segment slowdown
frequency (x).

58

or sensitivity analysis of the performance of a pipeline in different environments with
different overheads. Hpeline utilization models were presented for both sub-system as
well as system level pipelines. Effects of branching and segment slowdown were also
considered in the case of simple system-level pipelines.

Small changes in the constant overhead term were shown to have a large impact on
optimal pipeline behavior. Increasing dynamic overhead increases the optimal number of
segments, whereas increasing static overhead requires fewer segments for optimal
performance. The results obtained are found to be in very close agreement with CRAY-1
simulation results obtained by Kunkel and Smith [KuS86], providing an analytical basis
for their results as well as additional insight in the pipeline optimization problem.

It is fair to conclude at this point that there are constraints that limit the speedup
attainable, through a single pipeline. One way to move beyond the optimum throughput of
a single pipeline may be by adding several such pipelines. Architectures adopting such
an approach are referred to as superscalar architectures and they form the basis of
discussion in the Chapter 4 that models multiple pipelines.

As alluded to in Section 2.4, branches pose a significant threat to high pipeline
utilization. The drop in utilization due to the inability to fetch the instructions arising
from the uncertainty due to conditional branches gets further magnified on systems with
multiple pipelines. A wide variety of branch strategies have been proposed to reduce the
branch delay. Next chapter analyzes these strategies through a probability based model in
the context of single-pipeline systems. Chapters 4 and 5 extends this analysis to
superscalars with speculative execution.

59

CHAPTER 3
BRANCH STRATEGffiS: MODELLING AND OPTIMIZATION

3.1 Intrcxiuction

Instruction dependency introduced by conditional branch instructions, which are
resolved only at run-time, can have a severe performance impact on pipelined machines.
A variety of strategies are in wide use to minimize this impact. Additional instruction
traffic generated by these branch strategies can also have an adverse effect on the system
performance. Therefore, in addition to the likely reduction a branch prediction strategy
offers in average branch delay, resulting excess instruction traffic can be an important
parameter in evaluating overall strategy effectiveness. The objective of this chapter is
two-fold: to develop a model for different approaches to the branch problem and to help
select an optimal strategy after taking into account the additional instruction traffic
generated by branch strategies. The first section presents the details of the model which
also forms the basis of a new classification of the different branch strategies commonly
employed. The following sections derive certain inferences from the results obtained and
lead us to some hybrid strategies.

3.1.1 PreviousResearch

Throughput in a pipeline environment is obtained by overlapping different
instructions in different stages of execution. This implies an ability to predict and issue
successive instructions before the complete execution of a given instruction.
Dependence of an instruction on the result of a predecessor instruction limits this ability.
Tjaden and Flynn [TjF70] provide an early framework in the area of formalizing the
concept of instruction dependency. The effect of conditional branches on system
performance was further substantiated by Riseman and Foster [RiF72]. Interest in
different branch strategies for minimizing performance impact has been renewed with the
advent of new RISC machines. Most of the recent work in this area has concentrated on
specific branch strategies and on improving prediction accuracy. ^Smith [Smi81]
discusses in detail different strategies for improving prediction accuracy. Lee and Smith
[LeS84] and McFarling and Hennessey [McH86] examine a range of schemes for

60

reducing branch penalty. DeRosa and Levy [DeL87] provide a quantitative comparison
for different design alternatives for the branch instruction. Hsu and Davidson [HsD86]
suggest a scheme whereby a large number of branch delay slots may be filled with
guarded instructions, on machines such as the CRAY-1, where conditional branch
resolution may take 14 clocks. These instructions are considered “ guarded” because if
branch resolution is not as expected, they are effectively treated as NOPs. Ditzel and
McLellart [DiM87] and Grohoski et. al. [GKT90] discuss branch strategies as
implemented on the Clipper and RS6000 processors respectively.

3.2 TheModel

Consider a pipeline with s segments (Figure 3.1) executing an instruction / , which
enters the pipeline the very next clock after instruction I. Assume a pipeline segment
delay as equivalent to the system clock period. Suppose the instruction J at the start of
its p / h stage of execution requires the result available at the completion of the q f1* stage
of execution of instruction /. The degree o f dependency in such a case is defined as
d i j = Q i ~ P j , where Qi > pj. Suppose that instead of entering the pipeline the very next
clock a fte r/, / followed after an additional delay of Xy clocks. Thus, if instruction /
entered the pipeline at clock i and J entered at clock j, then X1 j = j —i — L The degree of
dependency is now reduced to

di,j = (Q i-P j-X ij) v {3.1}

where a segment freeze possibility, i.e., the possibility that a data item may spend more
than one clock in a certain pipeline segment, is ignored. If dtj < 0, / and J have null
pipeline dependency, which means this dependency has no impact on pipeline
throughput. On the other hand If dy > 0, 1 and J have positive pipeline dependency,
which suggests this dependency has impact of dy clocks on the pipeline .throughput. In
other words, there is no pipeline output for dy clocks. The degree of dependency is
maximum \yhen Pj =Pj(min) = I ,Qi=Qiimax) =z S a x i d x ij = Xijimin) = 0, i.e. djjfau) = ^ - 1 -

Next Consider instruction dependency due to branch instructions. Let I represent a
conditional branch instruction. In that case, the following instruction / , cannot be
fetched until the execution of I is complete. Assuming that the instruction fetch (IF)
stage is the first stage of the pipeline (pj = I) and the execution (E) stage, which tests the
condition code, as the last pipeline stage (Qi = S) , this leads to maximum pipeline
dependency of s — I . Although condition code testing by the branch instruction / can be
typically done in a stage prior to the execution stage, normally it can only be done after
the previous instruction I - I clears the execution stage and sets the condition code. So,
branch instructions can potentially result in the maximum possible slowdown of s - 1

Instruction J in its p th stage requires the result
available from the q th stage of instruction I.

Instructions .

d i j = q i - P j - X i j

I

- xU
I ' 2 ' ,

L ' _1_ _ :_ _ _ _ _

I -- T

I P

I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I
I ̂ — T ~ T - T - ------! r

1 2 q

Time

Figure 3.1 Instruction dependency in a pipeline.

Conditional
branch

Instruction Fetch Decode resolution

S f : number of sub-stages in the instruction fetch stage
Sbu : pipeline stage that resolves unconditional branches

sbc : pipeline stage that resolves conditional branches

Figure 3.2 An instruction pipeline.

62

clocks. In general, branch instructions need not wait until the last pipeline stage for their
resolution, especially unconditional branches.

A pipeline stage is considered frozen if it cannot accept a new data item at the end
of the currentdock period. Such a situation arises when some unexpected condition is
encountered, such as a cache miss or a branch. A freeze implies delay at the subsequent
pipeline stages as they wait for the frozen stage output. A successful branch instruction
involves the fetch and execution of an out o f sequence instruction. Fetching the branch
target instruction consists of i) a target address calculation and ii) a target fetch. Each of
these steps can cause a freeze. In this chapter other possible freeze conditions are
deliberately ignored.

3.3 Classification of Branch Strategies

Branch strategies can be classified based on how they attempt to reduce the branch
penalties, as shown in Table 3.1. The names of most of the strategies are self-
descriptive. The unobvious ones are briefly described below.

The Loop buffer strategy is based on a high-speed memory in the instruction fetch
stage of the processor. Some CDC machines (6600, 7600, and Star 100) as well as the
CRAY-1 have used this idea. These buffers (Figure 3.3) can detect if the branch target
(forward or backward) lies within the environment captured by the buffer and if so, the
instruction fetch delay and the possible freeze delay are eliminated. Since a hit in the
loop buffers avoids any external memory access, it also reduces extra instruction traffic
in case of incorrect prediction. Although, loop buffers may appear to be similar to
instruction caches, they are much smaller in size and, hence, lower in implementation
cost. This strategy further assumes that branches are not likely to be taken.

Usually branch instruction execution does not require any operand fetch. Some
IBM machines (370 series) use the operand fetch (OF) slot of the pipeline for fetching
from the branch target path. The branch is still assumed not likely to be taken. The
Fetch1TargetiH OF^slot 'strategy is based on this technique.

The Fetch Both Paths strategy, also used on some IBM machines (370/168, 3033)
uses the brute-force approach of fetching (not decoding) both the Sequential and non­
sequential instruction streams in case a branch is decoded.

The Delayed Branch [McH86] and Predict Branch Always Taken with Target Copy
strategies modify the instruction sequence at compile time. The former delays the entry
of the dependent branch instruction by inserting instructions that are common to both the
sequential and non-sequential paths. In the latter strategy, a portion of target code, as
dictated by the effective pipeline length for branch resolution, is copied (Figure 3.4)

Table 3.1 Classification of branch strategies.

Strategy Label Reducedependencyby Reduce Reduce

increasing decreasing increasing target-fetch address-calc

P j Qi Xij freeze freeze

PredictNeverTaken PBNT X

LoopBuffer LB X X
Pre-calculate Target Address PTA X X

Fetch Target in OF-slot FTOF X X X

Predict Always Taken PBAT X

Predict Always Taken

with Target Copy PTIC X X " X X

Fetch Both Paths FBP X X X

Delayed Branch DB X X X X X

Taken/Not-taken Switch ■'

in the Decode Stage TNTD X

BranchTargetBuffef BTB X X X

Note: X indicates how the strategy attempts to reduce branch cost.

yo
o LoopBuffer Instructiontobe

-— ► decoded
(256 bytes) in case of a hit

Most significant address bits
compared to determine a hit

Figure 3.3 A loop buffer.

following the branch instruction. This strategy is also assumed to predict branches as
always taken. Note that the Delayed Branch and Target Copying strategies also
indirectly reduce the address calculation and target fetch freezes by delaying reliance on
the target code and thereby offering time to calculate the address and fetch the target.

ITie last two strategies in Table 3.1 are based on active branch prediction [LeS84].
This prediction information can be obtained and improved for accuracy in many different
ways [Smi81]. Branch Target Buffer (BTB) refers to a small associative memory in the
instruction fetch stage of the processor. Instruction fetch addresses are associatively
matched with the buffer contents and in case of a hit it predicts the most likely branch
outcome as well as the most recent target address (Figure 3.5). As a result, target fetch
does not need to wait for the branch decode and target address calculation. In case of a
miss in BTB, branch instructions are handled in a manner similar to the Predict Branch
NeverTakenstrategy.

65

3.4 BranchPrediction

Branch strategies do not eliminate branch delay, they reduce it with a certain
probability. An implicit assumption about the most likely branch outcome and
commitment to the sequential or to the branch path is made to varying degrees. This
commitment normally reduces the penalty associated with the chosen path but may
increase the penalty of taking the discarded path in case of incorrect prediction. As a
result, overall performance improvement becomes critically dependent on the probability
of correct prediction.

Table 3.2 defines and explains the terms associated with the model. Note that for
K = O or b= 0, performance throughput, G, is assumed to be at its peak rate of one
instructions per cycle. Thus, all other pipeline overheads (discussed in Chapter I and also
in [DuF90]) are ignored.

CostofBranch Prediction. The discussion above has centered around assessing the
performance of different branch strategies. Consider the two primary costs involved: i)
implementation cost and ii) operational cost. Implementation cost refers to the
hardware/software costs involved in implementing the branch strategy. Since such costs
are variable with technology, this cost is ignored. On the other hand, operational cost
refers to the added run time cost, for example, the additional instruction traffic that
results on the system bus with every incorrect branch prediction. Although incorrect
predictions are the primary source of extra instruction traffic, even delayed correct
prediction can cause wasted instruction fetch. For architectures that allow machine state
update by instructions in the predicted path, there is an additional run time overhead of

66

CMP R l, R2
: : JZ XX

* ADD R3, R4
. * SUB R3,R5

* INC R4
* ADD R3, R4

MOV R6,R7
ADD R6,R2
MOV R l, mem

xx: ADD R3,R4
SUB R3,R5

• ■ INC R4
. ■ ; ADD R3,R4

xx+4: MOV R6,R3

Instructions marked with an asterisk (*) are the instructions copied from the target (xx) at
compile time. In the case of a successful branch, control transfers to the label xx+4, after
executing the marked (*) target instructions via sequential fetch. In case the branch is
not taken, marked instructions are discarded without execution after fetch and decode.

Figure 3.4 Predict branch always taken with target copy (PTTC).

Branch
instruction

address

Branch
prediction

Predicted
target

address

Figure 3.5 A branch target buffer.

68

Table 3.2 Table of definitions.

Predicted Actual Probability Branch
Penalty

Instruction
Traffic
Penalty

no branch no branch P n tn K n ,n I +n,n

no branch branch P n yb K rttb l i b
branch no branch P b 9n K btft I t n

branch branch P b,b K btb l i b

Av. Branch Penalty, K = P fttft * Kfltfl +pn<b * Krub + P btft * Kbtfl +pbtb * Kb b

Average Throughput, G ■
I

I + K * b

Av. Wasted Instruction Traffic, I + = P fttfl * ^„,n+Pn,b * I'n.b+Pb.n * fl ,n+Pb,b * fb.b

Merit Ratio, MR I
(l + K * b) * (l + I +*b)

Notes:
All four probabilities, P fltn ,P n tb >Pb,n>&ndPb,b can be expressed in terms of the probability
of branch —to ~be—taken prediction and the probability of correct prediction (refer to
Appendix-A).
Variable b denotes branch frequency.

shadowing the original machine state to be able to recover from an incorrect prediction.
For the sake of simplicity, this cost is not included in the calculations, and it is not
expected it to alter the conclusions. The only operational cost studied is that o f the
additional instruction traffic. Refer to Table 3.2 for the terms associated with this cost of
wasted instruction fetches.

An ideal machine which can always correctly predict the branch outcome and if
neededi, can start fetching the target path right after the branch instruction fetch, would
have, K = I+ = 0 and, hence, G = I, resulting in unit merit ratio, MR, irrespective of the
branch frequency, b. Interestingly, freeze conditions, which tend to increase the branch
delay, reduce the average additional instruction traffic. When a certain path is predicted,
freeze situations reduce the number of instructions that can be fetched, which reduces the
number of wasted instruction fetches in case of incorrect prediction. This reduction has
been taken into account in the calculation details provided in Appendix A (also in
[DuF89]).

The following simplifying assumptions have been made (Figure 3.2):

a) The Instruction fetch stage is assumed to consist of Sf slots (each containing a
prefetched instruction) followed by the decode stage.

b) Let Sb refer to the pipeline length up to the stage that resolves a pending branch
instruction. For unconditional branches, branches are assumed to be resolved as
soon as they are decoded, therefore, Sb=Stu= Sf+ 1. For conditional branches, Sb =
sbe, and is dependent on the pipeline stage that sets the condition code.

c) Each instruction is assumed to make a common trip through the pipeline stages. For
pipelines with functional-level stages, such as fetch and execute stages, this should
be a reasonable assumption.

d) Additional instruction traffic during freeze handling, e.g., in software page fault
handling is ignored.

e) For the sake of simplicity, handling of multiple pending branches in the pipeline is
restricted. If a branch is predicted as likely to be taken, it is assumed that additional
branches are not encountered, before resolving the first branch. This assumption
can be a source of some significant inaccuracy only for very long pipelines with
prediction schemes which allow this possibility.

f) Finally, any on-chip instruction cache has been ignored in the discussion as it has no
impact on the relative nature of the branch delay and additional instruction traffic
performance curves.

69

70

3.5 Results

The model described above can be used to obtain the average branch delay (K),
average number of wasted instruction fetches per branch (I+) and the overall merit ratio
(MR) once the variables defining the system environment are defined. Certain nominal
values are assumed for some of these variables (Table 3.3); e.g., branch frequency, b =
0.25, where 80 percent of the branches are conditional. The probability of a freeze
during target address calculation is assumed to be 0.5 with a freeze duration of 2 cycles.
The probability of freeze during target fetch is ignored. For the delayed branch
approach, ah average of one useful common instruction (i.e. M = I) is assumed. One such
machine employing the delayed branch approach, MIPS [McH86, GrH86], reported use
of a single delay slot about 70 percent of the time. There may be special cases, such as
when using guarded instructions [HsD86], where a significant number of delayed branch
slots may be utilized. Based on Smith [Smi81], a correct prediction probability of 0.85 is
assumed for conditional branches. For Branch Target Buffer, the probability of correct
target address prediction is optimistically set at 0.9, assuming stable branch targets
[Smi81]. The probability of a BTB-hit for non-branch instructions for writable code
segments is assumed very low at 0.05. Assume nominal loop buffer hit ratio, = 0.6
and nominal BTB-hit ratio, p,h = 0.8. Peuto and Shustek [PeS77] report a hit ratio of 0.6
for a loop buffer of ±256 entries, whereas Lee and Smith [LeS84] report a hit ratio of
around 0.8 for a target buffer with 256 entries and a set size of 4 or 8. Set size refers to
the degree of associativity in contrast to the fully associative BTB search.

The initial focus is on the input parameter, psb, successful branch probability
(conditional and unconditional combined). Results are obtained for the three performance
parameters: average branch delay, K; average number of wasted instruction fetches, 7 +;
and the cost-performance merit ratio, MR, as shown in Figures 3.6 through 3.11.
Appendix A provides details of these calculations. While pSb is varied, other parameters
are kept at their nominal values.

3.5.1 Inferences
■' ■ . ■ ■/ ' ' ‘ >■ -■

The following inferences can be made regarding the three performance parameters
as a function of the successful branch probability (psb)'

a) The BTB outperforms the others over the entire typical operating range (0.55 < psb
< 0.7).

b) The predict-branch-always-taken scheme with target copy (PTTC) emerges as a
good second choice around psb of 0.65 or more. Interestingly, even without any

71

Table 3.3 Nominal values of model parameters.

Average branch frequency, b 0.25
Average fraction of conditional branches 0.8
Overall fraction of successful branches, psb 0.6

(conditional/unconditional combined)

Number of pipeline stages until unconditional branch resolution, Sfju 2
Number of buffer sub-stages in the instruction fetch stage, Sf I
Number of pipeline stages until conditional branch resolution, Sbc 5

Probability of freeze during target address formation 0.5
Duration of target-address-calculation freeze 2 cycles

Probability of freeze during target-fetch, Pf 0
Duration of target-fetch freeze 10 cycles

Probability of loop-buffer hit, p//, 0.6
Probability of BTB hit, p th 0.8
ProbabilityofcorrectaddresspredictionfromBTB 0.9
Probability of BTB-hit for non-branch instruction 0.05

Average number of delay-slots filled in delayed branch approach I

Forcaseswithactivepredictionschemes
(TNTDt BTBf TNTLBt TNBTB)

Correctpredictionprobabilityforunconditionalbranches 1.0
Correct prediction probability for conditional branches 0.85

JlPTTCAverage 2.6
branch
delay,

K 1.8

PBNT

___ A -- -

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
Successful branch probability, Pd,

Figure 3.6 Average branch delay versus successful branch probability for
PBNT, LB, PTTC, DB, TNTD, and BTB strategies.

PENT

PBATAverage 2.6 -J1
branch - . , 2.2 - delay,

F B P _ .„
FTOF.

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
Successful branch probability, psb

Figure 3.7 Average branch delay versus successful branch probability for
PBNT, PT A, FTOF, PBAT, and FBP strategies.

73

2.6

Average 2.2 -
number of

wasted 1 -8-
instruction ̂^

fetches
per branch, \ _

x PTTC

' r T I T I I T T I I I
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Successful branch probability, psb

Figure 3.8 Average number of wasted instruction fetches per branch versus
successful branch probability for PBNT, LB, PTTC, DB, TNTD,
and BTB strategies.

3.2 n
, . . ; ''

2.8 -
Average FBP ^ b - " 3 ' .X j

, B ' ' X
number of 2 .4 -

wasted B - " 3 ' P B N T /P T A X
instruction 2 - FTOF

fetches
per branch, 1-6 —

T +
1 .2 -

PBAT

0.8 H I T I H I I I I T
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Successful branch probability, pst,

Figure 3.9 Average number of wasted instruction fetches per branch versus
successful branch probability for PBNT, PTA, FTQF, PBAT, and
FBP strategies.

74

Merit 0-6
TNTD

PBNT

PTTC

0.3
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Successful branch probability, p sb

Figure 3.10 Merit ratio versus successful branch probability for PBbTT, LB,
PTTC, DB, TNTD, and BTB strategies.

FTOF

Merit '
ratio, 0.5
MR

PENT
0 .3 5 -

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
Successful branch probability, psb

Figure 3.11 Merit ratio versus successful branch probability for PBNT, PT A,
FTOF, PBAT, and FBP strategies.

75

active branch prediction support, it exhibits better performance potential than BTB
around psb > 0.75. This advantage stems primarily from the fact that this scheme
does not have to pay the delay penalty of incorrect target address prediction. BTB
has a cost for incorrect target address prediction even with correct branch
prediction. As a cautionary note, PTTC also exhibits the steepest slope in terms of
all the three performance parameters as opposed to the relatively stable performance
Curves of the active prediction schemes like, Branch Taken/Not-taken Switch in the
Decode Stage and BTB.

c) In terms of excess instruction fetches, loop buffer scheme performs almost as well
as the BTB. Loop buffers can significantly reduce the cost of excess instruction
traffic resulting from incorrect predictions.

d) At nominal (0.6) both Predict Branch Never Taken and Predict Branch Always
Taken have the same branch delay. Which of the two should be the preferred
scheme? A look at the additional instruction traffic cost can help resolve the issue.

Predict Branch Always Taken has lower cost of wasted instruction fetches
and hence has better merit ratio (MR). In the absence of any address calculation
freeze (or target fetch freeze), Predict Branch Never Taken on average wastes more
instructions during misprediction than Predict Branch Always Taken. A similar
dilemma between Predict Always Taken with Target Copy strategy and Delayed
Branch cm be resolved in favor of Delayed Branch, due to its lower added
instruction traffic cost. For both the schemes implementation costs are almost
identical, hence for the two strategies in question, hence the excess instruction
traffic is the important decisive factor. Interestingly, at psb = 0.5, three different
strategies: predict branch never-taken, target fetch in the OF-slot, as well as the
scheme to fetch both the paths, show almost identical merit ratios, Here
implementation cost can probably be the only decisive factor.

e) Not only does excess instruction traffic cost help choose between two almost
equally performing strategies, it can also caution us about otherwise very well
performing strategies. FBP (fetch both paths) provides an interesting example in
this regard. In terms of average branch delay (K) it performs almost as well as the
BTB strategy. But, after considering the cost of wasted instruction fetches, in terms
of the overall merit ratio (MR), FBP is not much better than the worst performing
Predict Branch Never Taken strategy. Thus, the average branch delay alone does
not determine overall performance, conclusion based solely on average branch
delay, K may be elusive one as far as the overall system-performance is considered.
Garcia and Huynh [GaH80] discuss the efforts made to reduce the resulting high
contention on the system bus in an early IBM 370 implementation using FBP.

The variation in system performance as a function of the number of buffer stages in
the instruction fetch stage has also been computed. Again BTB outperforms every other

76

strategy, followed by Predict Always Taken with Target Copyi in terms of average branch
delay (K) for any amount of buffering in the fetch stage. All the strategies are seen to
have almost identical performance slopes on the merit ratio curve and show identical
sensitivity with respect to Sf . Figures A .l to;A.3 in Appendix A contain these plots.

Finally, performance curves were generated as a function of Sfx i i.e. the total
number of pipeline stages required for conditional branch resolution. BTB Continued to
be the first choice for any number of segments in terms of overall merit ratio. But for
long pipelines (s&. > 6) it slipped, instead fetching both paths (FBP) finally won with its
constant branch delay with respect to Sbc. Note that just a branch taken/not-taken switch
in the decode stage (TNTD scheme) significantly reduces the branch delay. The
additional reduction in branch delay obtainable through BTB rapidly decreases with
larger Sfo.; Figures A.4 to A .6 in Appendix A contain these plots.

Therefore, in the typical operating range (0.6 < psb < 0.75) there are three
competing strategies: Loop Buffer (LB), Predict Branch Always Taken with Target Copy
(PTTC) and Branch Target Buffer (BTB). The branch delay numbers fox Predict Branch
Never Taken, Delayed Branch, and BTB under nominal conditions come quite close
(within 30 percent) to those reported by McFarling and Hennessey [McH86], even
though the nominal conditions while close, are not exactly the same as theirs. Assuming
branch frequency, b = 0.2, the results indicate a throughput (G) of around 10 percent in
the above mentioned operating range of psb. This is also in close agreement with MIPS
simulation results [Gro83] of around 9 percent and the analysis of DeRosa and Levy
|DeL87], suggesting an improvement of around 8 percent.

In the following section some hybrid strategies are discussed that are based
primarily on these three strategies. Delayed branch and TakenfNbt-taken Switch in the
Decode Stage also show good performance potential in possible combinations with above
strategies.

3.6 Hybrid Strategies

The following hybrid strategies are considered:

a) Predict Branch Always taken with target-copy and delayed branch. (TTCDB): This is
the only hybrid strategy considered with almost no additional implementation cost and
only some software (compiler) cost.

b) Predict Branch Always taken with target-copy, delayed branch and Loop buffer
(TTDLB)

c) TakenlNot-taken Switch in the Decode Stage with Loop buffer (TNTLB).

d) TakenlNot-taken Switch in the Decode Stage with Branch target buffer (TNBTB).
Finally, consider a combination of TNTD and BTB. For a miss in the BTB, instead of
falling back on the default Predict Branch Never Taken case, this strategy assumes a
branch taken/not-taken switch in the decode stage similar to TNTD.

77

3.6.1 Inferences

Sensitivity plots of the performance parameters, K, I +, and MR are obtained with
respect tb and if*. (Figures 3.12 - 3.15).

a) Around the nominal values of system parameters and of the hybrid strategies, the
minimum implementation cost strategy, TTCDB, performs better than every non­
hybrid strategy except BTB. For psb around 0.7, it even outperforms BTB in terms
of average branch delay (K) as well as merit ratio (MR).

b) Around the nominal conditions, the last three hybrid strategies: TTDLB, TNTLB,
and TNBTB are almost equally competitive. For shorter pipelines Ctyc < 5) TTDLB
has a slight edge over the other two. For longer pipelines active branch prediction
becomes more important and TNTLB and TNBTB perform better than the rest and
continue to follow each other closely. Therefore, on a system with a branch-
taken/not-taken prediction switch in the instruction decode stage, if one were to
choose between the addition of either the loop buffer or the branch target buffer,
careful consideration should be given to implementation cost issues which may tilt
the balance slightly in favor of the loop buffer based TNTLB scheme, j

c) For psb - 0.7 or more, at nominal Sbc, TTDLB strategy outperforms the others and
emerges as the first choice, in terms of all the three performance parameters.
Around psb = 0.7, TTDLB reduces the branch delay to less than one third as
compared to the Predict Branch Never Taken strategy.

Effect o f loop (target) buffer hit probability. Target buffer based strategies show more
sensitivity to the hit ratio, p th, than the loop buffer based strategies in terms of average
branch delay (Figure 3.16). Loop buffer based strategies are more sensitive than the
target buffer based strategies in terms of the excess instruction traffic cost with respect to
the corresponding hit-ratio pih (see Figure A. 12). As a result, both classes of strategies
exhibit almost identical slope on the merit ratio performance curve (see Figure A. 13).

Effect o f Target-fetch freeze probability. The discussion so far has ignored any potential
for a freeze (due to say, cache miss or page fault) while attempting to fetch the branch
target. Assuming a fetch freeze duration of 10 clocks, the performance sensitivity with

PBNT
Average
branch
delay, JT C D B

is. JTDLB

- - - a - - -
TNBTB

0,35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
Successful branch probability, psh

Figure 3.12 Average branch delay versus successful branch probability for
PBNT, TTCDB, TTDLB, TNTLB, and TNBTB strategies.

PBNT

Average
number of

wasted
instruction

fetches
per branch,

TTCDB

TTDLB TNBTB

=Z=Sz-=S=
TNTLB

’ T _ - p - j I i l l I I I I
0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

Successful branch probability, Pj*,

Figure 3.13 Average number of wasted instruction fetches per branch versus
successful branchprobability for PBNT, TTCDB, TTDLB, TNTLB,
and TNBTB strategies.

79

TNBTB

TNTLB

0.8 -E 3

Merit
ratio, 0.6 -

PENT
TTCDB

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
Successful branch probability, psb

Figure 3.14 Merit Ratio versus successful branch probability for PENT,
TTCDB, TTDLB, TNTLB, and TNBTB strategies.

2.8 -

Average 2,4 -
branch
delay,

K 1 .6 -

PBNT
TTCD.B' '

' ' ' . ' ' iT l1DLB

- « TNTLB

Number of stages for conditional branch resolution, S^c

Figure 3.15 Average branch delay versus number of stages for conditional
branch resolution for PBbTT, TTCDB, TTDLB, TNTLB, and TNBTB
strategies.

80

Average 1.7
branch j ;5
delay, rA

TNTLB

TTDLB

TNBTB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Loop/Target buffer hit probability, Pu,/ Pth

Figure 3.16 Average branch delay versus Loop/Target buffer hit probability for
LB, BTB, TTDLB, TNTLB, and TNBTB strategies.

Average
branch
delay,

K
TTDLBTNTLB1.4 -sr

TNBTB

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Target fetch freeze probability, Pf

Figure 3.17 Average branch delay versus target fetch freeze probability for LB,
BTB, TTDLB, TNTLB, and TNBTB strategies.

respect to the fetch-freeze probability (pf) is analyzed next. Loop buffer based strategies
are at an advantage in such a case because a hit in the loop buffer also eliminates any
page fault potential associated with external memory access. As a result, loop buffer
based strategies show more performance stability with respect to Pf than the BTB-based
strategies. For example, if p f increases from 0 to 0.1 average branch delay for the loop
buffer based TNTLB strategy increases by 20 percent, whereas that in the case of the
BTB-based TNBTB strategy increases by more than 75 percent (Figure 3.17).

81

3.7 Summary

A common analytical platform, based on certain system and program parameters,
can be developed for classifying and comparing different branch strategies. Such an
approach has the advantage of being far less time consuming and more flexible compared
to simulation-based approaches. Excess instruction traffic caused by different branch
strategies has been overlooked in the past. Additional instruction traffic helped to
distinguish an overall performance difference between some apparently equally well
performing strategies. A branch strategy using a branch-taken/not-taken switch in the
decode stage is found to be almost as effective in combination with the loop buffer as
with the branch target buffer. In a typical microprocessor environment with less than
five segments with a successful branch probability around 0.6, a branch strategy based on
default prediction of branch always taken, along with compiler support for target copy
and delayed branch is shown to provide performance potential comparable to a branch
StrategybasedonBranchTargetBuffer.

Finally, certain components of branch delay have been ignored in this chapter. For
example, some machines [SJH89] have an added delay during branches if the target is
misaligned. Also some compilers, such as trace scheduling [Fis81] compiler have an
additional overhead of patch-up code if their compile time prediction of a branch is
found incorrect at run time. These delay components are analyzed in detail in Chapter 5.

CHAPTER 4
SUPERPIPELINED VERSUS SUPERSCALAR

4.1 Introduction

Recent advances in technology have made it now feasible to put multiple execution
pipelines on the same chip. Previous chapters have explored some of the issues issues
associated with optimal design of single pipelines systems. This chapter extends the
analysis into the realm of superscalar processors. An analytical model is proposed as an
alternative tool for analyzing the tradeoff between superpipelined processors. The
factors that contribute to performance limits are analyzed. The duality of superpipelines
and superscalars is examined in detail and certain imperfections of this duality are
described. Jouppi and Wall [JoW89] studied tradeoffs of superpipelined and superscalar
machines via simulations. Smith, et. al. [SJH89] investigated the performance limits of
such machines as a result of instruction fetch inefficiencies.

4.2 Superpipeline/Superscalar Tradeoff Model

Consider performing an operation using a circuit having g gate-levels of
propagation delay. The quantity g is the operation gate delay. Suppose there are n such
operations and a set of k pipelines, each s stages deep, to support execution (see Fig. 1.7).
Each pipeline latency is assumed to be s clocks. If inter-stage buffers are assumed to
have one gate-level of delay then, gpipeimed=-g+s — I+ e , where e is the smallest integer
such that gpipelined evenly divides g +s - 1 +£. The quantity s - 1 + e is the overhead due
to pipelining. If the circuit is not pipelined, i.e., s = I, then E=O and pipelining overhead
is null. At most, e = s ~ I, so the worst case pipeline overhead is 2 (s - 1) gate delays.

For Ti a multiple o f k * s, the first set of k results from the k pipelines is produced
after s clocks, and the remaining n - k results take (n - k) / k clocks. Let Tn be the time to
execute n operations. Then,

83

Tn =
, n - k

S + •— —
Spipelined

k - S

, n —k s + — — g + 2 (s - l .
k S

gate delays

gate delays (worst case). (4.1}

The ideal throughput represented by Equation (4.1) is difficult to achieve in practice
due to additional delays that can be grouped into the following categories:

a) SchedulingDelays:
i) Instruction Fetch Delay: delay due to restricted main memory bandwidth on an
instruction cache miss,
ii) Branch Delay: instruction fetch delay due to uncertainties in the execution path,
m) Dependency Check Delay: delay due to run time dependency check in an
instruction window, and
iv) Dependency Delay: delay scheduled to satisfy dependency constraints.

b) ExecuiionDelays:
i) Operand Fetch Delay: delay in fetching the operand(s) from memory, and
ii) Multiple Cycle Operations: delay due to operations that take more than one
clock in the execution stage.

Although the delays listed above are fairly independent of each other, there is some
overlap. For example, consider an instruction I that takes multiple cycles to execute.
Also assume that the following instruction / is data-dependent on /. In such a case, the
execution delay of instruction/ can also be viewed as the scheduling delay for instruction
/ . Alternatively stated, the dependency of an instruction / on an instruction I lingers for
multiple clocks; if the execution of I takes more than one clock. For single pipelines,
lingering dependency can be modelled the same way as the effect Of multiple cycle
operations in Section 2.4. However, in this chapter the delays due to multiple cycle
operations and restricted memory bandwidth for instruction fetch are ignored on the
premise that the hardware is designed to deliver k operations per cycle throughput on a
sustained basis. Delays due to run time dependency checking are ignored on the
assumption either compilation was done conservatively to eliminate the possibility of run
time dependencies or that sufficient hardware is provided to do dependency checking
without incurring any delay.

Let the branch probability be b with each branch taking g*db gate delays for
resolution. For example, <4=0.5 implies that the branch delay is half the operation gate
delay, or roughly half the pipeline length because of pipeline overhead.

84

Operand fetch delay is modelled assuming that on-chip cache has no access delay
and internal bandwidth (cache to pipelines) is & operands at a time. Further assume that
external bandwidth (main memory to cache) is limited to one operand at a time, hence,
miss processing is sequential. The operand-miss probability is e= w * (l -h) , where w is
the probability of operand reference for an operation and h is the cache hit probability.
Assume cache miss processing takes g*dm gate delays.

These further assumptions are made:

1) Instructions are issued simultaneously to the k pipelines, and there is no inter-stage
buffering of intermediate results. This means that if there is a pending branch in
any one of the pipelines that delays its following instruction fetch, then all the k
pipelines freeze. Similarly, any cache miss on an operand fetch for one pipeline
delays all pipelines. Thus, pipelines are synchronized. To do otherwise is a
complicated hardware task of dubious cost effectiveness.

2) In the absence of any branch delay, assume that k operations are always issued to
the k pipelines. Thus, issuing constraints imposed due to data dependency are
ignored. This is the weakest of all assumptions and it is further addressed in
following chapters where utilization constraints due to such dependencies are
discussed in detail.

3) Delays as a result of instruction cache misses are ignored. Note that instruction
cache misses on branches can be assumed included in the branch delay.

Assuming only one cache miss at a time, the additional delay term to be added to
Equation (4.1) is:

n [b gd b + e g d m-bern i n (db, d m)g] ,

where the last term accounts for the overlap of the instruction fetch and operand fetch
delays due to branches and cache miss, respectively.

The instructions undergoing simultaneous execution must be independent in order
to have been scheduled together. Simultaneous cache requests are then independent
random variables, and are assumed to be identically distributed. Thus, multiple cache
misses follow a binomial distribution. Allowing one operand fetch per pipeline per
clock, there can be up to k simultaneous cache misses. Allowing for multiple
simultaneous cache misses Equation (4.1) becomes

k
n [b g d b + e g d m T j g b e i m i n i d bJ d m)

k [i=i

where e; is the probability that i cache misses occur simultaneously, and

{4.2}

The mean value of the distribution is k e and kCl

db < dm, Equation (4.2) becomes

J t l
i \ (k - i) \

Assuming further that

n g (b db +edm) -
n g b d b (I-E0)

k
{4.3}

Combining Eqs. (I) and (3), the total time (in terms of gate delay) for n operations is

n g b d b (I-E0)
Tn Z

V
ft

I
J

' g + 2 (s - l) '

r v __

+n g (b d b +edm) -■ {4.4}

Equation (4.4) is useful in deciding whether or not an additional pipeline will yield
a significant throughput improvement justifying its additional cost. Figure 4.1 plots
throughput as a function of the number of pipelines (k).

Resource utilization, u, is

 ̂ wasted time slots in units o f gate delay
total available time slots in units o f gate delay

where the numerator is the delay from Equation (4.2) and the denominator is the sum of
the delays from Equations (4.1) and (4.2). Figure 4.2 shows utilization versus number of
pipelines. The duality of superscalar and superpipeline systems, i.e., any throughput
achieved using a pipeline of certain depth can also be achieved using a corresponding
number of pipelines of depth one, is evident. The throughput benefit for a given increase
in pipeline number or depth decreases for greater initial pipeline number or depth.
Because pipeline replication is more area-intensive than additional segmentation, and
segmentation is more and more difficult to obtain, the guiding rule of design should be:
segment pipelines to the extent feasible, then replicate pipelines.

4.3 PerformanceLimits

Looking at the throughput curves in Figure 4.1, it would be reasonable to ask: What
are the performance limits as another segment or another pipeline is added?

First consider the throughput limit when using additional pipelines. Rearrange
Equation (4.4) by grouping terms that are functions of k and those that remain. The
rearranged form can be written

86

Number of pipeline segments, s = 10

Throughput,
instructions per

unpipelined
operation

gate delay, g

Number of pipeline segments, 5=1

3 4 \
Number of pipelines, k

Figure 4,1 Normalized throughput versus number of pipelines, with the
following nominal assumptions: data cache reference probability =
0.5, data cache miss probability = 0.05, data cache miss duration =
0.5 * operation delay, branch probability = 0.2, and branch delay =
0.15 * operation delay.

Number of pipeline segments, s = I

Utilization,

Number of pipeline segments, s = 10

Number of pipelines, k

Figure 4.2 Utilization versus number of pipelines (parameter values the same
as in Figure 4.1).

88

where

and

ng_
Tn

G

A = — + — — - — b d b (l - e o)
s g g s

B = — + b d b + e d m— — + — ---- — + —
n g n g n s n s g n

{4.5}

For a continuous instruction stream, n can be assumed to be large. Therefore,

As k —»°o,

B ~ b db + e d m .

G ^ B - l ^ (b d b +EdmT 1 • {4.6}

This limit is independent of s and is simply a function of the branch penalty, which limits
instruction fetch, and the cache miss penalty, which limits the execution time. For the set
of parameter values used in Figure 4.1, the above limit evaluates to G = 23.53.
Considering the fact that normally b » e, the above limit has been referred to as the fetch
bottleneck, also sometimes known as Flynn’s bottleneck [Fly72].

Now consider the performance limit when deepening the pipelines. Equation (4.4)
can again be rearranged to yield

— = G = — +Ds+E
Tn S

where

2 . 2 I _ 2
k g k g n n g n

{4.7}

and

E I 4 2— — vb db + z d m — -----1 -—
n g n g k

b d b { l - o)
k

Unlike the previous case, as s <», G -»0 . This is because the overhead of additional
buffers grows with additional segments. Therefore, beyond a point, this overhead
overtakes the gain due to segmentation. The issue of optimal pipelining was studied in
detail in Chapter I and in [DuF90]. Ignoring synchronization overhead, (which is a
reasonable assumption for superscalar-type processors, unlike multiprocessors), there is

89

no reason why throughput should decrease due to the addition of a pipeline. Thus, the
duality of superpipelines and superscalars is not perfect. As s grows, g must remain at
least of the same order as s, so for large n

I — b d b (l — Co) , • ,
C = — , Ay=O , and E = ---- — ;— — -+b db + td m .

k k

Therefore, as s increases,

b d b +edm -
b d b{ l-.eo)

k

i
{4.8}

This limit is same as that given by Equation (4.6) except the last term, which vanishes for
large k. Recall that this last term represents the saving due to hiding some branch delay
when overlapped with data-cache miss processing for one of the pipelines. Tliis saving is
apportioned over the k pipelines and hence becomes negligible for large k. For the set of
parameter values used in Figure 4.1, the limit on throughput given by Equation (4.8)
evaluates to 23.92.

4.4 Modelling Resource Utilization

The scheduling and execution delays listed in Section 4.2, although different in their
original causes, have a common impact. They introduce unwanted bubbles (pipeline
stalls) in the system, which finally ripple through different stages to cause loss of net
system throughput. As one stage is delayed in delivering the intermediate result to its
successor, the successor stage waits idly, and hence the system utilization drops. It is
relatively much easier to predict a system performance in an ideal setting, assuming no
such loss. In other words, modelling this drop in system utilization in a non-ideal, real­
time environment is the key to an accurate performance prediction.

Consider the generic drop in utilization as system resources of a certain kind are
added, such as increasing the number of pipeline stages, increasing the number of
pipelines, or adding more processors. If these added resources are fully utilized and if
any overhead is ignored, system throughput should increase in an easily predicted
manner. For example, if two pipelines are always busy, the throughput should be twice
that of the single-pipeline system. But the added resources are often accompanied by a
reduction in overall utilization. There may be different approaches to utilization
modelling:

a) A purely empirical approach would be to experimentally collect the utilization data
as a function of the number of resources for the chosen set of benchmarks being

used for performance measurement. This data from a certain machine can be used
in future as a guide in performance prediction for a similar machine. This approach
has been used in Chapter 6 for generating some utilization curves.

b) One problem with the previous approach is its inability to predict the utilization
beyond the range of experimentation. A formal approach to alleviate this drawback
would be to characterize the nature of the empirically collected utilization curves
with the aim of extracting some key components that might aid in predicting beyond
the range of experimentation. For example, the rate of decrease in utilization might
exhibit a simple relationship with the number of resources. In a strict mathematical
sense, the collected utilization curve can be approximated by a polynomial (using
standard approximation procedures). This was the adopted approach in Chapter 2,
which assumes a generic polynomial utilization model that is empirically derived.

c) One major drawback with both previous approaches is that they do not offer any
useful insight to the system designer. Often a system designer is faced with the
question of whether it would be more profitable (in terms of improved throughput)
to reduce the dependency delays in the instruction stream and thereby increasing the
system utilization, or to simply replicate system resources with reduced utilization.
Neither of the previous approaches can resolve such tradeoffs. An alternative
approach would be to model such specific utilization related tradeoffs based on
some characteristic empirically collected distributions. This approach is illustrated
in the following chapter.

90

4.5 Summary

The analytical model developed in this chapter allows easy, comparative evaluation
of superpipelines and superscalars. It is extended in Chapter 6 to include
multiprocessors. The parameters contributing to throughput numbers are given in units
of gate delays, facilitating model use by IC designers. When validated by measurements
on actual Systems, the model allows evaluation of possible benefits to be obtained by
modest modifications of the basic parameters of circuit organization. With respect to
superpipelines and superscalars tradeoff, the model supports the following design rule of
thumb: segment a pipeline to the extent possible to improve throughput, then replicate
the pipeline for further throughput increases. The performance limit for these systems
has been derived and it supports the fetch bottleneck observation of previous researchers.
The next chapter provides an analytical model for dependency delays that were ignored
in this chapter.

91

CHAPTER 5
INSTRUCTION-WINDOW SIZE TRADEOFFS

AND
CHARACTERIZATION OF PROGRAM PARALLELISM

5.1 Introduction

Identifying independent operations that can be scheduled for execution in parallel
has always been a key to execution speed enhancement. At the instruction level,
detection of concurrent operations begins by examining a consecutive set of instructions
from a serial execution sequence, or instruction stream. The instruction stream can be
analyzed either at compile time or at execution time. The number of instructions
simultaneously examined for detecting a concurrent subset is the scope of concurrency
detection. On computers that do run time concurrency detection, the instruction window
comprises the set of instructions examined for possible scheduling for simultaneous
execution. The larger the scope, the greater the probability of detecting a subset of
instructions of a given size that can be scheduled for concurrent execution.

The conditional branch instructions of a program partition it into a collection of
basic blocks, or instruction stream segments each ending with a conditional branch. A
conditional branch directs the execution sequence along one of two or more possible
paths and the direction taken is known only at run time. Yet, a consecutive set of
instructions of size equal to the desired scope must be available and concurrency
detection must precede execution. This dilemma can be overcome by using branch
prediction to identify the most likely execution sequence. Concurrency detection can
then proceed using the instruction stream as assumed by the branch prediction method.

Conditional branch predictions will err occasionally. Therefore, any concurrency
detection scheme that groups operations across conditional branches (i.e., beyond basic
blocks) must also have a mechanism to undo the effect of executed operations, if any,
that do not lie on the actual execution path.

A variety of studies have been done to assess the performance potential of
concurrency detection techniques. While some studies, based on idealistic hardware
resource assumptions, report a speedup potential in the range of 50 to 100 [RiF72,
NiF84], others report a speedup potential of only 1.5 to 10 for specific architectures and
specific sets of applications. In the latter category, studies considering only

within-basic-block concurrency detection, such as those by Tjaden and Flynn [TjF70],
Weiss and Smith [WeS 84], Acosta, et. al. [AKT86], and Sohi and Vajapeyam [SoV87],
report speedup of about 1.5 to 2.5. Wedig [Wed82] and Smith, et. al. [SJH89] assume
beyond-basic-block concurrency detection and find potential speedup of about 2 to 4.
Acosta, e t al. [AKT86] and Smith, et. al. [SJH89] have also reported the performance
impact Of instruction window size on dynamic concurrency detection through simulation
based techniques. Finally, the studies [KMC72, Lam88, HsD86, CGL89] rely on
compile time support to enhance speedup potential and have reported speedups in the
range of 4 to 8.

The following section describes the analytic model used to study the performance
tradeoffs associated with instruction window size, and introduces a measure of the
available amount of parallelism in an instruction stream. In Section 5.3, different costs
associated with conditional branches are introduced and a measure of the cost of
extracting the available parallelism is defined. Experimental results are presented in
Section 5.4. Finally, Section 5.5 describes the issues to improve performance prediction
accuracy.

' ■ 92

5.2 The Analytic Performance Model

Consider an instruction window of size W +1 consisting of a stream of instructions
labeled / o, I \ , / 2 , . . . , where I q is the first instruction in the window. A necessary
condition for two instructions /,• and /* to be schedulable for simultaneous execution is
that they have no dependencies. An instruction is dependent on another if it uses the
result of the other, or if it overwrites a value to be read by the other, or if it overwrites the
result of the other. An instruction dependent on another cannot be executed prior to or
simultaneously with the instruction it depends upon without changing the meaning of the
program. The sufficient condition for scheduling I1 and/* together is that there must also
be no instruction Ij in the instruction stream between /,• and /* and on which /* depends.
If such an Ij exists, then / * must execute after that Ij, and by implication, after /,-.

Let represent the event that instructions /, and Ij are mutually independent, and
let represent the event that instructions /, through /* in the instruction stream are
pairwise independent. PQi....*) denotes the probability of the event /j,...,*.

Because instruction / 0 is dispatched unconditionally, consider the remaining
instructions in terms of whether they are scheduled together with I q or not. Let IiIy
represent the event that instruction Ii is scheduled with I q, and let /,: n represent the event
that instruction /, is not scheduled with / 0 . Because Ij can be scheduled with / 0 only if Ij
is independent of all the preceding instructions between I q and lj,

93

P Q f y) = P Q i - i j i i j - i j i i j -3, j» - I oj)

- P Qj-l.j) P Qj-Xj I Ij-lj) P Qj-Ij I Ij-lj> 1J-Zj) ■“ P(foj \ {5.1}

Let Pi k= P QitJc I Ij,k* f°r all j such thati < j <k) (see Figure 5.1). This is the
conditional independence probability of instructions /,• and /*. Thus

p Q f y) = Y l P (j - i \ j •

Assume the instruction stream is a stationary random process, that is, the probability of
instruction independence is independent of the instruction window position with respect
to the instruction stream, then p l(* is a function only of the distance between /,• and /*.
Hence, p,- * may be writtenp 5, where S = &-j. Then,

P Q f y) = Y l P & • {5.2}
8=1

Ifp 5 is constant, then

PQj ' y) = YlPh=P'P " • P = P i {5-3}

Note that a constant p s does not mean that any two instructions, say I \ and I \ o, are
equally likely to be independent of a third instruction, say I q . Rather it does mean that
11 and Z1O are equally likely to be independent of Iq, provided that I \q is not already
dependent on an intermediate instruction, Im for 0 < m < 10. (There is no instruction
between Iq and 11.) P Qf.y) reflects the influence of both compiler design and hardware
resources on inherent program character. However, pg is more purely representative a
given, fixed program sequence. Here, the program level is assembly language.

The probability that exactly k -1 instructions in the window are dispatchable along
with I q is

Pk-1 Q1, •••»Iw)-Pk-2Qi . h r —Jw-\)*PQw-y)+Pk-iQ i . I~i...... Iw-i)*PQw-n) {5.4}

At run time, the probability of being able to dispatch at least k instructions is of
more interest than the probability of having exactly k dispatchable instructions. The
probability of having at least k - 1 dispatchable instructions in addition to Iq is

w
PZk-I Q1, 12» —»Iw)= Z Pj Q l»l 2> - ,Iw) •

j= k - l

The above equation can also be written in the following form, which may be more
computationally efficient

94

Instruction
Stream

Figure 5.1 Illustration of dependencies determining conditional independence
probability, E achsinglearcindicates a pair of instructions
that are given to be independent. The double arc denotes the
dependence in question for Pjjfc.

95

P - M h J z . "-'Iw) = I

k-2
P ’z k - \ (f \ ' l 2 ' —' I w) = 1 — '5 jP j (I \ ' l 2 '—'Iw) ' I o r k > \ .

Figures 5.2 through 5.4 depict P >k-\ as a function of pg and W. The following
observations can be made:

1) Figure 5.2 shows that a given variation in p s , for higher (lower) values of Ph
becomes increasingly more (less) crucial as k grows. For example, a compile time
effort to increase (say, by register renaming) from 0.55 to 0.65 while quite
noticeable when there are three dispatchable instructions Qc=3), is almost
unnoticeable for k=5. An increase in p§ from 0.75 to 0.85 although unnoticed for
k=2, is significant when k=4.

2) Larger window size can only be justified with an accompanying compile time effort
to reduce dependence by increasing the conditional independence probability, as is
evident from Figures 5.3 and 5.4.

Plots such as in Figures 5.2 through 5.4 can be useful in isolating execution
performance bottlenecks. Based on the operating point, the plots reveal whether the
bottleneck is insufficient inherent parallelism in the stream (low p§, suggesting more
compiler effort for reducing instruction dependencies), or not examining enough
instructions (suggesting increased window size which might further indicate the need to
do beyond-basic-block scheduling), or insufficient resources for utilizing available
parallelism (suggesting good payoff for additional hardware). The operating point for a
new processor design can be determined at an early stage, so Figures 5.2 through 5.4 can
be useful in guiding the design effort. Sometimes loop unrolling is used at compile time,
to increase the scope of concurrency detection. There is no performance gain in
unrolling beyond the point where scope of concurrency detection is not a performance
bottleneck any more. Therefore, the information from figures such as Figures 5.2 through
5.4, can also be used to limit the amount of unrolling.

Figures 5.2 through 5.4 are based on the assumption that /75 is constant. This may
be an inaccurate assumption for many programs. Near successors of an instruction are
more likely to be dependent on it than the instructions further removed. Thus, p 5 is
expected to rise with 8 for small values of 8. But, beyond the immediate vicinity, i.e., for
large values of 8, p 5 may be fairly constant.

Consider a 4-pipeline superscalar processor system. If due to dependency
constraints, only two operations can be issued for 30 percent of the time, then the system
behaves effectively as a 2-pipeline system 30 percent of the time. Thus, the effective
throughput, Gfc, under dependency constraints for a k-pipeline processor is

96

Probability
of

scheduling
k instructions

Instruction window size, W = 16
Conditional independence probability =p &

Number of independent instructions (at least), k

Figure 5.2 Probability of scheduling k instructions for various values of p§
and a fixed instruction window size of 16.

97

Probability
of

scheduling
k instructions

Conditional independence
probability, p 5 = 0.7

<— Window size = 16

Window
size = 2

Number of independent instructions (at least), k

Figure 5.3 Probability of scheduling k instructions for various instruction
window sizes an d p 5 =0.7.

Probability

of
scheduling

k instructions

Conditional independence
„ probability p 5=0.8

W = 16

W = 10

W = 2

Number of independent instructions (at least), k

Figure 5.4 Probability of scheduling k instructions for various instruction
window sizes and p 5 = 0.8.

k-2
G* = X Si+l Pi (I I > Il> —> Iw) + 8kPZk-I C^l»̂ 2* •••» %) » {5.5}

/=O

where gj, for I £k, is the throughput for a y-pipeline processor calculated ignoring any
dependency constraint (always having j schedulable instructions), but including such
delays as cache misses and conditional branch resolutions. This is satne as the
throughput computed using Equation (4.4) of Chapter 4.

98

5.3 Cost of Branches

Let b be the probability that an instruction is a branch instruction. On every clock
cycle an instruction packet consisting of k instructions is fetched. Let the cache line size
be a multiple of k. I f instruction words have fixed length, then in the absence of any
branches, all instruction references will be aligned and a fetch bandwidth of k
instructions per cycle will be sustained.

The cost of branches may be categorized as follows;

a) Misprediction delay. Every time a branch prediction is incorrect, a certain delay is
incurred. Let D1 be the average delay associated with each misprediction. In the
case of out-of-sequence, beyond-basic-block execution, a branch misprediction
means that more than just the execution pipeline may contain incorrect execution;
instructions from much earlier may need to be undone. So, misprediction delay
may be significant.

b) Wastedfetch delay. Every time a branch is detected, the remaining instructions that
are part of the packet of k instructions may be wasted. (Delayed branching may
reduce this waste.) The wasted execution bandwidth corresponding to these
instructions is added as a delay to the branch instruction. Since the total execution
bandwidth of a packet of £ instruction is I clock, the wasted bandwidth of the last j
instructions in a packet is j Ik. This delay has been studied with respect to a variety
o f branch strategies for the single pipeline case in Chapter 3 (also in [DuF89,
DuF9l]).

c) Misalignment delay. For normal execution, assume that a cache line can be fetched
from the instruction cache every cycle. An instruction reference is considered
misaligned, and hence requiring an additional fetch, if the group of k instructions
spans a line boundary. Every time a branch is predicted to a target such that the
corresponding group of k instructions spans a line boundary, a delay of an extra
clock results because only one cache line can be read at a time.

d) Cache miss delay. The cache miss probability for the branch target may be
somewhat more than the typical cache miss probability on instruction fetches.

99

5.3.1 Calculating Misprediction Delay Resulting from Speculative Execution

Scheduling techniques using a concurrency detection scope extending beyond a
basic block incur additional delay for an incorrect prediction because they need to undo
the damage, if any, caused by execution of instructions outside the current basic block.
The cost of undoing a wrongfully executed instruction is dependent on the specific
implementation support for damage undoing, and can be considered independent of the
specific instruction type. For example, instructions that allow updates to user membry
(interface space) before branch resolution would need to restore the incorrectly updated
locations. Let the time cost of undoing the damage of a wrongfully executed instruction
be p cycles.

Consider a program tree where each node represents a basic block and imagine
following a program trace using some branch prediction mechanism (see Figure 5.5).
Let P ia be the probability that an instruction is scheduled with an instruction from a basic
block that is 6) levels up the program tree. Assume p & is independent of depth in the
program tree. Also assume that the scope of concurrency detection extends to the end of
the program (feasible at compile time but not at run time). The branch misprediction
cost, D{, associated with the basic block that is j levels deep is

ND 11 = E
n=j+1

n -1 i
Z -

(fr=n-j
{5.6}

where N is the average program tree depth and IIb is the expected size of a basic block.
For example, suppose the conditional branch prediction associated with the basic block
five levels deep is in error. This implies that all the instructions scheduled from the basic
block at depth six and below to basic blocks at depths 5 ,4 , 3,2, and I need to be undone.
Assuming conditional branch prediction at any depth is equally likely to be in error, the
average cost of a misprediction is

D
N
Z

"=;+!

" -1 Pa u
^ h

& =n-j °
{5.7}

Because the probability of scheduling an instruction x levels up cannot exceed that
of scheduling jc - 1 levels up, p m must be a monotonieally decreasing function of CO.

N ■
Also, since E F o = I. Pa must be a nonlinear function of CO. Assume p 0 can be

<o=0 ^
Approximated by a truncated geometric distribution with parameters K and empirically
determined q such that

Program tree

Wide
instruction

words

A scheduled trace
with labeled instructions

Figure 5.5 Illustration of a program tree, a scheduled trace of execution, and
the assembly of wide instruction words with beyond-basic-block
scheduling.

10 1

p m=Kqa (l - q) , whereK = - jj— — —
I lQm(I - Q)

Assuming AT=I (as would be the case for large N), intuitively, (I - q) represents the
probability of within-basic-block scheduling for an instruction,
collected results for p for the set of benchmarks exhibit
characteristics. Thus, Equation (5.7) can be rewritten as

N N n - I K q w (I ^) UI N N n-1

I .
7=I «=7+1 G)=«—7 £>

In closed form

D i = K u
N h (l - q)

The experimentally
similar distribution

N - Q (I - Q n) _ QN l (Q N - V +n q N

i - q q~l - l
{5.8}

Figure 5.6 illustrates Di as a function of program tree depth, N. For values of q in
the range of 0.1 to 0.6 the average misprediction delay, D1, is essentially constant for
N >20. Even for q as large as 0.8, Di is nearly stable for N £ 50. Since the scope of
concurrency detection in Equation (5.7) is assumed to be infinite (extending up to the end
of the program), Di as computed above is an upper bound. Even in the worst case the
average branch misprediction delay is about the same as a typical cache miss processing
delay, 10 to 20 clocks.

5.3.2 Alternate Computation forp w

Assuming fixed size basic blocks of size B = ^l/£>+0.5 j , p m can be computed from

the P(Jfy) :
I B i+coB-1

P c o = - E I P V j - y)
° ,=I j=i+((s>-l)B

For example, assume £>=0.2. Consider the second to last instruction (i=2) in a basic
block. If it is scheduled at a distance of 7 to 11, it has been scheduled past two
unresolved branches. Hence, contribution to P to by the second to last instruction ,.(0=2 is

2+ 10-1
0.2 E P d f y) •

7=2+5

The parameter p m computed as above would not be as accurate as that empirically
collected, because the above calculations are based on the very simplistic assumption of
fixed basic block size. This can be improved by using the basic block size distribution
instead. Assuming p § (and hence P (Ij'.y)) to be independent of the size of basic blocks,

102

q ranging from 0.1 to 0.8

Average
misprediction

delay per
misprediction,

D1 clocks

\ I I I I I I
30 40 50 60 70 80 90 100

Program tree depth, N

Figure 5.6 Average misprediction delay versus program tree depth for branch
frequency, b = 0.2, average cost o f damage undoing per
percolation, jx = I, and various percolation-distance distribution
parameter, q, values. The parameter q is a measure of beyond-
basic-block scheduling probability.

103

p a computed using basic block size distribution should be approximately same as that
empirically collected. Thus an alternate characterization of parallelism can be in terms of
Psandbasicblocksizedistributioninsteadofpa,.

5.3.3 Dynamic Scheduling with Finite Lookahead

Since a machine can only dedicate a finite amount of chip area for keeping the
history of speculatively executed operations, there would be a limit to the amount of look
ahead in terms of basic blocks. Let L be the scope of look ahead measured in number of
basic blocks (L=O for within-basic-block scheduling). Then the average misprediction
delay is approximately

k k Pi» u
^ Zj f r
j=\ (O=J °

{5.9}

where p a represents Uiepa, distribution truncated at a distance of L basic blocks.

A finite lookahead in terms of basic blocks also implies that the Size of instruction
window, W, is a variable, as it gets truncated to the size of L basic blocks whenever the
combined size of L pending basic blocks is less than W instructions. The distribution for
WGn such a case, can be computed using, the basic block size distribution.

5.4 ExperimentalResults

There are two key input parameters in the model developed in the previous two
sections: p§ and p a . The parameter pg provides a measure of how often two
instructions at positions 8 apart in the instruction stream are found to be independent. As
noted, two independent instructions at a fixed distance 8 may have a very different cost
for simultaneous scheduling, depending on their distance as measured in basic blocks.
The parameter p a captures this additional cost, giving a more realistic performance
estimate.

Experiments have been conducted on a set of benchmarks (see Table I) using the
Multiflow TRACE SCHEDULING compacting C and Fortran 77 compiler on a TRACE
computer. This compiler [Fis81] does out-of-order, beyond-basic-block scheduling. The
goal of these experiments was two-fold. First, to establish the nature of the p§ and p a
parameters and to determine their capability for characterizing program parallelism;
second, to show that this characterization can be used to predict their performance under
scope and resource constraints.

5.1 Benchmarks used in this study.

Benchmark Description

Stanford Collection of various application programs
also known as StanfordIntegerSuite

spice Analog Circuit Simulation Package

fpppp Quantum chemistry benchmark that measures
performance on a two-electron integral
derivative computation

tair Transonicairfoilanalysisprogram

applu Coupled partial differential equations

cgm Conjugate gradient solver

fftpde 3-D FFT PDE

mgrid Simplemultigridsolver

mdg Driver for molecular dynamic simulation
of flexible water molecule

mg3d Nonlinearalgebraicsystemssolvers
and ODE solvers for signal processing

bdna ODEsolversforchem icaland
physical models

105

The hardware of the TRACE 28/200 [CNO88] includes four processor boards, each
containing of two integer ALUs, one floating point adder, and one floating point
multiplier. It can initiate 28 operations per instruction. Thus, the collected values for p 5
and P ea are not resource constrained when considering less than the available number of
resources of the TRACE 28/200.

The Multiflow compiler provides the ability to generate detailed trace schedules,
such that the operations being grouped are also tagged to indicate their position in the
original Sbquential instruction stream. This information is used to calculate the
scheduling probability, P (I f y), (see Section 5.2). Collected traces for the benchmarks,
are post-processed to simulate a run time scheduling environment The target
environment assumes that on every scheduling cycle W instructions from the dynamic
stream of instructions are examined for dependency. Those found independent, say
k (< W), are scheduled together and dispatched, and another W -k instructions are moved
into the instruction window. The post-processing consists of following phases:

1) renumbering instructions in a trace to represent a continuous dynamic
sequence,

2) dynamically adjusting distances between instructions as the execution
proceeds, and

3) weighing data from each routine in proportion to the fraction of run time spent
in that routine.

Figures 5.7 through 5.9 plot P {If.y) for the chosen set of benchmarks. Note the
distinctive nature o f the Jpppp benchmark. Unlike the others, it has a relatively small
scheduling probability for adjacent instructions (8= I) and has a small but non-negligible
probability of scheduling even at distances of more than 512.

The pa values can be obtained from the scheduling probabilities in the following
manner. RestatingEquation (5.1),

P(Ij :y)=P(Ij - I j) P 0j-2j I Ij-i j) - PO 1 j I I j - i j , . . . ,hj)P0oj I Ij-ij, Ij-2j , : , h j) ■

Assumingastationarydistributionyields

P(Ipy) - P (Ij-2,j-\)P Oj-zj-i 11j-2j —\) P (I oj-i I Ij-Xi-X,--,! 1,7—1) P Ooj I Ij-\j,Ij-Xj,—,I\.j)

=P(I j - i : y)P(Io j I I j - x j , I j - x j , • • • > A j) •

Therefore,

PVoj \Ij -1jJj-2j , •>Aj)
PVj -y)

PV j - i - y)

=P 8 , for 8= ; .

{5.10}

106

Measured

1 .0 -

0 .3 -

0 .1 -

instruction 0 .0 3 -
scheduling 0 .0 1 -
probability, 0 .003-

P (I f y) 0.001 -

0 .0003-
0.0001 -

dashed square: Stanford
dashed plus: spice
solid: fpppp
dashed bullet: tair

I 2 4 8 16 32 64 128 256 512 1024
Distance (number of dynamic instructions apart)

Figure 5.7 Measured instruction scheduling probability versus distance for the
Stanford, spice, fpppp, and tair benchmarks.

Measured
instruction
scheduling
probability,

P (I f y)

LQ

0.3

0.1
0.03

0.01
0.003
0.001

0.0003
0.0001

g ; : n' S 5 ;

dashed bullet: applu
dashed plus: cgm
dashed square: fftpde
dashed solid box: mgrid

S : = j 5 : f l s %

i I I I I I I i I I I
1 2 4 8 16 32 64 128 256 512 1024

Distance (number of dynamic instructions apart)

Figure 5.8 Measured instruction scheduling probability versus distance for the
applu, cgm, fftpde, and mgrid benchmarks.

107

1.0

0.3

Measured
instruction 0.03
scheduling 0.01
probability, 0003

PVj:yy 0.001

0.0003
0.0001

1 2 4 8 16 32 64 128 256 512 1024
Distance (number of dynamic instructions apart)

Figure 5.9 Measured instruction scheduling probability versus distance for the
mdg, mg3d, and bdna benchmarks.

Figures 5.10 through 5.12 plot the p a distribution for the chosen set of benchmarks.
The pg plot alone is insufficient justification for increased scope for a benchmark; the
associated misprediction delay cost given by the p© distribution must also be considered.
Figures 5.13 through 5.15 provide an estimate of this cost for the chosen set of
benchmarks using empirically computed branch probability, b and assuming cost of
damage undoing* |i= I, in Equation (5.9). The worst case misprediction delay is around
20 clocks, as estimated earlier from the analytical calculations in the previous section.
Note that iox fpppp more than 90 percent of time the scheduled instructions are in the
same basic block, resulting in very small misprediction cost. Therefore, this benchmark
would benefit most from a large scope. On the other hand, although one might be
tempted to increase the scope for tair, by only looking at the P(Ijiy) plot, the
misprediction delay estimate (Figure 5.13) for this program would be a strong deterrent
to such a decision. Thus, p g, the conditional instruction independence probability, and
P co, a measure of the cost of speculative execution, together provide a complete picture
in terms of the amount of available parallelism and the cost of its extraction, respectively.

For programs where the Multiflow compiler generates many short traces probability
calculations for larger distances become inaccurate. For example, assume there is one
instance when an instruction a distance of 128 was examined for dependence and it was
found independent. If such a small sample is used to calculate the scheduling probability
at this distance, then the scheduling probability at a distance of 128 would be assigned a
probability of one, which is obviously an erroneous conclusion. A simple fix for this
problem is to ignore probabilities calculated having too small number of sample data
points. To incorporate this fix, of all the SPEC , NAS Parallel benchmark suite [BBL91]
and Perfect benchmarks [CKP90], only the benchmarks that had at least 200 sample
data points in their growing throughput range have been selected. (This is why not all of
the SPEC benchmarks, NAS Parallel and Perfect benchmarks are members of the chosen
set of benchmarks.)

Figures 5.16 through 5.26 plot the throughput calculated with the model and the
measured static throughput (average width of instruction word) from the compiler output
as a function of scope of concurrency detection and instruction word width. Model
throughput is calculated using the p$ values input to the analytical model developed in
Section 5.2 Measured static throughput is estimated as the average width o f schedules
(wide instruction words) in the traces output by the Multiflow compiler. The compiler
throughput estimate does not take into account run time delays, such as memory delays,

SPEC is a trademark of the Systems Perfoimance Evaluation Cooperative. Purdue University
§£EC License No. 310.

The SPEC benchmarks and NAS parallel benchmarks were compiled using version 1.6.1 of the
TRACE C and FORTRAN 77 compilers. The Perfect club benchmarks were compiled using
version 2.2 of the TRACE FORTRAN 77 compiler

Measured
beyond-basic-block

instruction
scheduling
probability,

P a

Figure 5.10

Measiued
beyond-basic-block

instruction
scheduling
probability,

Pa

Figure 5.11

109

dashed square: Stanford

dashed plus: spice

solid: fpppp

dashed bullet: tair

Distance (number of basic blocks apart)

Measured beyond-basic-block instruction scheduling probability
versus distance for the Stanford, spice, fpppp, and tair benchmarks.

1 -
.9 -
.8 -
J -

.6 -

.5 -

.4 -

.3 -

.2 -

.1 -
0 -

■’ <•' ' " '

&
I V

dashed bullet: applu
H \ v

dashed plus: cgm

% : dashed square: fftpde
s\ \ 's\ s

W V \\» dashed solid box: mgrid

I " = = ? -------^ - A**
T p I r i : I r
0 1 2 4 8 16 32

' Distance (number of basic blocks apart)

Measured beyond-basic-block instruction scheduling probability
versus distance for the applu, cgm, fftpde, and mgrid benchmarks.

P m

Measured
beyond-basic-block

instruction
scheduling
probability,

Figure 5.12

dashed square: mdg

dashed plus: mg3d

solid: bdna

Distance (number of basic blocks apart)

Measured beyond-basic-block instruction scheduling probability
versus distance for the mdg, mg3d, and bdria benchmarks.

I l l

Predicted
misprediction

delay,
Di

dotted: Stanford
dashed plus: spice
solid: fpppp
dashed bullet: tair

' _ -̂»-=4 4̂—I—I—I—I—M -+

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Lookahead (number of basic blocks)

Figure 5.13 Predicted misprediction delay based on the empirically collected
p m distribution as a function of the amount of dynamic lookahead,
in terms of number of basic blocks for the Stanford, spice, fpppp,
and tair benchmarks.

Predicted
misprediction

delay,
Di

dotted: applu
dashed plus: cgm
solid: frtpde
dashed bullet: mgrid

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Lookahead (number of basic blocks)

Figure 5.14 Predicted misprediction delay based on the empirically collected
p m distribution as a function of the amount of dynamic lookahead,
in terms of number of basic blocks for the applu, cgm, fftpde, and
mgrid benchmarks.

112

1 6 -
Predicted

misprediction 1 2 -
delay,

P r 8 "

dashed square: mdg
dashed plus: mg3d
solid: bdna

I F H I I I I I I I T H I I I T T
0 2 4 6 8 10 12 14 16 18 20 2224 26 28 30 32

Lookahead (number of basic blocks)

Figure 5.15 Predicted misprediction delay based on the empirically collected
p m distribution as a function of the amount of dynamic lookahead,
in terms of number of basic blocks for the mdg, mg3d, and bdna
benchmarks.

f

113

which are not part of the analytic model either. An important reason for the discrepancy
between the model prediction and the compiler output is due to the basic difference
between superscalar and VUW machines. The model is based on a superscalar
architecture. Consequently, two instructions that are data-independent of each other are
always assumed schedulable on two available resources (pipelines). But in a YLIW
environment, such as that of Multiflow, there are additional resource restrictions, as each
functional unit is not a complete execution pipeline. For example on a VLIW machine,
two independent floating point adds may be forced to wait if only integer adders are
available. Such resource constraints are not part of the analytical model. Finally, note
that for a window size of 32, the average difference between the model and measured
compiler output is 20 percent and the worst ease difference is 43 percent; whereas, for a
window size of 1024, the average and worst case differences are 47 percent and 79
percent respectively. More importantly, the throughput curves for both the model and
the measured values have very similar shape.

Experience with these benchmarks confirms that the longer the traces, the more data
points and hence more credible the probabilities and better the performance prediction.
For example, tair and Jpppp benchmarks gave relatively longer traces and had better
performance prediction. Almost all the benchmarks (an important exception being fpppp)
attain almost all of the speedup with a scope of about 64 instructions and an instruction
word width of 6.

Figures 5.7 through 5.26 have been plotted with distance up to 1024 instructions
and for 32 basic blocks of lookahead. Current microprocessors such as, 80x86 or
RS6000, however, are just beginning to explore the tradeoffs associated with beyond-
basic-block (speculative) execution. Hence, the scope used by near-future generations of
such machines is likely to be limited to a few basic blocks and an instruction window
size of at most 16 to 32 instructions. With this in mind, , Appendix B contains
performance plots for several other benchmarks (Table B .l) to a reduced range of
lookahead. Although the benchmarks in Appendix B did not have more that 200 sample
data points in their entire speedup range (the previous selection criterion), they all have
more than 200 sample data points for a distance of 32 instructions or less. The graphs for
these benchmarks are limited in scope to 32 instructions and eight basic blocks (Figures
B .ltoB .22).

5.5 Potential Improvements to the Model

There are three predominant sources of inaccuracy in the performance predictions
of the analytic model.

114

Static
throughput

(instructions
per schedule)

Scope (number of instructions)

Figure 5.16 Throughput under resource and scope constraints for the S ta n fo r d
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

Static
throughput

(instructions
per schedule)

234612 inslruclion word width
_ n O model predicted throughput

I —

Program: spice

8 16 32 64 128 256 512 1024
Scope (number of instructions)

Figure 5.17 Throughput under resource and scope constraints for the spice
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compileroutput wasinfluenced by fesource
constraints that are not part of the model.

115

Static
throughput

(instructions
per schedule)

2 -

2 3 4 612 4— instruction word width
CD model predicted throughput

Qa GiS measured compiler outputi
Isii
m i

Program: Jpppp

8 16 32 64 128 256 512 1024
Scope (number of instructions)

Figure 5.18 Throughput under resource and scope constraints for the fpppp
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

Static
throughput

(instructions
per schedule) j

8 16 32 64 128 256
Scope (number of instructions)

512 1024

Figure 5.19 Throughput under resource and scope constraints for the tair
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

116

5-1

4 -

Static
throughput

(instructions
per schedule) ^ “

T
I

234612 4— instruction word width
CS model predicted throughput
Sm measured compiler output

Program: applu

Scope (number of instructions)

Figure 5.20 Throughput under resource and scope constraints for the applu
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. Thecompiler output was influenced by resource
constraints that are not part of the model.

Static
throughput

(instructions
per schedule)

4

3 -

234612

4
instruction word width

O model predicted throughput
WB measured compiler output

Program: cgm
rfi

I 2 4 8 16 32 64 128 256 512 1024
Scope (number of instructions)

Figure 5.21 Throughput under resource and scope constraints for the cgm
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

117

J 4 -

3 -
Static

throughput
(instructions 2 -

per schedule)

-L- .. ■
1 -

O -

234612

4
«- instruction word width
O model predicted throughput
BB measured compiler output

Program: jJtpde

Figure 5.22 Throughput under resource and scope constraints for the fftpde
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. Thecom pileroutputw asinfluencedby resource
constraints that are not part of the model.

Static
throughput

(instructions
per schedule)

Program: mgrid
234612 <— instruction word width

1 2 4 8 16 32 64 128 256 512 1024
Scope (number of instructions)

Figure 5.23 Throughput under resource and scope constraints for the mgrid
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

118

Static
throughput

(instructions
per schedule)

234612 <— instniciion word width
4 —| r-i CZl model predicted throughput

EM BH measured compiler output

M

Program: mdg

I 2 4 8 16 32 64 128 256 512 1024
Scope (number of instructions)

Figure 5.24 Throughput under resource and scope constraints for the mdg
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

Static
throughput

(instructions
per schedule)

Scope (number of instructions)

Figure 5.25 Throughput under resource and scope constraints for the mg3d
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

4- instruction word width
CD model predicted throughput
WS measured compiler output

Program: hdna

Static
throughput

(instructions
per schedule)

I 2 4 8 16 32 64 128 256 512 1024
Scope (number of instructions)

Figure 5.26 Throughput under resource and scope constraints for the bdna
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

120

First, a trace scheduling compiler must schedule subject to the available hardware
resources in the target computer. The analytic model depends on experimentally gathered
data for its p s probabilities. Because the target of the Multiflow compiler is a finite
resource machine the /75 probabilities inferred from the scheduled VLIW instruction
stream omit some cases of instructions schedulable with instruction I q. Thus, the
measured /75 values are a lower bound on the actual Ph- We do not know of a
parallelizing Compiler that assumes an infinite resource environment and provides a
detailed schedule, with mapping between the original sequential stream and the new
compacted schedule.

Second, the collected set of statistics is a subset of the total statistics due to
missing dependency information from the compiler. For example, when any compiler
schedules /g with / 0, it can be concluded that independent instruction pairs were detected
at a distance of 8, 7, 6, ..., and I, because /§ can be scheduled with I q only if /g is
independent of not only /0 but also o f / 7, I ^ , ..., a n d /j . However, if 1% is not scheduled
with / 0, it is not possible to determine the responsible dependent instruction pair(s).
Therefore, the collected statistics for scheduled instructions as a function of distance is a
subset of the statistics corresponding to all possible schedulable instruction pairs as a
function of their distance.

Finally, the analytic performance prediction model assumes a continuous instruction
stream (the dynamic instruction stream) with the given p 5 characteristics, whereas the
Multiflow compiler output produces several, potentially many, disjoint traces. It is quite
reasonable for the compiler to do this. The analysis combines the p 5 values for all the
traces, weighted by the estimated time spent executing each trace. This is an
approximation of the dynamic /75 values.

Fixes for the first and second issues will require dependency analysis tools specially
designed for collecting /75 values. A remedy for the third problem requires generating
combined traces or collecting /75 using dependency analysis on dynamic instruction
streams. Analyzing dynamic instruction streams would also fix the problem Of short
traces mentioned in the previous sectiqp.

5.6 Summary

An analytic model for optimizing instruction window size has been presented. The
value of this model is its ability to establish whether a performance bottleneck is (I) not
having enough resources (number of pipelines), or (2) not having enough parallelism in
the instruction stream, or (3) not examining enough instructions to extract the inherent
parallelism; The proposed model has been validated by demonstrating that the predicted

throughput for the chosen set of benchmarks is close to the measured throughput front
the compiler output. The cost of speculative execution, in terms of the delay required to
undo the damage due to wrongfully executed instructions, has been quantified for the set
of benchmarks.

The parameters p§ andp & provide a means for characterizing inherent parallelism
in an application instruction stream. Intuitively, p s corresponds to the inherent
parallelism in the application program, and P a corresponds to the cost of extracting that
parallelism. Although the performance potential of machine architectures can be
compared in terms of parameters such as number of pipelines or processors, branch
delay, cache miss delay, and so forth, the only common way for comparing two programs
such as spice and Jpppp has been in terms of their run time on a certain machine. The
parameters p 5 and p m are a way of comparing the performance potential of programs in
terms of a quantitative measure of their inherent parallelism. The combination of p& and
p a provides quantitative insights (such as the cited difference between fpppp and tair in
Section 5.4) into cost-performance tradeoffs associated with exploiting fine grain
program parallelism. In the absence of this insight such tradeoffs have to be postponed
to a much later stage during the design process and cost expensive simulation cycles.

One needs to be cautious in comparing the throughput plots of different
benchmarks. A better comparison for performance potential of two benchmarks should
be in terms of the speedup, i.e, the throughput ratio with respect to single-pipeline
sequential execution, rather than in terms of individual throughputs. The baseline
throughput might vary considerably with the benchmarks. For example, consider the
S ta n fo r d and f p p p p benchmarks. The former consists of all integer arithmetic; the latter
is a floating-point intensive benchmark and, hence, is very likely to have a baseline
throughput of much less than one. Therefore, although S ta n fo r d and f p p p p may both
have a throughput of around 1.6 for a window-size of 16, the latter implies a much higher
speedup than the former.

Finally, the performance prediction approach presented in this chapter is meant
primarily for actual applications (including “ dusty decks”) as opposed to kernels or
small benchmarks. Full applications yield longer traces. The longer the traces, the more
credible and meaningful the probability calculations, and hence the better the
performance prediction. Predictions about the speed of real applications rather than
those of kernels is an advantage of this approach.

121

122

CHAPTER 6
SPECTRUM OF CHOICES:

SUPERPIPELINED, SUPERSCALAR OR MULTIPROCESSOR?

6.1 Introduction

This final chapter extends the model developed in Chapter 4 to include
multiprocessors. The utilization of all three system types, as affected by the inherent
parallelism in an instruction stream, is examined.

Recent simulation-based studies suggest that while superpipelines and superscalars
are equally capable of exploiting fine-grain concurrency, multiprocessors are better at
exploiting coarse-grain parallelism. Lilja and Yew [LiY90] used trace-driven
simulations and concluded that the best performance is obtained using a coarse-grain
multiprocessor configuration where each individual processor has a parallelism of two to
four.

6.2 Delays Associated with Multiprocessors

Assume a system of N processors, each processor having k pipelines, where the
pipelines are s stages deep (see Figure 6.1). Consider performing y iterations of a
program loop, each consisting of n/y identical operations, each operation taking g gate
levels of delay. These operations are being pipelined in response to the instructions being
scheduled on each pipelined, which in turn is a consequence of source code level
iterations being assigned to each processor.

For n a multiple of s * k and y a multiple of IV, the first set of k results in each
iteration completes after s clocks and then the remaining n - k results finish in (n - k) / k
clocks in groups of k. Thus a total of,

± - k
s + -

Y-77 ClOCkS
Nk

123

N processors

& pipelines

On-chip Shared Memory
Interconnection Network

Shared Memory Interconnection Network

Figure 6.1 Combined system architecture assumed by the models.

are needed. Assuming the clock period is determined by the pipeline hardware, the
above expression in terms of clocks can be re-written in terms of gate delays as,

--
--

--
>

*1
» I

__
__

__
__

__
J

__
__

_I

J k ' * + 2 (5 - I) '

r * JN
I

S
gate-delays {6.1}

The modelling details of dependency delay and operand fetch delay are discussed
next. These models are similar to the one used by Cytron [Cyt86] to explain Doacross
and to that used by Lilja and Yew [LiY90].

6.2.1 DependencyDelay

Suppose iterations are statically scheduled such that processor I executes loop
iterations I, l+N, 1+2N, ...; processor 2 executes iteration 2, 2+N, 2+2N, ...; and so on.
Further assume that the parallel iterations have a lexically backwards dependence of
distance one, i.e., a certain statement Si in iteration CO must be executed after a statement
Sj (i<j) of the previous iteration, co-1. Let j — i —I n/y, where I represents the fraction of
loop code exhibiting the dependence. Ignoring any delay (due to, for example, branching
or cache misses) this fraction of code (from statement S,- to Sj) can be executed in
I n /(yk) clocks on k pipelines. As shown in Figure 6.2, this implies that a new iteration
on a processor is delayed by (N - I) I n /(yk) clocks. However, this waiting time is also
overlapped with the execution of remaining code of the current iteration. The average
length of this remaining code is given by (l - l) n /(2y), which can be executed in
(l - l) n /(2yk) clocks. Therefore,

dependency delay = max In (I - Q n
yk 2 yk

clocks,

For an inter-iteration dependency distance o f 5 iterations, the above equation becomes

dependency delay = max
JV -8

8
L J

I n
yk

CI - D n
2 y k

clocks. { 6.2 }

D O i
SI:
52
53
54
55
56
57
58
59
S10:
ENDDO

I,N

B(i) = A(i) + C(i-2)

C(i) - D(i) * E(i)

7 = 3/10 = 0.3, 8 = 2

125

Processor I Processor 2 Processor 3 Processor 4

S3(l) S3(2)

S5(l) S5(2) delay delay
• • • • • • S3(3) S3(4)

SlO(I) S 10(2)
delay delay S5(3) S5(4)
S3(5) S3(6)

••• ••• S10(3) S 10(4)

Note: Si(j) denotes j th iteration of the instruction Si

Figure 6.2 Inter-iteration dependency

126

6.2.2 OperandFetchDelay

Assume a multistage interconnection network between the multi-ported, on-chip
cache and the pipelines, and another such network between the processor and the off-
chip, shared, global memory. Then operand fetch delay can be modelled as

Here, y is the probability of accessing the shared global memory. For more than
one processor, assume that all the references to shared variables go to the off-chip shared
memory. Further, bo is the delay encountered for accessing the on-chip cache, Cq is the
delay required for accessing the off-chip shared global memory, and b i Iog2 £ and
Ci log2k are network access delay for the cache and the global memory, respectively.
F u n c tio n s/an d / represent delays due to interconnection network contention.

Unlike the superpipeline/superscalar model, the simplifications of ignoring on-chip
data cache misses and assuming that total cache access time is not constant are made.
Let on-chip cache access time, bo=g dc and off-chip access time, Co =g dm. Based on
the reported experience with the Cedar system [LiY90], contention delays are assumed to
be 50 percent of the network delays, i.e., (Z)1/2)Iog2/: and (Cl/2)Iog2ZV respectively for
the cache and the shared memory. Let the network delay factor for on-chip
implementation, b \ = g dcn and that for the off-chip memory be, Ci =g d™.

Branch delays and operand fetch delays are further reduced by overlap factors o f tty
mid Tt0 (both less than one), respectively. These factors are determined by how often
compiler is able to hide these delays behind execution delays for machines with multi­
cycle operations.

The preceding discussion assumes that there are k instructions available to be
scheduled on the k pipelines and N iterations available to be assigned onto the N
processors. This is not always true due to data dependency constraints. Similarly,
pipeline interlocks can cause freezes of pipeline segments. Each of these effects result in
a drop in the utilization of the resources. This decrease can be modelled as a scalar
factor reducing utilization or as a modification of the utilization distribution, yia a vector

operand fetch delay - bo+b i Iog2Z: + / (log 2k, utilization), for N = I

operand fetch delay = (I - y) Uo+&i Iog2Z:+/(Iog2Ict utilization) +

{6.3}

y Co + c i Iog2A + / (Iog2N t utilization) , for A > I {6.4}

6.3 Utilization Constraints

127

product.

6.3.1 Qiaracteristics of Utilization Curves

The performance decrease due to utilization constraints is simply a manifestation of
the scheduling delay of Section 4.2. Sometimes this delay is best modelled using an
additional delay term, such as when modelling fetch delay due to branches or when
modelling the dependency delay for scheduling different iterations on a multiprocessor.
At times when the available information is less precise or less regular, the delay is best
modelled as a utilization factor, u. This is distinct from the overall resource utilization
introduced in Section 4.2. Let u be the utilization factor, then

where Sav refers to the average number of active pipeline segments, ^av to the average
number of active pipelines for superscalar processors, and Nav to the average number o f
active processors for multiprocessor computers.

The utilization factor, u, should have the following characteristics:

a) Let a be the dynamic fraction of code that must be executed in strict order on a
single pipeline, and similarly, let P be the dynamic fraction of code that must be
executed serially on a single processor. Two code sequences with the same a (or P)
can have different amounts of inherent parallelism. Although a and P place an
upper limit on the utilization, they are not a measure of the actual amount of
parallelism. For example, the two code sequences shown in Figure 6.3 have the
same a of 0.1, but while code sequence (b) would be at its peak performance with
10 processors, code sequence (a) would require 28 processors for peak performance.

Lilja and Yew [LiY90] report different speedups for programs in different
a-categories and the same range of speedup for programs in the same a-category.
We believe that for the chosen set of programs, different a-categories appear to
correspond to different utilization categories and the reported correlation of actual
speedups with a-categories is coincidental.

For IV processors, M can be expressed as:

Next look at the characteristics of Un s, which refers to the utilization in the
parallelizable or non-scalar portion of the code.

128

51
52
53
54

for i = I to 28
S I
S2:

sfc ijc ĵc ̂ |c ?jjg ijjg sfc |̂c ^ ifc % ijc ̂

for i = I to IO
SI:
S2:

M i = ItolO
SI:
S2:

M iM to io
Si:
S2:

sjcsjc*jcsjci|cs{cs|cs}«ijcsic«|c3)c^)csfcs]c jjc jjc sjc *ĵ

Figure 6 3 Sfflple code sequences With same a (= 0 .1) but different amounts
of parallelism

b) For a small number of processors (or pipelines or pipeline segments), Nav^ N (or
Icav-Ic, or Sav = s) , that is, the utilization decrease with an additional processor (or
pipeline or pipeline segment) is very small. But as the number of processor grows,
utilization decreases more significantly with additional processors. For a large
number of processors, additional processors do little to increase the average number
o f active processors. The above holds true analogously for large numbers o f
pipelines and pipeline segments. Hence as N increases, utilization tends to the
curve given by the function 1/N.

c) Another important characteristic of any utilization curve can be stated as:
If Uns (f o r N = x) = y then Uns (f o r N = z >x) ^ (y x)/N.
Stated simply, the number of active processors cannot decrease with the addition of
a new processor. Such a restriction makes intuitive sense in case of superscalars and
multiprocessors. The utilization equation for pipelines in Chapter 2 does not impose
this restriction, because, additional segmentation is not as straightforward as the
addition of another pipeline or processor, and conceivably, the average number of
active segments can decrease with increasing segmentation of a pipeline. This
distinction is ignored in this chapter,

d) Finally, in case of superpipelines and multiprocessors, Ieav^ k max and NavZ N max,
respectively, which are determined by the maximum degree of fine-grain
(operation-level) parallelism and coarse-grain (iteration-level) parallelism,
respectively.

129

6.3.2 Alternate Characterization of Program Parallelism

In Chapter 5, inherent parallelism in program was characterized using the and
p m statistics. The parameters introduced above can provide an alternate characterization
of the inherent parallelism in application programs. While oc and P determine the portion
of code that lacks any parallelism, Iemax and N max limit the maximum parallelism that
can be extracted in any instance. These parameters together put an upper limit on the
utilization of superscalars and multiprocessors. For example, in the case of
multiprocessors, the upper limit is

= (I- P) min I,
N max

N
{6.5}

Let u % , u % a n d UrZ f = { lo w , a v e r a g e , h ig h) depending on whether the parallelism
available for the superpipeline, superscalar, or the multiprocessor respectively is lo w ,

a v e r a g e , ox h ig h . This implies the corresponding utilization curve from Figure 6.4. The
bounding curves of Figure 6.4 are the lower and upper bounds of utilization as given by
I IN (in case of multiprocessors) and I, respectively. Moving from applications with a

130

Utilization
factor
(Hns)

upper bound

,3 -

lower bound

10 15 20 25 30 35 40 45 50
Number of processors

Figure 6.4 Assumed utilization curves.

4

131

I
.9
.8
.7
.6

Utilization .5
.4
•3
.2
.1
0

0 5 10 15 20 25 30 35 40 45 50
Instructionwordwidth

solid: fpppp
dotted: nasa7
dashed: daxpy

(a)

Utilization

.3 -

2 4 8 16 32 64 128 256 512 IK 2K 4K
Number of processors

(b)

Figure 6.5 (a) Utilization versus instruction word width measured on the
Multiflow TRACE 28/200 computer, and (b) utilization curves
derived from tables on pp. 214-217 of [Pol86].

large amount of inherent parallelism to those with little or no parallelism, parameters u%,
Unst and ajjf decrease. The level at which the parallelism is available is important. Loop
level parallelism is reflected by the value of The parameter ' indicates
instruction-level parallelism. A program that is strictly serial would force and to
their lowef bpunds, but u% may still be very high. Inter-iteration dependencies that limit
the utilization of multiprocessors are characterized by /, the fraction of code in a loop
body that exhibits dependence and 5, the iteration distance of the dependence.

In order to get a realistic idea of the nature o f the utilization curves, data was
collected ffom machines relying on both fine-grain parallelism and iteration-level,
coarse-grain parallelism. Figure 6.5 (a) represents the utilization data for the Multiflow
TRACE 28/200 machine. Figure 6.5 (b) represents utilization inferred from the speedup
results published by Polychronopoulos using guided self-scheduling techniques on
certain loops [Pol86]. The nature of these empirical curves conforms with characteristics
(b) and (c) above. Based on this combination of experimental and analytical insights, a
family of utilization curves have been used that are considered representative of low,
average, and high amounts of parallelism in the non-scalar portion of the code, as
depicted i« Figure 6.4. Let u%, u%, and = {low, average, high} depending on
whether the parallelism available for the superpipeline, superscalar, or the multiprocessor
respectively is low, average, or high. For the discussion to follow the sole purpose of
these curves is to assess the performance impact of a change in the available amount of
parallelism as the program transformation moves from coarse-grain to fine-grain, or as
different applications are executed.

132

6.4 Results

A nominal set of values (see Table 6.1) are assumed to describe the hardware
performance characteristics and program characteristics for a hypothetical, but realistic
environment. The nominal value o f 0.4 for dm implies a main memory access time of
about two to three clocks for a five to six stages deep pipeline, which is typical of current
microprocessors. The on-chip cache is assumed to be four times times faster its off-chip
counterpart. On-chip network delay factor, dcn is chosen such that the network delay is at
most twice the access time to the cache. The off-chip network is assumed about two
times slower than its on-chip counterpart: Also, 20 percent of memory accesses are
assumed to be to shared variables. This fraction may be much higher on some systems
due to die main memory traffic to maintain cache consistency, in which case this fraction
would be a function o f the number of processors and the particular consistency algorithm
in use. Finally, 30 percent of the branch and operand fetch delays are assumed to be

133

Table 6.1 Nominal values of model parameters describing hardware and
program characteristics.

Hardware Characteristics: , Vv;

Fraction of operation gate delay required for branch resolution, df, 0.15

Fraction of operation gate delay required for on-chip cache access, d c 0.1

Fraction of operation gate delay required for off-chip memory access, d m 0.4

On-chip network access delay factor, d cn 1/45
Off-chip network access delay factor, d™ 1/25

Program Characteristics:
Fraction of code that must be serially executed on one pipeline, OC 0.1

Fraction of code that must be serially executed on one processor, J5 0.1

Branch instruction probability, b o.l

Probability of memory-reference per operation, w 0.2

Fractionofdataaccessestosharedvariables,)' 0.2

Maximum degree of operation (pipeline) level parallelism, &max 50
Maximum degree of iteration (processor) level parallelism, N max 50 ;
Across iteration dependency distance, 5
Distancebetweendependentinstructionsasafractionofthe . V

size of loop body, / QQ

Utilization factor for the parallelizable code for pipeline stages, U% follows
Utilization factor for the parallelizable code for complete pipelines, u% the average
Utilization factor for the parallelizable code for processors, utilization

curve of

Figure 6.4

Fraction of branch delays overlapped with execution delays, Kf, 0.3

Fraction of operand-fetch delays overlapped with execution delays, K0 0.3

overlapped with execution delays. This is consistent with the reported figures from
compilers for typical RISC machines.

Figure 6.6 demonstrates the impact of utilization on the throughput of
superpipelined systems. Recall that because delay is measured in units of gate delays,
operand fetch delay is a constant overhead in the absence of any growing network delay.
The only growing overhead is that due to the inter-segment buffers. In die analysis
range, this is noticeable only for poorly utilized pipelines, which show a very small drop
in throughput with an increasing number of segments. For better utilized pipeline? the
throughput keeps growing, although at a slower rate as observed in the analysis of
superpipelines in Chapter 4.

Turning attention to superscalars, there are two major differences with respect to the
supeipiipeiined systems. First, the addition of the interconnection network for shared
memory access results in a growing operand fetch overhead. Second, utilization for
superscalars has an additional factor, a, the fraction of code that must be executed on a
single pipeline. Figures 6.7 (a) and (b) plot the maximum throughput attained and the
corresponding number of pipelines for various combinations of a and the utilization
factor in terms of The effect of a becomes noticeable only for larger values, say
a >0.1. Also, for the same value of a, different levels of throughput can be achieved
depending on the utilization factor. The optimum number of pipelines shows even more
insensitivity towards a, except that for a >0.1, there may be slight increase in the
number of pipelines required to achieve the optimum throughput. The optimum
throughput, as expected, grows with better utilization factor; so does the number of
pipelines required to achieve this optimum. This is in accord with the findings of Lilja
and Yew [LiY90] as visible in their category-2 performance plots, where better utilized
multiprocessors require a higher degree of parallelism (number of pipelines or
processors) than the lesser utilized superscalars to achieve a higher level of speedup.

The impact of memory delay is shown in Figures 6.8 (a) and (b). The two major
components are the memory access time dc and the network access delay factor dcn. The
number of pipelines where maximum throughput is attained becomes increasingly more
dependent on the ratio, dcldcn, as dc increases. Since dcn controls the rate of growth of
operand fetch delay, its impact on how long it takes before the operand fetch delay
overruns the advantage of an additional pipeline is to be expected. The stepwise nature of
the curves in Figure 6.8 (b) (which results from the log terms in Equation 6.3) is difficult
to follow. Hence, the corresponding data is also presented in a tabular form in Table 6.2.

Ignoring dependency overhead, Figures 6.7 and 6.8 also represent multiprocessor
peiforrnance, except that the optimum throughputs would be somewhat less due to the
slower off-chip memory interface. Such graphs can be useful in deciding the incremental
benefit Of adding a processor (or pipeline). Suppose the curves in Figures 6.7 and 6.8
were used for estimating multiprocessor performance (read »J5f in place of u%, and
processors in place of pipelines). If a program environment offers a higher level of

Throughput
(per op-delay)

Figure 6.6

u% = average

T n I i t I I I I
10 15 20 25 30 35 40 45 50

Number of pipeline stages

Impact of utilization on throughput for superpipelines.

136

Maximum
Throughput

(per op-delay)

(a)

5 0 -
'/ 4 5 -

4 0 -
3 5 -

Optimum 3 0 -
number of 25 -
pipelines 2 0 -

1 5 -
1 0 -
5 -
0 -

0.001 0.01 .1 I
Fraction of code that is single-function-unit sequential (a)

(b)

■ - _ " ■; '

u% = high

' : v

u% = average
. . ■ : . ■

Iit I

I ! ■ T

Figure 6.7 Maximum throughput (a) and optimum number of pipelines (b) as
a function of the fraction of code that must be executed on a single
function unit (pipeline).

137

d = 0.05

Maximum
throughput

(per op-delay) 4 =0.65

I I
10 12 14 16 18 20

22

20

18
Optimum
number of 16
pipelines

14

12

10

2 4 6 8 10 12 14 16 18 20
dc ld%

/ / / /

T I I T I I I I I T

(b)

Figure 6.8 Maximum throughput (a) and optimum number of pipelines (b)
versus ratio of memory access delay (dc) to network access delay
factor (d£); dc values shown are 0.05 to 0.65 in increments of 0.1.

138

Table 6.2 Optimum number of pipelines versus ratio of memory access
delay, dc, to network access delay factor, dcn.

dc

dc=0.05 4=0.15

Optimum

4=0.25

number of

4=0.35

pipelines

4=0.45 dc=0.55 4=0.65

2 • 21 19 18 17 ■ 15 14 13
3 ; 21 20 19 18 17 16 15
4 21 20 20 19 ! . 18 ■ ■ 18 . 1 17

" I 21 20 20 19 19 18 18
6 21 21 20 20 19 19 18
7 21 ■ 21 20 20 20 19 19

. 8 21 21 20 20 20 19 19
' ’ 9 : 21 21 20 20 20 - 20 19

W 21 21 21 20 20 20 20
■ 11 . 21 21 21 20 20 20 20

12 21 21 21 20 20 20 20
13 21 21 21 20 20 20 20
14 ■ 21 21 21 21 20 20 I 20 . ■;
15 : 21 21 21 21 20 20 20
16 21 21 21 21 20 20 20
17 . 21 21 21 21 20 20 20
is 21 21 21 21 21 20 20
19 21 21 21 21 21 20 20
20 21 21 21 21 21 20 20

139

coarse-grain parallelism such that ttjjf increases from average to high, this implies an
approximate increase of about 45 percent in optimum throughput but an increase of about
125 percent in the number of processors required to attain that throughput.

Dependency overhead has two important variables: 8, the distance in number of
iterations between dependent instructions, and /, the distance between the dependent
instructions in the same iteration as a fraction of the loop body length. Before new
iteration on a processor executes, all the previous iterations on which it is dependent
must have completed up to the point of dependency (Figure 6.2). An increase in 8 has an
effect in two ways. First, the number of prior iterations that must complete to the point
of the dependency is reduced. For example, on a 10 processor system if 8= 1 , a new
iteration has to wait for the nine previous iterations; whereas, if 8= 2, there are only four
iterations to wait for. Second, an increase in 8 retards the onset of dependency delay, as
there is no dependency delay for less than 8 processors. The distance between dependent
instructions, /, also has a two-fold impact. As / grows, the larger dependency region
yields a longer wait for initiation of a new iteration. A larger / also implies there is on
average a lesser remaining portion of loop body to hide the dependency delay. Figures
6.9 (a) and (b) plot the optimum performance and the corresponding number of
processors for varying combination of I and 8. As a function of 8, notice the nonlinear
nature of optimum throughput curves in Figure 6.9 (a), whereas, the optimum number of
processors changes almost linearly (Figure 6.9 (b)).

6.5 Combined Systems

Finally, consider the performance issues of combined systems, such as
superpipelined multiprocessors and superscalar multiprocessors, which are obtained by
using clusters of superpipelined and superscalar processors, respectively. Assume a
single processor system with a pipeline that is 32 stages deep. (This implies an issuing
Capacity of 32 instructions during the length of the pipeline.) Assume that the
application stream has a significant amount of coarse-grain parallelism. Therefore,
trading off some pipeline stages for additional processors is expected to improve the
performance.

Consider Figure 6.10 and assume u% = low and u%£ = high. This means
significantly more coarse-grain parallelism (resulting in a better utilized multiprocessor
configuration) than the amount of fine-grain parallelism (causing a poorly utilized
pipeline configuration). Keeping a constant issuing capacity of 32, add more processors.
Initially, performance improves significantly. As more processors yet are added,
multiprocessor performance starts to level off and begins to approach the lower limits of

S'-

1 0 -

8 -

MaxitiiUm 6 -
throughput

(per op-delay) 4 -

;
2 -

6 -

/ = O

/ = 0.30

r j— n r~ I
2 4 6 8 10

Inter-iteration dependency distance (S)

(4)

Optimum 15
number of
processors 10

Inter-iteration dependency distance (S)

Piguie 6.9 MaximUiii throughput (a) and optimum number of processors (b)
versus inter-iteration dependency distance; / ranges from 6 to 0.30
in increments of 0.05.

CombinedSystems
Superpipelined Multiprocessor (dotted)

Superscalar Multiprocessor (dashed)
Combined Issuing capacities: 16,32 and 48

(u%=u%=low, = high)

Throughput, 1 6 -
(per 1 4 -

operation 12-
delay) 10-

48
32 'V

Multiprocessor
(single stage, single pipeline)

10 15 20 25 30 35 40 45 50
Number of processors, N

Figure 6.10 Throughput plot of combined system performance.

superpipeline performance curves, where the performance loss due to reduced number of
stages becomes increasingly significant. This results in an optimum at 2-stage pipelines
and 16 processors. Performance plots for issuing capacities of 16 and 48 are also shown.
This is repeated with superscalar multiprocessor systems. It is interstmg that in all these
cases the optimum performance is obtained when the combined system is a
multiprocessor with processors using 2- or 3-Stage pipelines. This observation agrees
well with the trace-driven simulation-based findings of Wljf and Yew [LiY90]. Also, as
the difference between the utilization factors (u% and Qt n jjf) shrinks, the optimum
shifts more in favor of pipelines as observed by Lilja and Yew [LiYQO].

142

6.6 Suihmary

The analytical models developed in previous chapters and extended here allow easy,
comparative evaluation of superpipelines, superscalars, and multiprocessors.

The extended model although simplistic in nature is shown capable of deriving
some usefnl results. It is shown that maximum throughput is not sensitive to the ratio of
memory access time to network access delay. However, the number of pipelines (or
processors) at which the maximum throughput is obtained is increasingly sensitive to this
ratio as the memory access time increases. As a function of inter-iteration dependency
distance, optimum throughput varies nontinearly, whereas the corresponding optimum
number of processors does vary linearly. Finally, for programs with more coarse-grain
parallelism, optimum performance is obtained in the multiprocessor configiiration where
each processor has hardware supporting fine-grain parallelism of degree two to four.

143

CHAPTER?
CONCLUSIONS

This research has presented analytical approaches to optimal processor design* The
model developed during this researches primarily targeted to, although not limited to,
superscalar processors with dynamic scheduling. Starting with single pipeline
optimization, the model was gradually refined to gain insights into various performance
tradeoffs associated with multiple-pipeline systems. Special attention was paid to the
Understanding of delays associated with different branch strategies, misprediction delay
during beyond-basic-block execution, and the loss of throughput due to inherent
dependencies irt the source code.

Throughout the dissertation, the model development and/or enhancement consists of
three generic steps. First, a model is proposed based on known and/or expected
performance characteristics of the system. Second, the proposed model is validated by
correlating its predictions with published results and/or experimentally gathered
performance measurements. Third, the validated model is used to gain new insights into
performance limiting factors.

7.1 Summary

First, a survey of the existing machines and literature was presented with a
proposed classification of various approaches for exploiting fine-grain concurrency.
Optimization of a single pipeline is discussed based on an analytical model. The
predicted nature of performance curves is found to be in close proximity with published
results using simulation techniques. A model is also developed for comparing different
branch strategies for single-pipeline processors, in terms of their effectiveness in
reducing the branch delay. Additional instruction traffic generated by the different
branch strategies is also studied and is shown to be a useful criterion for choosing
between equally well performing strategies.

Such analytical techniques are extended to processors with multiple pipelines fo
study the tradeoffs associated with deeper versus multiple pipelines. An analytical model
is developed for optimizing the size of an instruction window for machines with dynamic

scheduling. The cost associated with beyond-basic-block execution is examined via
probability distributions that characterize the inherent parallelism in the instruction
stream. The throughput prediction of the analytic model under resource and scope
constraints is shown to be close to the measured static throughput of the compiler output
for 24 benchmarks chosen from the SPEC, NAS, and Perfect benchmark suited Further
experiments provide misprediction delay estimates for these benchmarks Under scope
constraints, assuming beyond-basic-block, out-of-order execution and run-time
scheduling. These results were derived using traces from the Multiflow TRACE
SCHEDULING™ compacting C and FORTRAN 77 compilers.

A simplified extension to the model to include multiprocessors is also proposed.
The extended model is used to analyze combined systems, such as superpipelined
multiprocessors and superscalar multiprocessors. It is shown that the number of
pipelines (or processors) at which the maximum throughput is obtained is increasingly
sensitive to the ratio of memory access time to network access delay, as memory access
time increases. Further, as a function of inter-iteration dependency distance, optimum
throughput is shown to vary nonlinearly, whereas the corresponding optimum number of
processors varies linearly. The predictions from the analytical model agree with similar
results published using simulation-based techniques.

144 '

7.2 Contributions

The contributions of this research can be summarized as follows:

a) Simulation-based performance predictions for single-pipeline optimizations and
those for combined system optimizations, have been analytically correlated.
Relative to the previous simulation-based studies, this analytical approach is less
time consuming, more flexible, and offers additional insights into the performance
issues.

b) A comparative analysis of different branch strategies has been presented on a
Common analytical platform. Also, the additional instruction traffic associated with
the branch strategies has been analyzed on a comparative basis. This aspect of
branch strategies has not been reported in published literature to this date.

c) A validated model has been presented for optimizing the size of an instruction
window for superscalar processors with beyond-basic-block, dynamic scheduling.
Window sizes as large as 1024 instructions or more can be analyzed quickly. The
published material on this tradeoff [AKT86, SJH89, and Joh9l] has been solely
based on simulation-derived findings. The model developed can also offer insights
into where a performance bottleneck might be: insufficient resources to exploit

- 145

discovered parallelism, insufficient instruction stream parallelism, or insufficient
scope of concurrency detection.

d) Although the performance potential of machine architectures can be compared in
terms of parameters such as number of pipelines or processors, branch delay, cache
miss delay, and so forth, the only common way for comparing programs has been in
terms of their run time on a certain machine. This research proposes certain
parameters, p s and P co, as a way of comparing the performance potential of
programs in terms of a quantitative measure of their inherent parallelism. Tlie
combination of p 5 and P ci provides quantitative insights into cost-performance
tradeoffs associated with exploiting fine grain program parallelism-

e) Throughput estimates for a variety of benchmarks have been provided under under
resource and scope constraints, assuming out-of-sequence, bcyofid-besic-block
execution. For some of the benchmarks, data has been provided for a scope as large
as 1024 instructions. Previous studies have either been limited to within basic
blocks [AKT86] or limited to simulations up to a window size of 32 instructions
[SJH89, Joh91J. Assuming dynamic scheduling, the research also provides
misprediction delay estimates for the analyzed benchmarks up to a lookahead of 32
basic blocks.

Most of the published work on processor performance has been based on
simulations^ which arc a valuable tool for providing accurate performance estimates for
the simulated program traces. The research presented in this dissertation seeks to
complement previous work by providing an approach based on relatively simple,
Validated analytical models. We hope the contributions of this research will be appealing
enough for some processor architect to try out some of the models for some future
processor ticsign.

146

CHAPTER 8
FUTURERESEARCtf

This chapter offers extensions of some of the ideas presented in previous chapters
for future research work in this area.

8.1 Out-of-sequence Execution Versus Locality of Opemnd Reffrences

A sequence of successive memory requests that are from logically related dependent
operations exhibit locality of reference, both spatial and temporal. This locality is
obscured when independent, logically unrelated operations are grouped together for
simultaneous execution. This was ignored in Chapter 4, since the cache miss rate, I-h ,
was assumed unchanged as more and more operations from different pipelines were
issued together. If the scope of concurrency detection is small* independent operations
grouped together are likely to be of the same working set [Den70]. For example, during
loop unrollmg, if A [i] is in cache then A [i +1] is likely to be in cache also. Conversely, if
the scope is large enough to group independent operations belonging tP different working
sets, it is unreasonable to expect a simultaneous cache hit for all of these references-

Consider for example, the two execution scenarios listed in Figure 8.1. Tbe
sequential case corresponds tP purely sequential execution, whereas the parallel case
allows out-of-sequence execution. Fpr the sake of simplicity, the latter differs from the
former in only that it permits simultaneous fetch of two unrelated operands A and D. In
the parallel case, Fetch D can result in a cache miss and displace the line containing C-
Subsequently, a miss on Store C may displace the line containing P , causing another
miss during Store D. Both Store C and Store D could have been cache hits in the
sequential case.

Let, Ns be the number of misses in the sequential code and Np be the number of
misses in the parallel code. The discussion below is divided into three steps.

%)s -First, the impact of moving Fetch P dn its own cache hit/miss probability, Le., the
hit/miss probability of operand P , is explained. Call it Impact-A.

X: Fetch A Fetch A / Fetch P
FetchB FetchA

compute C := f(A,B) compute C := f(A,B)

Store C Store C
Y: Fetch D

• •

compute D :=f(C,D) compute D := f(C,d)
• • • •

StoreD StOreD

Sequential Parallel

Figure 8.1 Two execution scenarios

b) Second, the impact of removing Fetch D ori the operand fetches ih the vicinity
following Y is analyzed; where Y is the program location associated with Fetch 13
in the sequential code. This impact is referred to as the Itnpact-B in the following
discussion.

e) Finally, the impact of introducing Fetch D on the cache miss probability of operand
fetches in the vicinity following X is discussed; where X refers to the pfOgfani
location where Fetch D is moved to in the parallel code. This effect is referred to as
the Impact-B in the following discussion.

TO keep things simple, it is alSo assumed that the references ItiOved up during
parallelization do not influence the cache hit/miss probability of each Other. In Other
Words, they aTe independent of each other. There may be some references to ah operand
that were scattered in the sequential code but get grouped together in the parallel Code.
And hence after parallelization, these may change from cache miss to cache hit due to
rtiutUal influence. This effect is ignored.

Inipact-A. The following possibilities exist regarding Fetch D, that is moved up in the
parallel code:
a) cache miss in sequential, cache miss in parallel,
b) cache hit in sequential, cache hit in parallel,
c) cache hit in sequential, cache miss in parallel, and
d) cache misS in sequential, cache hit in parallel.

Cases (a) and (b) do not change the number of misses, Np with respect to Ns, Therefore
Only the remaining two cases need to be examined. Considering impact-A alone,

Np-=Ns+R * \Prob {hit in sequential but miss in parallel code)

-P rob {hit in parallel but miss in sequential code)] {8.1}

where, R = average number of operand references that are scheduled out-of-sequence.
Before proceeding further, following observation may be useful.

An Observation: Consider the following more generalized version of the code sequences
given above:

149

X i: op D
X i+ l:

X i+n: opD

Sequential Parallel

X i:

Let op - Fetch. In the parallelized code, since the read reference to operand D can
be is moved up from from X i+n to X i, it implies that program locations X i+n- i to X,+i do
not contain any write reference to the operand D. Otherwise, it would mean violation of
essential data dependency. These intermediate locations are not likely to contain any
read references to operand D either for the following reasons:

a) If there is a preceding Fetch D, the compiler is expected to move that reference
instead of the one at X i+n,

b) If there are some intermediate read references to the operand D, it would not be a
smart register allocation scheme. Since the register being used in the parallelized
code to hold the operand from X i to X n could also have been used in the sequential
code to get rid of the intermediate read references.

Let op = Store. Again, program locations Xi+i through X i+n^\ can not contain any read
or write references to operand D, because that would imply that the move in the
parallelized code is in violation to order and output dependency respectively. Note that
renaming techniques for bypassing these dependencies are being ignored here.

Therefore, it can be concluded that when a particular operand reference gets moved
up during parallelization, there are no additional references in the sequential code to that
operand during the scheduling distance. Also note that if one were solely limited by data
dependencies, an operand reference being moved up can only be stopped by another
reference to the same operand and therefore would always be a cache hit. Inother words,
if scheduling were to be only restricted by data dependencies and not by resource or
control dependencies, all the relocated references should be cache hits due to their
grouping with their previous references. This can be used to calculate a lower bound for
Np. ' -

Assume that a particular memory location is bound to a specific operand all through
the program. Refer to Fig. 8.2. A quiet-period is defined as the time period between
successive references to the same location. Typically, minimum quiet period would be
determined by compiler’s inability to hold on to a temporary (intermediate) result, which
in turn is a function of the number of available registers etc. Hence it is likely to show
identical distribution on a given system (at least for the same type of variables, like
global, local etc.). On the other hand, maximum or actual quiet-period would be a

function of the specific program context and hence may not have a distribution invariant
across different programs.

Now consider a main memory location’s multiple entries and exits to the cache as
depicted in Fig. 8.3. An operand reference is considered a virgin-hit if Iq > 0. In other
Words, first hit to a prefetched variable is called a virgin-hit. Note that, to * 0 for a
variable fetched on a cache miss. Assume that an average distribution exists for the
parameters shown in Figs. 8.2 and 8.3.

Iisirig the terminology developed so far, the probability terms associated with Equation
(8.1) can be calculated.

Prob (hit in seq. but miss in para,)=

Prob(miss in para.) * Prob(hit in seq. | miss in para.) {8.2}

Proh(miss in para.)-F ro h (scheduling distance > E [ro])- e {8.3}

where,
The conditional probability is given by the virgin-hit probability,
Z=n * E [cache-period !cache-cycle]quiet-period> and,
n = expected number of cache-cycles in a time period= (scheduling distance - to)
The quite-period subscript above implies that the ratio statistics for cache-period to
cache-cycle should preferably be collected during the quiet period of the variable.

Prob(miss in seqential but hit in parallel) =

Proh(hit in parallel) * Prob(rmss in seqential | hit in parallel) . {8.4}

Unlike the previous case, hit in the parallel code does not qualify the sequential miss in
any particular way, so the conditional probability in Equation (8.4) above can be
considered saitie as the normal cache miss probability. Whereas,

Proh(hit in parallel) = e with to =O • {8.5}

150

IMpact-B and Impact-C. Assume an LRU (least recently used) replacement policy for
the cache. Cache hits can be classified into those to the most recently used line (MRU)
and thOse to a not most recently used line (NMRU). If the hit in the sequential case (the
parallel case) is a MRU hit, the original (reference that is scheduled out-Of-sequence)
bperarid reference has no impact on the immediate surrounding. On the other hand, both
the N M R U hit and a miss can have an impact on the following surrounding. Every

Read
Or

Write
References

First
Reference

I Life-Span
of the

Operand

Last
Reference

!
■■ ! :

W

Quiet
Paiod _ R R W R RX V W A

Time (instructions)

Figure 8.2 Reference pattern for a memory location bound to certain logical
operand.

In/Out
of

Data
Cache

First Entry
to data cache

Cache
Cycle

Cache
Period

LastEntry
to data cache

tO

Time (instructions)

* refers to the time of first reference to the location since the cache-line entry
** refers to the time of last reference to the location before the cache-line exit

Figure 8.3 Entries and exits out of data cache for a memory location bound to
certain logical operand.

152

reference that is scheduled out-of-sequence adds following number of misses:

f t = Profe (hit in para.) * Cti +

Profe (miss in para.) * ci2 -

P r0& (h itin se q .)* a l-

Prob (miss in seq.) * a j , {8.6}

where

Ul = Prob(NMRUhit)*

fraction of dead lines in NMRU lines *

average number of misses per dead line

0C2 = fraction of misses that fetch dead lines *

average number of misses per dead line

Note that, hit/miss probabilities for the sequential and the parallel case are same as
those calculated during impact-A calculations. A cache line is considered dead if it is
going to be flushed out before its next reference, else it is called a live line. Alsd note
that the probability of a dead line in the sequential case becoming a live line after the
relocated reference hit in the parallel case has been ignored.

To calculate the additional number of hits, note that ah NMRU hit to a live line does
not add atiy hits, since the Iihe would have become most recently used anyway On its
subsequent hit. Oh the other hand, a cache miss that results in fetching a live line does
add hits. Therefore, additional number of hits per relocated reference is given by:

Y2 =Prob (miss in para.) * 0C3 - Prob (miss in seq.) * {8.7}

where

CI3 = fraction of misses that fetch live lines * average number of hits per live line

As a result, considering impacts B and C only,

Np =Ns + R * (Y i - “f e) { 8 . 8 }

where, Yi and Y2 are as given by Equations (8.6) and (8.7). Finally, Equations (8.1) and
(8.8) can be combined to yield the complete picture. Note that the scheduling distance
probability ih Equation (8.3) can be computed using the approach described in Chapter 5.
The regaining probability terms in Equations (8.3) through (8.7) can be computed using
a cache simulator, modified to compute the virgin hit probability also.

153

8.2 Cost/Performance Tradeoffs for Concurrency Detection
in Different Execution Phases

As explained in Chapter I before execution, any end user task goes through stages
of transformation from the level of algorithm formulation to high level language
specification, followed by assembly and possibly microcode translations. The available
amount of parallelism increases as the transformation proceeds from the algorithm level
to the microcode level. But detection of the additional amount of available parallelism at
the later stages of transformation has additional cost associated with it. This implies a
cost-performance design tradeoff aimed at extracting large amount of parallelism without
incurring prohibitive cost.

Machines have been built with parallelism detection and scheduling at all of the
stages of transformations (refer to Chapter I). The ability to quantify the amount of
parallelism and the cost Of its extraction, as discussed in Chapter 5 (using and p w
distributions) can be a useful tool in analyzing the cost-performance tradeoff for the
proper level of concurrency detection. Chapter 5 provides the plots for these statistics for
a VLIW machine (Multiflow) and efforts are underway to collect the same data at the
level of high level language specification.

There are two other factors that influence the available amount of parallelism and
the associated cost. First, the language used for specification at the high level or at the
assembly level. There may be built-in dependencies in the specification syntax. For
example if there are separate instructions used for setting the condition code and
branching, then almost invariably the condition code setting would be followed by a
branch that is dependent on the preceding instruction that set the condition code. Such
built-in dependencies would limit the available amount of parallelism for a given scope.
By collecting the and P ca distributions for a variety of languages on a common set of
application tasks, a quantitative comparison can be made on the basis o f the amount of
parallelism exposed and the associated cost. Futme research is being targeted at
comparing different high level languages (such as FORTRAN and C) as well as some
assembly level instruction sets (such as the Intel x86, the Motorola 68x, the IBM
RS6000, and the Sun Sparc).

Second, whether the concurrency detection is done at compile time or run time, has
an impact on the amount of available parallelism and the cost of its extraction. For
example, at compile time, even a scope as large as several hundreds of instructions is
feasible without a very high cost in terms of space and compilation time. But at run time,
there is a significant cost associated with a large scope, in terms of the number of
instructions that simultaneously need to be examined and the number of pending
branches.

8.3 Other Measures for Distance Between Instrucrion Pairs

This dissertation is primarily aimed at analyzing the instruction window size
tradeoffs for a machine with dynamic (run time) scheduling add speculative execution.
The typical input for such run time schedulers is the dynamic instruction sequence.
Consequently the density of available parallelism and the cost of its extraction (as
measured using pg and respectively) have been estimated as a function of the
number of such instructions being examined (W) and the number Qf pending branches
(L). There is another reason for describing P s and p® in terms of the number of
intervening instructions. As indicated in Chapter 5, intuitively one would assume that
the output of an instruction is more likely to be consumed in the immediate vicinity than
much farther. At the assembly or microcode level, this immediate vicinity can he
quantified in terms Qf the number of following instructions. But at the level of high level
languages, this may not be a good measure of immediate vicinity- For example, consider
a machine capable of directly executing instructions specified in a high level language,
such as the (wo pieces of code in Figure 8,4. Intuitively one would assume B[i,j] to be
equally likely to be dependent on A[i-l,j] and A[i,j-1]. But ip terms of number of run
time intervening instructions, the dependent instructions in Example (i) are separated by
6 instructions, whereas, those in Example (ii) are separated by 51 instructions. Although
different iteration instances of an instruction may be at varying distances, the probability
of dependence for any pair should be expected to be close if they are equidistant along
any one of the dimensions. Thus at the level of high level language specification, when
multi-dimensional references are involved, the immediate vicinity may be better
characterized using some measure that treats equally every dimension. Such measures of
parallelism can also be used as heuristics in choosing the dimensions that would be most
profitable to unroll iu loop quantization techniques discussed in [Nic88]. Finally, for
machines doing static scheduling, a better distance measure between two instructions
may be the number of arcs in the uncompacted program flow graph.

154

8.4 Recursive Performance Modelling

As mentioned earlier in Chapter I, given a certain end-user task, the mQSt obvious
performance measure is the amount of real time spent in performing the task, as
measured (or perceived) by the end-user. Assume a synchronous computer system with a
global clock. The frequency of this clock is determined by the peak rate at which the
system is, designed to deliver the results. Imagine the user monitoring the system output
every clock cycle for computing the actual throughput. During every cycle, either a

fori=ltolO
for j=l to 10
I :
2:
3: A[ij] := C[i,j]
4: B[i,j] := A[ij-1]
5:
end;
end;

Example - i

for i=l to 10
for j=l to 10
I :
2:
3: A[ij] :=C[iJ]
4: B[i,j] ;= Afi-IJ-]
5:
end;
end;

Example - ii

Figure 8.4 Dependenceacrossiterations

ieatilt in available or just a bubble (implying: no result), The frequency of these bubbles
at the system output is enough to compute the actual system throughput. The
performance modelling approach described ahead offers some suggestions for recursively
computing the probability of receiving bubbles at the system output.

The probability of bubble-transmission, pt from g system stage to its successor pan
be computed using the probability of bubblergenemion, pg and that ©f bubble-reception,
pr. A stage is said to receive a bubble if the preceding stage 4oes not provide any
intermediate result during a cycle. A stage is said tP generate a babble if the duration of
its computation on some input from preceding stage exceeds the clock cycle. A Stage
transmits bubbles either if it generates one or if it receives a bubble when its not
generating one. Mathematically,

Pt=Pg+ (\-Pg)Pr

One can compute Pg using a detailed model for that stage and p r is same as pt from the
preceding stage. Thus recursively the probability of bubbles being transmitted to the user
(which determines the user-perceived system throughput) can be computed. For
example, the model developed in Chapter 2 can be used as the basis for computing pg for
individual pipelines, or, p$ information from Chapter 5 can be used for computing the
bubbles generated by the scheduler.

One advantage of such an approach lies in the fact that while a low-level detailed
model can be used for computing the Pg for a given stage, the low-level model can then
be abstracted using p t information to the next stage. As a result, an analytical model for
the entire system (i.e., processor, memory and I/O combined) may also be feasible. The
alternative approach would be a simulation-based low-level model for the entire system,
which would be many times slower (most likely, prohibitively slow) than this proposed
analytic approach.

[AKT86]

[AgC87]

m m

[AST67]

[BBE70]

[BBL91]

[Ban79]

[CGL89]

[CKP90]

i l l

LIST OF REFERENCES

B,D. Acckŝ T . Kjelstnip, and JL C . Tprng, ‘‘An instruction issuing approach
to enhancing performance in multiple fpnptional unit processors” , IEEE
Traps, on Computers, vol. C-3.5, Sep. 1986, pp. 815-828.

T. Agerwala and J. Cocke, “ High performance reduced; instruction set
processors” , Technical Report RC12434 (455845), IB P Thomas J. Watson
Research Center, Yorktown Heights, NY, Jan. 1987.

Arvind and K. P. Gostelow, “ The U interpreter” , IEE Computer vol. 15, Feb.
1982, pp. 42-50.

D. W. Anderson, F -1. Sparcio, and R. M. Totnasulo, “ The IBM System/360
Model 91: Machine philosophy and instruction handling” , IBM Journal o f
Research and Development vol. 11, Jan. 1967, pp. 8-24.

J. L. Baer, D. P. Bovet, and G. Estrin, “ Legality and other properties of graph
models of computations” , / . Ass. Comput. Mach., vol. 17, July 1970, pp.
543-552.

D.. Bailey, J, Bajrton, T- Lasinski, and H. Simon, “ The NAS parallel
benchmarks” , Report RNR-91-002, NASA Ames Research Center, Jan 1991.

U. Baneijee, Speedup o f Ordinary Programs, Ph.D. Dissertation, Dept, of
Computer Science, Univ. of Illinois, Oct. 1979.

R. Cohn, T. Gross, M. Lam, and P- S. Tseng, “ Architecture and compiler
tradeoffs for a long instruction word microprocessor” , Proc. o f ASPLOS III,
April 1989, pp. 2-14.

G, Cybenko, L. Kipp, L. Pointer, and D. Kuck, “ Supercomputer performance
evaluation and the perfect benchmarks” CSRD Rept. No. 965 University of
Illinois, Urbana, IL, March 1990.

158

[CNO88] R. P. Colwell, R. P. Nix, j. J. O ’Donnell, D. B. Papworth, and P. K. Rodman,
“ A VLIW architecture for a trace scheduling compiler” , IEEE Trans, on
Computers, vol. C-37, Aug. 1988, pp. 967-979.

[Cot65] L. W. Gotten, “ Circuit implementations of high-speed pipeline systems” ,
AFIPS Fall Joint Computer Conference, 1965, pp. 489-504,

[Cyt86] R. Cytron, “ Doacross: Beyond vectorization for multiprocessors (Extended
Abstract)” , 1986 International Cortference on Parallel Processing, pp. 836-

'844.

[DeL87] J. A. DeRosa and H. M. Levy, “ An evaluation of branch architectures” ,
Proc. 14th Annual Symposium on Computer Architecture, June 1987, pp. 10-
16.

[Den70] P. J. Denning, “ Virtual memory” , Computing Surveys, vol. 2, Sep. 1970, pp.
153-188.

[DeM74] J. B. Dennis and D. P. Misunas, “ A preliminary architecture for a basic data­
flow processor” , Proc. 2nd Annual Symposium on Computer Architecture,
1974, pp. 126-132.

[DiM87] D. R. Ditzel and H. R. McLellan, “ Branch folding in CRISP
microprocessor” , Proc. 14th Annual Symposium on Computer Architecture,
June 1987, pp. 2-9.

[DuF89] P. Dubey and M. J. Flynn, “ Branch strategies: Modelling and optimization” ,
Technical Report No. CSL TR 90-411, Computer Systems Laboratory,
Stanford University, Feb. 1990.

[DuF90] P. K. Dubey and M. J. Flynn, “ Optimal pipelining” , Journal o f Parallel and
Distributed Computing, Jan. 1990, pp. 10-19.

[DuF91] '-Pv K. Dubey and M. J. Flynn, “ Branch strategies: modelling and
optimization” , IEEE Trans, on Computers, to appear.

[Faw75] B. K. Fawcett, Maximal Clocking Rates fo r Pipelined Digital Systems, M.S.
Thesis, Dept, of Elec. Eng., University of Illinois at Urbana-Champaign,
1975.

[Fis81] J. A. Fisher, “ Trace Scheduling: A technique for global microcode
compaction” , IEEE Trans, on Computers, vol. C-30, July 1981, pp. 478-490.

[Fis83] J. Fisher, “ VLIW architectures and the ELI-512” , Proc. IOth Annual
Symposium on Computer Architecture, June 1983, pp. 140-150.

159

[Fly72] M. J. Flynn, “ Some computer organizations and their effectiveness” , IEEE
Trans, on Computers vol. C-21, no. 9, Sep. 1972, pp. 948-960.

{F1H79] M. J. Flynn and W. L. Hoevel, “ A theory of interpretive architectures: ideal
language machines!” , Technical Report 170, Computer Systems Laboratory,
Stanford University, Feb. 1979.

[FoR72] C. C. Foster and E. M. Riseman “ Percolation of code to enhance parallel
dispatching and execution” , IEEE Trans, on Computers, vol. C-21, Dec.
1972, pp. 1411-1415.

[GaH80] L. C. Garcia and T. Huynh, “ Storage fetch contention reduction using
instruction branch prediction” , IBM Technical Disclosure Bulletin, vol. 23,
no. 6,1980.

[GaJ79] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory o f NP-Completeness, Freeman Publishing Co., 1979.

[GrH86] T. R. Gross and J. Hennessey, “ Optimizing delayed branches” , Proc. 15th
Workshop on Microprogramming, 1986.

[GKT90] G. F. Grohoski, J. A 4 Kahle, L. E. Thatcher, and C. R. Moore, “ Branch and
fixed-Point instruction execution units” , IBM RISC System/6000
Technology, Publication No. SA23-2619, IBM Corporation, 1990.

[Gro83] T. Gross, ‘ ‘Code optimizations of pipeline constraints” , Technical Report No.
CSL TR 83-255, Computer Systems Laboratory, Stanford University, Dec.
1983.

[HaF72] T. G. Hallin and M. J. Flynn, “Pipelining of arithmetic functions” , IEEE
Trans, on Computers, Vol. C-21, No. 8, Aug. 1972, pp. 880-886.

[HwP87] W-M. Hwu and V. N. Patt, “ Checkpoint repair for high performance out-of-
order execution machines” , Proc. 14th Annual Symposium on Computer
ArchitecturefJune 1987, pp. 18-26.

[HsD86] P. Y. T. Hsu and E. S. Davidson, “ Highly concurrent scalar processing” ,
Proc. 13th Annual Symposium on Computer Architecture, June 1986, pp.
386-395.

[Joh91] W. M. Johnson, Superscalar Microprocessor Design Prentice Hall, 1991.

[JoW89] N. P. Jouppi and D. W. Wall, “ Available instruction-level parallelism for
superscalar and superpipelined machines” , Proc. o f ASPLOS III, April 1989,
pp. 272-282.

160

[KaM66] R. M. Karp and R. E. Miller, “ Properties of a model for parallel
computations: Determinacy, termination, queueing” , SIAM J. o f Applied
Math., Nov. 1966, pp. 1390-1411.

[KMC72] D. Kuck, Y. Muraoka, and S. Chen, “ On the number of operations
simultaneously executable in Fortran-like programs and their resulting
speedup” , IEEE Trans, on Computers, vol. C-21, Dec, 1972, pp. 1293-1310.

[Kun82] H. T. Kung, “ Why systolic architectures ?” , IEEE Computer, Jan. 1982, pp.
V 37-46. :

[KuS86] S. R. Kunkel and J. E. Smith, “ Optimal pipelining in supercomputers” , Proc.
13th Annual Symposium on Computer Architecture, 1986, pp. 404-411.

[Lam88] M. Lam, “ Software pipelining: An effective scheduling technique for VLIW
machines” , Proc. SIGPLAN '88 Conf. Prog. Lang. Design and
Implementation, June 1988, pp. 318-328.

[LeS84] J. K, Lee and A. J. Smith, “ Branch prediction strategies and branch target
buffer design” , IEEE Computer, vol. 17, Jan. 1984, pp. 6-22.

[LiY90] D. J. Lilja and P. C. Yew, “ Comparing parallelism extraction techniques:
Superscalar processors, pipelined processors, and multiprocessors” ,
International Conference on Parallel Processing, 1990, pp. 1-563 -1-564, and
“ The performance potential of fine-Grain and coarse-grain parallel
architectures” , Report No. 954, Center for Supercomputing Research and
Development, University of Illinois at Urbana-Champaign, June 1990.

[McH86] S. McFarling and J. Hennessey, “ Reducing the cost of branches” , Proc. 13th
Annual Symposium on Computer Architecture, June 1986, pp. 396-403.

[Mil73] R. E. Miller, “ A comparison of some theoretical models of parallel
computation” , IEEE Trans, on Computers, Aug. 1973, pp. 710-717.

[NIF84] A. Nicolau and J. Fisher, “ Measuring the parallelism available for very long
instruction word architectures” , IEEE Trans, on Computers, vol. C-33, Nov.
1984, pp. 968-976.

[Nic85] A. Nicolau, “ Uniform parallelism exploitation in ordinary programs” , Proc.
International Conference on Parallel Processing, Aug. 1985, pp. 614-618.

[Nic88] A. Nicolau “ Loop Quantization: A generalized loop unwinding technique”
Journal o f Parallel and Distributed Computing, vol. 5, Oct. 1988, pp. 568-
586. /

[Nic89] A. Nicolau, “ Run-time disambiguation: coping with statically unpredictable
dependencies” , IEEE Tirahs. on Computers; vbl. C-38, May 1989, pp. 663-
678.

tNil80] N. J. Nilsson, Fundamentals o f Artificial Intelligence, Tioga Publishing Cd.,
1980.

[PeS77] Bi. L. Peuto and L. J. SHustek, “ Current issiies in the architecture of
nuCToprocessofs” , IEEE CorhpvUer ̂ Feb. 1977, pp. 20-25.

[PHS85] Y. N. Patt, W-M. Hwu, and M. Shebanow, “ HPS, A new microarchitecture:
Rationale and introduction” , Proc. 18th Annual WOrkshdp oh
Microprogrammihg, Dec. 1985, pp. 103-108.

[PaD76] J. H. Patel and E, S. Davidson, “ Improving the throughput of a pipeline by
insertion of delays” , Proc. 3rd Annual Symposium on Computer Architecture,
June 1976, pp. 159-164.

[Pol86] C. D. Polychronopoulos, On Program Restructuring, Scheduling and
Communication fo r Parallel Processor Systems, Ph.D. dissertation; Dept, of
Computer Science, Univ. of Illinois, Aug. 1986.

[RaGSlJ B. R. Rau and C. D. Glaeser, “ Some scheduling techniques and an easily
schedulable horizontal architecture for high performance scientific
computing” , Proc. 14th Annual Workshop on Microprogramming, Oct. 1981,
pp. 183-198.

[RYY89] B. Rau, D. Yen, W. Yen and R. A. Towle, “ The Cydra 5 departmental
supercomputer” , Computer, vol. 22, Jan. 1989, pp. 12-35.

[RiF72] E. M. Riseman and C. C. Foster, “ The inhibition of potential parallelism” ,
IEEE Trans, on Computers, vol. C-21, Dec. 1972, pp. 1405-1411.

[Sha77] H. D. Shapiro, “ A comparison of various methods for detecting and utilizing
parallelism in a single instruction Stream” , Proc. International Conference
on Parallel Processing, Aug. 1977, pp. 67-76.

[Smi81] J. E. Smith, “ A study of branch prediction strategies” , Proc. 8th Annual
Symposium on Computer Architecture, May 1981, pp 135-148.

[SmP85] J. E. Smith and A. R. Pleszkun, “ Implementation of precise interrupts in
pipelined processors’ ’, Proc. 12th Annual Symposium on Computer
Architecture, June 1985, pp. 36-47.

[SJH89]

[SoV87]

[SoV89]

[TjF70]

[Tja72]

[TjF73]

[Tho70]

[Tom67]

[Uht86]

[Wed82]

: j

[WeS84]
:'v ■ ■ ;

[WeS87]

162

M. D. Smith, M. Johnson, and M. A. Horowitz, “ Limits on multiple
instruction issue’’, Proc. o f ASPLOS III, Boston, MA, April 1989, pp. 290-
302.

G . S. Sohi and S. Vajapeyam, “ Instruction issue logic in high-performance
interruptible pipelined processors” , Proc. 14th Annual Symposiwn on
Computer Architecture, June 1987, pp. 27-34.

G. S, Sohi and S. Vajapeyam “ Tradeoffs in instruction format design for
horizontal architectures” , Proc. o f ASPLOS III, Boston, MA, April 1989, pp.
15-25.

G. S. Tjaden and M. J. Flynn, “ Detection and parallel execution of
independent instructions” , IEEE Trans. Computers, Vol. C-19, Oct. 1970, pp.
889-895.

G. S. Tjaden, Representation and Detection o f Concurrency Using Ordering
Matrices, Ph.D. dissertation, Johns Hopkins Univ., Baltimore, MD, 1972.

G. S. Tjaden and M. Flynn, “ Representation of concurrency with ordering
matrices” , IEEE Trans, on Computers, Aug. 1973, pp. 752-761.

J. E. Thornton, Design o f a Computer: The Control Data 6600, Glenview, IL,
Scott, Foresman and Co., 1970.

R. M. Tomasulo, “ An efficient algorithm for exploiting multiple arithmetic
units” , IBM Journal o f Research and Development vol. 11, Jan. 1967, pp.
25-33.

A. K. Uht, “ An efficient hardware algorithm to extract concurrency from
general-purpose code” , Proc. o f the Nineteenth Annual Hawaii International
Conference on System Sciences, 1986, pp. 41-50.

R. G. Wedig, Detection o f Concurrency in Directly Executed Language
Instruction Streams, Ph.D. dissertation, Stanford University, Stanford, CA,
June 1982.

S. Weiss and J. E. Smith, “ Instruction issue logic in pipelined
supercomputers” , Proc. I l th Annual Symposium on Computer Architecture,
June 1984, pp. 110-118.

S. Weiss and J. E. Smith, “ A study of scalar compilation techniques for
pipelined supercomputers’ ’, Proc. o f ASPLOS II, Palo Alto, CA, Oct. 1987,
pp. 105-109.

Appendix A

A.1 Computation of Probabilities in Table 3.2

The four probabilities in Table 3.2, />*„, p^b, Pfj n mid Pb,b can be computed ih
terms of probability of branch-to-be-taken prediction, p, and probability of correct
prediction, p c, using the following equations:

Ph ,n = (I -P r) * P c

P n , b = (X - P t) * (X - P c)

, , P b , n = P t * (X - P e)

Pb,b = P t * Pc

Consider a branch strategy, which on an average predicts 6 out of every 10 branches as
likely to be taken and where 2 out of every 10 predictions are incorrect. This yields
P t = 0.6, and p e =0.8, which leads to />*»=0.32, />*£,=0.08, />&,»=0.12 and ./>&,*,=0.48.
This means oh an average out of every 100 branches, 32 are hot taken as predicted, 8 are
taken in spite of not-to-be-taken prediction, 12 are not taken though predicted as likely to
be taken, and 48 are taken in accordance with the prediction. Therefore, 56 out of every
100 branches are taken. The number of actually taken branches is independent of the
employed branch strategy. It is a characteristic of the program environment under
execution and can be expressed as

Psb = O ~ P t) * (I ~ P c) + P t * P c •

For a branch prediction strategy (such as B T B) with a certain correct prediction
probability, pc, the probability of to-be-taken predictions can be written using the above
equation as,

, _ P s b - O - P a)
. ---TH-- I ‘

A.2 Additional Instruction Traffic Calculation Under Freeze Conditions

Let,

Da = average number of clocks spent during a target-address-calculation freeze

Df=average number of clocks spent in case of a page-fault during target fetch

Pa = probability of a target-address-calculation freeze

P f= probability of a target fetch freeze

N =maximum possible instruction fetches assuming no freeze

pos(l)= l for / >0

=0 for '/.JaO

The additional instruction traffic

I += m \ +m2+tfi3 +nt4

where

m i = wasted instruction fetches, assuming address calculation

freeze as well as target fetch freeze

=pos (N- D a- D f) * pa*Pf

m 2=wasted instruction fetches, assuming address calculation

freeze but no target fetch freeze

=pos (N - D a) * p a * (I -Pf)

m 3 =wasted instruction fetches, assuming no address calculation

freeze but target fetch freeze

=POS(N-Df)* (I -pa)* Pf

m 4=wasted instruction fetches, assuming no address calculation

freeze and no target fetch freeze

=N* (I-Pa)* (I-Pf)

Forthe sake of brevity, in the following sections the above calculation will be written

165

/+ =N -Pa * Da - P f * D f ,

where - refers to the probability-based reduction in N as explained above.

The above calculation assumes that no additional instruction traffic is generated
during the freeze conditions. Excess instruction traffic would be generated if the freeze
conditions require any instruction fetches (for example, during page-fault handling).
Incorrect predictions not only result in wasted instruction fetches but may also result in
unnecessary operand fetches. For this analysis, the increase in data traffic or any
interference of operand fetches with the instruction fetches is ignored.

A.3; Calculation of Branch Delay and Wasted Instruction Traffic

Table A. I contains the symbols to be frequently used in the calculations to follow.
Some of these symbols have been introduced before in Chapter 3 and are reproduced
here for easy reference.

Predictbranchneyertaken(PBNT):

' P r = 0 ■

Kntn=O

Ifn,b = (.Sb~ty~^Pa* Da +Pf* D f

ZiU= 0

Jfib =Sb — I

Loop buffers (LB):

P r = 0 .

*«,«=0

Kn,b = ((Sb - I) +Pa * Da +Pf* Df) * (I -Pih) + ((Sb - 2) +Pa * Da)* p th

/£n=?0

i i b - i s k - v n i - p i h)

Table A. I Commonly used symbols.

Averagebranchfrequency b
Overall fraction of successful branches pSb

(conditional and unconditional combined)

Numberofpipelinestagesuntilbranchresolution Sb
Number of pipeline stages until unconditional branch resolution Spu
Numberofpipelinestagesuntilconditionalbranchresolution Sbc
Num berofbuffersubstagesinthcinstructionfetchstage Sf

Probabilityoffreezeduringtargetaddressformation Pa
Durationoftargetaddresscalculationfreeze Da

Probabilityoffreezeduringtargetfetch Pf
Duration of target-fetch freeze D f

Probabilityofloopbufferhit Pih
Probability of BTB hit Pth
Probability of correct target address prediction from BTB Pct
Probability of BTB hit for a non-branch instruction Pw

Average number of delay slots filled in delayed branch approach u

Correct prediction probability Pc
Branch-to-be-taken prediction probability p t

Pre-calculate target address (PTA):

P t- O

**« = O

Kntb = (sb - \) +Pa * pos(Da -(S b - I - sf)) +pf * Df

I tn = O

In,b =^b “ V

Target-fetch ifl the OF-slot (FTOF):

Pt = O

K ^ i l - p ^ i l - p J + i l - p ^ j p f

K n tb = Oil * Pa * Pf+a 2 * Pa * (I ~Pf) + «3 * (I ~Pa) * Pf+ «4 * C1 ~Pa) * (! ~Pf)
where

CLi=Sb- 1+Db+Df
■ ' ■ . ■ . ■ f ’ '

a 2 =Sb — \+Da

a 3 =sb - l + D f

0C4 = sb —2

/Xn = (I - P a)* d -P /)

/Xi> = P l * P a * P /+ P I * Pa * (I - p /) + P2 * (I - P a) * P /+ P 2 * (I - P a) * (I ~ P /)

where

Pi=^-I

Predict branch always taken (PBAT):

Pt = I

Kb,n =sb - 1 - S f

Kb,b=Sf+Pa*Da+ P f*D f

I+b,n = (Sb ~ I ~ Sf) -P a * Da - P f * Df

Ib ,b -S f

Predict branch always taken with target copy (PTTC):

P t = I

Kb,n=Sb~ I

K b<b = P a * pos(Da - (S b - I - Sf)) +Pf * D f

I t n = S b - I

I t b = 0

Fetchboththepaths(FBP):

P c = 1

K ^ n = O

K b , b = S f + P a * I > a + P f * D f

I t n = (S b - I - S f) ~ P a * D a ~ p f * D f

I t b = S b - ^

Delayedbranch(DB):

P t = O

K n yb = P O S (S b - I - m) + P a * D a + p f * D f

H n i b = O

Itb=POS(Sb - I - U)

J n n = O

' 169

Taken/Not-taken switch in the decode stage (TNTD):

Kb,n=sb - l ~ sf . :

Kb,b=Sf+pa * Da +Pf * D f .

K ^ b = S b - I+Pa* &a+Pf* D f

Kn,n = 0

Ib,n = (Sb - l ~ Sf) ~pa * Da ~pf * Df

1U=5/
lh ,b~ sb~ I

Under the Branch target buffer (BTB) scheme, instruction fetch addresses are
associatively matched with the buffer contents and in case of a hit BTB predicts the most
likely branch outcome as well as the most recent target address (see Fig. 3.5). As a
result, target fetch does not need to wait for the branch decode and target address
calculation. If the branch is likely to be taken, the first target instruction fetch
immediately follows the branch instruction fetch. Following branch decode, at the
completion of actual target address calculation, a comparison is made with the predicted
target address. A mismatch here flushes any fetches made from the incorrect target,
aborts any freeze in the incorrect target path and restarts target fetch at the calculated
address. It is also assumed that this comparison output is available along with the actual
target, without any additional clock overhead. Correct target prediction probability, pct
depends on the frequency of branch target changes.

A hit in the branch target buffer (BTB) means that the fetch address contains a
branch instruction. In the case of writable code segments, there is a small likelihood, pw ,
that a non-branch instruction gets predicted as a branch instruction. To make things
worse, if such an instruction is predicted as a branch likely to be taken then it has an
impact on the system throughput even in the absence of any branch instruction as it
blocks the sequential address fetch during the following cycle until the actual instruction
decode. This throughput deterioration is modelled using the following modified version
of the throughput equation in Table 3.2:

Cj = l l (l + K * b + S f * p w *pt) ...

Similarly, this probability Of a BTB hit with branch-to-be-taken prediction for a non-
branch instruction also modifies the computation for wasted instruction traffic in Table
3.2, which so far included additional instruction traffic only due to branch instructions.

The following equation reflects an additional wasted instruction fetch in case a non­
branch instruction is predicted as a to-be-taken-branch and there is no target fetch freeze

I += l i * (l - p w) + (sf ~Df *pf) * p t * p w ,

where 1% refers to the excess instruction traffic due to branch instructions given by the
equation in Table 3.2 and ~ refers to the probability-based reduction explained in
Section A.2.

In case of a miss in BTB, branch instructions are handled in a manner similar to the
PBNT strategy. In other words, branch is assumed as not likely to be taken by default, in
case of a BTB miss. The overhead involved in BTB-updates is ignored. Therefore,
equivalently, this strategy can be considered as a combination of two strategies, one as
described above with BTB hit probability pth and the other the same as in the case of the
PBNT scheme with BTB miss probability.

Calculation for different excess instruction traffic parameters is involved in this case
and, hence, their derivation is described below in qualitative terms before giving the
mathematical details.

i) If a branch is predicted as likely to be taken, target fetch begins immediately from
the predicted address and target address calculation starts soon after the decode. If
the calculated target address does not match with the predicted address, the
instructions fetched so far from the incorrect address are wasted and instruction
fetches begin from the calculated (actual) target address.

ii) In the previous case, if the branch is not taken then in addition to the fetches made
from the predicted target, instructions fetched from the actual target address are also
w a ste d !r ■

iii) If the branch is predicted as not likely to be taken, it is assumed that no attempt is
made to calculate the target address and instruction fetch continues from the
sequential path. If this prediction turns out to be false, sequential instructions
fetched are discarded, target fetch immediately begins at the predicted address and
the actual target calculation starts simultaneously. If the calculated target does not
match with the predicted target, this fetched: sequence is also wasted.

Finally, the above set of parameters are used to calculate the average branch delay,
Kh, and excess instruction traffic, Ih, where the subscript refers to the BTB hit case. In
the case of BTB miss, the corresponding parameters Km and Im are calculated from the
components given for the PBNT case. Combining these cases gives

K = K h * Pth+Km * (l - p th)

and

r+b = lt* P th + I+m * (I-Pth) •

170

The computation of different parameters follows.

K b , n = S b - l

K b,b = (pf * D f) * p c + (S f + p a * D a + p f * D f) * (I - p ct)

Kn,b = i(sb - 1) + P f* D f) * p ct + ((j* - Xy-Vpa * D a -Vpf* %) * Cl -P e X

Kn,n = Q

IXn= 0

The additional instruction traffic, when branch is predicted P to-be-taken and is actually
taken is

I b , b = (°1 + ®2 +Cf3 +Cf4) * (I ~ P c t) •
■ ■ ■ ■ ■ ■ ' - . - - ''

Assume

m in(a,ft)=a ifa < b

—b i fb <a

a i =min (p o s (S f + D a - D f) , (sb - 1)) * p a * P f

% = n f t ih (# + £ «) , ~ D) * P a * (I - P f)

0 3 = P O S (S f - D f) * (I - p a) * P f

0 4 = S / * (I - P a) * (I ~ P f)

Consider the additional instruction traffic, when branch is predicted as to-be-taken but
turns out to be an incorrect prediction : Let Pjp and D f p refer to the freeze potential and
freeze duration respectively at the predicted target, and, let Pfc and D f c refer to the same
at the actual calculated target. This distinction is made only for better understanding of
the following details, Numerically, P f p = P f c = P f and D f p = D f c - D f . The discarded
instruction fetches in this case would be

lb,n = ((sb - 1) - P f * D f) * p a +5 * (I - p c t) ,

where

5 = 8 i +82 +83 +84 +85 +86 +§7 +§$

814 IpmiSf-Dfpj+Sb - I -Sf) * Pfp * (I ^pfc) * (I -Pa)

82 &ipqstef^D jpl+posiSh - I S f - D fiX) * Pfp * Pfc * (I-P a)

172

S3 = - D * U - P / p) * (I - P f c) * (I - P a)

84 =(sf +pos(sb - I-Sf-Dfc)) * (I - P fp) * Pfc * (I -Pa)

85 =Xmin (pos(sf+Da-Djp), (sb - l))+pos(sb - I - S f - D a)) *Pfp* (I - p f i -) * P a

b6 = (min (pos(Sf+Da -Djp), (sb-1)) +pos(sb- I - S f - D a- D fc)) *Pfp *pfc * pa

87 = (sb - 1) * (I -Pfp) * (I -Pfc) * Pa

and

8g = (min ((sf +Da), (sb -1)) +pos(sb - 1- S f - D a - D fc)) * (I -Pfp) * Pfc * Pd

The additional instruction traffic when the branch is predicted as not-to-be-taken but is
actually taken is

I Z b = (Sb - I W a - P c t) . *

where

Y ^ Y l * P a * P f + J 2 * P a * (I - P /) + f t * (I - P a) * P f + Y d * (I ~ P a) * (I ~ P f)

and

Y1 =m in(pos(Da-Df), sb- 1)

Y2 =min (Da> sb - 1)

and

Y3=^4=0

Finally, calculations for the four hybrid cases follows.

Predict branch always taken with target-copy and delayed branch (TTCDB):

P t = I

Kbyn=pos(sb- \ - u)

Kbtb=Pa* Pos(Da- (sb- l -S f))+ p f * Df

Ib,n=POS (sb- l - u)

Ibtb=O
:) ■

Predict branch always taken with target-copy, delayed branch and loop buffer (TTDLB):

173

p t = l

Kb,k =pos(sb -I-U)* (I -Pu,) +pos(sb - I - it) * Pm

Miiib =1* * m & a - (sb - I- Sf» * Pm+(pa * pos&a - (Sb -1 - s/)) +Pf * D f i* Ci -Pm)

iU = o

Taken/N6t-taken switch in the decode stage with Icdp buffer (TffTLB):

K b ,n = s b - \ - s f

Kbib = ((S f- i) + P a * D a) * p ih + (sf+pa * D a +pf * Bf) * (I -Pm)
Mkib = ((Sb - I) +Pa * D a +Pf * Dfi * (I -pm) + ((Sb - 2) + P a * Da)* Plh
Kn.n = 0

- P a * D a - P f * D f i * (1 - p m)

Ibib=Sf* (I-Pm)
Ilb = Osb-W(I-Pm)
IU=O '

The model parameters for the case of taken/hdt-taken switch in the decode stage with
branch target buffer (TNBTB) are the same as those in the case of BTB, except that the
average bfaiich delay and excess instruction traffic parameters K rn and 1%, in the case of a
B t1B miss are calculated using the T N T D case.

174

A.4 Some Additional Performance Plots

6 - TNTD

Average
branch
delay,

PTTCPBNT

BTB

Number of substages in the instruction fetch stage, jy

Figure A. I Average branch delay versus number of substages in the
instruction fetch stage for PBNT, LB, PTTC, FBP, TNTD, and BTB
strategies.

Average
number of

wasted
instruction

fetches
per branch,

I +

PBNT

FBP ,
•* ' PTTC

Number of substages in the instruction fetch stage, Sf

Figure A.2 Average number of wasted instruction fetches per branch versus
number of substages in the instruction fetch stage for PBNT, LB,
PTTC, FBP, TNTD, and BTB strategies.

*

Merit
ratio,
MR

PTTG
FBP
TNTD

x BTB

PBNT

Number of substages in the instruction fetch stage, Sf

Figure A.3 Merit ratio versus number of substages in the instruction fetch
stage for PENT, LB, PTTC, FBP, TNTD, and BTB strategies.

Average 2.4
branch .2
delay,

PBNT,

TNTD

Number of stages Tor conditional branch resolution, jfc

Figure A.4 Average branch delay versus number of stages for conditional
branch resolution for PBNT, LB, PTTC, FBP, TtiTDi and BTB
strategies.

176

Figure A.5 Average number of wasted instruction fetches per branch versus
number of stages for conditional branch resolution for PBNT, LB,
PTTC, FBP, TNTD, and BTB strategies.

Merit
ratio,
MR

TNTD

Number of stages for conditional branch resolution, sfc

Figure A.6 Merit ratio versus number of stages for conditional branch
resolution for PBNT, LB, PTTC, FBP, TNTD, and BTB strategies.

X - - TTDLB
H - TNTLB

Average
branch
delay,

K

PBNT
TTCDB

a TNBTB

2 3 4 5 6 7 8 9
Number of substages in the instruction fetch stage, Sf

Figure A.7 Average branch delay versus number of substages in the
instruction fetch stage for PBNT, TTCDB, TTDLB, TNTLB, and
TNBTB strategies.

- - H- - TNTLB
TNBTB

" TTDLB

Number of substages in the instruction fetch stage, Sf

Figure A S Average number of wasted instruction fetches per branch versus
number of substages in the instruction fetch stage for PBNT,
TTCDB, TTDLB, TNTLB, and TNBTB strategies.

178

TTDLB
TNTLB
TNBTB

ITCDB

PBNT

Number of substages in the instruction fetch stage, s /

Figure A.9 Merit ratio versus number of substages in the instruction fetch
stage for PBNT, TTCDB, TTDLB, TNTLB, and TNBTB strategies.

Figure A. 10 Average number of wasted instruction fetches per branch versus
number of stages for conditional branch resolution for PBNT,
TTCDB, TTDLB, TNTLB, and TNBTB strategies.

179

TTDLB

NBTB

TTCDB

Number of stages for conditional branch resolution, Sjx

Figure A. 11 Merit ratio versus number of stages for conditional branch
resolution for PBNT, TTCDB, TTDLB, TNTLB, and TNBTB
strategies.

Average
number of

wasted
instrnction

fetches
per branch,

I + " - B Z - .
TNBTB

.2 .3 .4 .5 .6 .7 .8
Loop/Target buffer hit probability, pih/ Pth

Figure A.12 Average number of wasted instruction fetches per branch versus
Loop/Target buffer hit probability for LB, BTB, TTDLB, TNTLB,
and TNBTB strategies.

180

TTDLB
TNTLB

Merit
ratio,
MR

I T

Loop/Target buffer hit probability, PihiPth

Figure A. 13 Merit ratio versus Loop/Target buffer hit probability for LB, BTB,
TTDLB, TNTLB, and TNBTB strategies.

Average
number of

wasted
instruction

fetches
per branch,

I +

1.3 - |--- — ----- —-----
1.2-se — — -x-- - -x--------x---x- — x ----x - - x -------x - - -s:

TTCDB

1 -
.9 -

•8 “ LB
---------:-------------------- ;----------------- — ------------------ ;—

.6 - BTB ~“ -
. TTDLB

_ _ * — # = = = # - _- s - - - s - - * - - 41

. 4 - TNTLB TNBTB[3 - - a - - a - - a — a — a — a---a - - a ---e - - a

.3 -) —I I I j I p I I T r “
0 0.02 0.04 0.06 0.08 .1 .12 .14 .16 .18 .2

Target fetch freeze probability, Pf

I

TTCDB

LB

BTB “ “ ~“ -
TTDLB

- * — # = = = # - : S : : r S |
TNTLB TNBTB

—i i I T r~ r I i T i

Figure A. 14 Average number of wasted instruction fetches per branch versus
target fetch freeze probability for LB, BTB, TTCDB, TTDLB,
TNTLB, and TNBTB strategies.

TN TI R
e

Merit
ratio,
MR

B tB TtDLB

0 0.02 0.04 0.06 0.08 .1 .12 .14 .16 .18
Target fetch freeze probability* p j

Figure A. 15 Merit ratio versus target fetch freeze probability for LB, BTB,
TTCDB, TTDLB, TNTLB, and TNBTB strategies.

Appendix B

B I Additional benchmarks used in this study.

Benchmark Description

whetstone Synthetic mix of floating-point
and integer arithmetic

.
tomcatv

. • ■. ■ ■
■ ■

Yectorizable floating-point Fortran
benchmark that does little I/O

appbt Coupled partial differential equations

appsp Coupled partial differential equations

buk Bucket sort

adm
L

FFTs
: . •

dyfesm ODE solvers, nonlinear algebraic
systems and sparse linear systems solver

flo52 Multigrid schemes, ODE solvers

ocean FFTs

qcd Monte Carlo schemes

spec77 FFTs, rapid elliptic problem solvers

track Convolution

trfd Integral transforms

183

Measured
instruction
scheduling
probability,

P(Ify)

.3

.25

.2 —

.1 5 -

.1

0.05

0

'■ 'i

dotted: whetstone
dashed: tomeatv
dashed square: appbt
dashed plus: appsp
dashed bullet: buk

s fc* .a>
>;“ r -

- - *

~] ~ T "
2 4 8 16 32

Distance (number of dynamic instructions apart)
16

Figure B .l Measured instruction scheduling probability versus distance for
whetstone, tomeatv, appbt, appsp, and buk benchmarks.

Measured
instruction
scheduling
probability,

P(Ify)

A -

.3 5 -

.3-

.25-

■ .2 —

.15

4
0.05

0-1

• N \ N
-V.v•r - v. ^

• v >

dotted: adm
dashed: qcd
dashed square: track
dashed plus: ocean

*

‘5‘2 5

I “ n T I I
I 2 4 8 16 32

Distance (number of dynamic instructions apart)

FigUfe B.2 Measured instruction scheduling probability versus distance for
adm, qcd, track, and ocean benchmarks.

184

Measured
instruction
scheduling
probability,

P(JjV)

.5 -
.4 5 -

A -
.3 5 -

.3 -
.2 5 -

.2 -
.1 5 -
.1-

0 .0 5 -
0 -

1 2 4 8 16 32
Distance (number of dynamic instructions apart)

%

dotted: dyfesm
dashed: flo52
dashed square: trfd
dashed plus: spec??

V i js sV

•
......... .

Figure B.3 Measured instruction scheduling probability versus distance for
dyfesm, flo52, trfd, and spec77 benchmarks.

Measured
beyond-basic-block

instruction
scheduling
probability,

P CO

Figure B.4

.8 -

. 7 -

.6 -

. 5 -

A -

. 3 -

.2 -

.1 -
0 -

0 I 2 4 8
Distance (number of basic blocks apart)

Measured beyond-basic-block instruction scheduling probability
versus distance for whetstone, tomcatv, appbt, appsp, and buk
benchmarks.

dotted: whetstone

it dashed: tomcatv
\ N\V N\

*

\ \

dashed square: appbt

dashed plus: appsp

dashed bullet: buk

*§ = = = = = = = & a S I ■ ffl

I

185

Measured
beyond-basic-block

instruction
scheduling
probability,

Pw

Figure B.5

. 7 -
Q
W

■-W'
.6 — dotted: adm

.5 -- v\xx*.xx dashed: qcd

. 4 -
OX
VVXv>\\%\ dashed square: track

Vxx
XVXV dashed plus: ocean

. 2 - V fe
, 1 - v

0 -
i ~ r : r ~ ~ r
0 1 2 4 8

Distance (number of basic blocks; apart)

Measiffed beyond-basic-block instruction scheduling probability
versus distance for adm, qcd, track, and ocean benchmarks.

Measured
beyond-basic-block

instruction
scheduling
probability,

P w

Figure B.6

.8 -

.7 -

.6 -

.5 -

. 4 -

.3 —

.2 -

.1 -

0 -

Distance (number of basic blocks apart)

Measured beyond-basic-block instruction scheduling probability
versus distance for dyfesm, flo52, trfd, and spec77 benchmarks.

"k
X

dotted: dyfesm
X

X dashed: flo52
a \
^ \ t V ' dashed square: trfd

>' v

^ \
' • ' v \

dashed plus: spec77
, AA$ v

V x
\ ■fei

*5 ' I '± '1 ' : - ------ F

1
2

I
4 8

186

Predicted
misprediction

delay,
A

dotted: whetstone
dashed: tomcatv

1 0 - (dashed square: appbt
'sh e d plus:

8-1

6

4

2

0

dashed plus: appsp
dashed bullet: buk

X u = S = S = zzJ ? ' - - - e
[b

- - - {]

• •••

r - - T.**•*''

1 V ■ I I' ; •••. I ■ ' !
2 3 4 5 6 7

Lookahead (number of basic blocks)

Figure B.7 Predicted misprediction delay based on the empirically collected
p a distribution as a function of the amount of dynamic lookahead,
in terms of number of basic blocks for whetstone, tomcatv, appbt,
appsp, and buk benchmarks.

Predicted
misprediction

delay,
A

8 -

4-

2-

dotted: adm
dashed: qcd
dashed square: track
dashed plus: ocean

.v e -

&

(V
>•** . a - '

. - S '

..-X Xe"

1 I I ; I i i
2 3 4 5 6 7

Lookahead (number of basic blocks)

benchmarks.

Figure B.8 Predicted misprediction delay based on the empirically collected
p a distribution as a function of the amount of dynamic lookahead,
in terms of number of basic blocks for adm, qcd, track, and ocean

187

Predicted
misprediction

delay,
A

ia -

IQ-

8 -

6 -

4-

2-

0-

dottcd: dyfesm
dashed: flo52
dashed square: trfd
dashed plus: spec77

- - " T-•• : - U _ . ..-•** , S '

-•••••■■ p , - ' '
^ - S ’"

. Z ^ ' 'S.'

~ I I i i
2 3 4 - 5 6 ' .

Lookahead (number of basic blocks)

Figure B.9 Predicted misprediction delay based on the empirically collected
Pa distribution as a function of the amount of dynamic lookahead,
in terms of number of basic blocks for dyfesm, flo52, trfd, and
spec?? benchmarks.

Static
throughput

(instructions
per Schedule)

Scope (number of instructions)
; V / ; "

Figtirt B.10 Throughput under resource and scope constraints for the whetstone
benchmark; resources varied with instruction Word width == 2,3,4,6,
and 12. The compiler output was influenced by resource
Constraints that are not part of the model. |

188

Static
throughput !

(instructions
per schedule)

Scope (number o f instructions)

Figure B .l l Throughput under resource and scope constraints for the tomcatv
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model.

I 2 4 8 16 32
Scope (number of instructions)

Figure B. 12 Throughput under resource and scope constraints for the appbt
benchmark; resources varied with instruction word w idth- 2,3,4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model.

189

Static 2

throughput
(iristfuetiohs

per schedule)

4 8 16
Scope (number of instructions)

■ s-';
Figiife fi.13 Thfbughput under resource and scope constraints for the dppsp

benchmark; resources varied with instruction word width = 2,3,4,6,
arid 12. The compiler output was influenced by resource
constraints that are not part of the model.

Static
throughput

(iristruCtiOns
per schedule)

3

2

I

0

til Program; buk

1 2 4 8 16 32
Scope (number of instructions)

Figiife Tl. 14- Thtoughput under resource and scope constraints for the buk
berichmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource
cdristfaints that are notpart of the model.

190

Static
throughput

(instructions
per schedule)

Figure B.15 Throughput under resource and scope constraints for the adm
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model.

Static
throughput

(instructions
per schedule)

I 2 4 8 16 32
Scope (number of instructions)

Figure B. 16 Throughput under resource and scope constraints for the qcd
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model.

191

Program: track

Static 2 ~
throughput r u m r i

(instructions faJlllP lil jga|
per schedule) -J ^

I f ^mm:

4: 8 16
Scope (number of instructions!

Figure B.17 Throughput under resource and scope constraints for the track
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model.

Static
throughput 2

(instructions
per schedule)

4 8 16
Scope (number of instructions)

Figure B.18 Throughput under resource and scope constraints for the ocean
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model.

192

Static

throughput
(instructions

per schedule)

4
<— instruction-word width
i i model predicted throughput
BflH measured compiler output

Program: dyfesm

I - I -----------1— ~ ~
4 8 16 32

Scope (number of instructions)

Figure B.19 Throughput under resource and scope constraints for the dyfesm
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model.

2 3 4 6 12 <— instruction-word width
i I model predicted throughput
BBH measured compiler output

Program: flo 52

Static
throughput

(instructions
per schedule)

■■■

Scope (number of instructions)

Figure B.20 Throughput under resource and scope constraints for the flo52
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model.

193

Static
throughput

(instructions
per schedule)

I 3 4 6 12 «— msttuctiai-word width
r*n -.GZD model pipdicted throughput

B f f KIHi measured compiler Output
cd |§ H | Program: trfd

Scope (number of instructions)

FigUSre B.21 ThfOughpUt Under resource and scope constraints for the irfd
benchmark; resources varied with instruction word width = 2,3,4,6,
Urid 12. The compiler output was influenced by resource
Constraints that afe not part of the model.

4 —r-—

Static
throughput

(instructions
per, schedule)

I 2 4 8 . 16 32
SCOpe (number Of instructions)

Figure B.22 Throughput under resource artd scope constraints for the spec77
benchmark; resources varied with instruction word width - 23,4,6,
add 12. The compiler output was influenced by resource
constraints that are not part of the model.

	Exploiting Fine-Grain Concurrency Analytical Insights in Superscalar Processor Design
	

	tmp.1542052450.pdf.73vtY

