Purdue University

Purdue e-Pubs

Department of Electrical and Computer Department of Electrical and Computer
Engineering Technical Reports Engineering
8-1-1991

Exploiting Fine-Grain Concurrency Analytical Insights in
Superscalar Processor Design

Pradeep K. Dubey
Purdue University

George B. Adams IlI
Purdue University

Michael J. Flynn
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

Dubey, Pradeep K.; Adams, George B. lll; and Flynn, Michael J., "Exploiting Fine-Grain Concurrency
Analytical Insights in Superscalar Processor Design" (1991). Department of Electrical and Computer
Engineering Technical Reports. Paper 746.

https://docs.lib.purdue.edu/ecetr/746

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ecetr
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ece
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F746&utm_medium=PDF&utm_campaign=PDFCoverPages

EXPLOITING FINE-GRAIN CONCURRENCY:
ANALYTICAL INSIGHTS IN
SUPERSCALAR PROCESSOR DESIGN

Pradeep K. Dubey
George B. Adams Il
Michael J. Flynn *

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

Purdue University
TR-EE 91-31
August 1991

* Department of Electrical Engineering, Stanford University

ii

ACKNOWLEDGEMENTS

The authors thank Prof. Henry Dietz, Prof. Jose Fortes, Prof. Mike Atallah, Prof.
Arup Bose, and Raymond Kamin, all of Purdue University. '

We also thank Dr. James T. Kuehn at the Supefcomputing Research Center in
Bowie, Maryland, and the management at the‘University Computing Center at the
California State University, Sacramento, for making their Multifiow computers available
for this research. Finally, we thénk Mr. Kent G. Fielden of Intel Corporation, Santa Clara

for making available technical documentation crucial to the experiments.

TABLE OF CONTENTS

iii

Page

LIST OF FIGUREScooossvtenerrensssssssssssssssssssssssssssssasssssssesassessesssesssessssssssssesssocss Vil

LIST OF SYMBOLS ... oooeeveieeeieeevesesiarsnnstsassesesssssssssssssssesssssssssssvese eresesuseeenensen . XVl

1.1
1.2 . Review of Concurrency Representatlon .
Detection and Scheduling TEChNIQUEScoeuevercescreesesirersissmsssiscsirisnss 2
' 1.2.1 Representing CONCUITENCYccveereereressorescssesescsissssssusnsessivinsses 3
1.2.2 Dependenci€scucivienesessressoseersessussassrsssnessens rrveesesesasessasses . 5
1.2.3 Detecting, Dispatching and Schedulmg o
o Concurrent OPETationsceeeseseeesereeneessiseresesessssssssssoroossesosss 9
~ 1.24 Implementation Tradeoffs ereresrerenesenesbersessnesssnssassessensssssinssaesess 20
1.2.5 SUMMATY ...coiciiiiierirentceresiessnennsnsessessesesnssessesassosiossssesnssessonssases 24
13 DiSSErtation OVEIVIEWecveerrviensississssssssssssssssssnssesssenssesusssssessssssses 30

CHAPTER2 OPTIMAL PIPELINING 32

2.1 INEOQUCHIONcoveeirenrrieivennreionresserenesesfosssseserssnsssassessssssesssssssssaiosesassivoss 32

' - 2.1.1 Previous Research ..o, 233

2.2 A Generic Modelcueicnnrerncniunns cerresreaeenns restsesssisirennesssesssrenaens - 34

2.3 Inferencesccoueueene enginchossinans reesreseestassaendesiesssaseessassssons ceeereesraessansaenes 38
23.1- Correspondence with Prev1ously Pubhshed

o ExXperimental RESULLSceveverernrneerernienersicnsncscscesienensmsnsseroscsoss 93

24 Potential Improvements to the Model vesseereeenssesngesensosessssaoss I3

Motivati ' 1
OLIVALION ...ocviivieiinentenriesisisnsessnesasssssssssssssssssanssnsssesssonsssssssessstssssassssisnes

2.5 Summary T P P PR P PP T PP IS P e 55

'CHAPTER 3 BRANCH STRATEGIES MODELLING AND

3.1 INTOQUCHION ..cccvverrrrniererenesresrseresasserereresessasssesesesssssssssssssssesesasssseressensssss D
314 Previous Research OO OO SEOUOTRITUOUURESOPUOUS IO 1
3.2 The MOGEL ...ourircisciinisississssnissesssssssssssssssssssssssssasssssesssessssissss OO0

Classification of Branch Strategies 62

WwWw
apw

iv

, ‘ Page
3.6 Hybrid Srateiesccovrceriniiririssiinsisisiesisssseiossssssssssssnssssssasessesssssssien 76
3.6.1 Inferencescccouniniininniinnenensninnens cerenssesestsasersesnentens wdeaioarsane 77
3.7 Summary ... 81
CHAPTER 4 SUPERPIPELINED VERSUS SUPERSCALARcccvtvuiucen. 82
8.1 TMOQUCHON ..oooversevvesnssesnssssssssessosssersmsessssssssss s ssssessssens N 82
4.2 Superpipeline/Superscalar Tradeoff Modelccuviiiinnnininniniannnnnnene. - 82
4.3 Performance LImitscccoeenrieiennnnienenriniennssesesessecencene SUETRRURRRRRRR .
4.4 Modelling Resource UtHZAtIONccocovicrerinsiciiinieninesessansiesssesssensesnens 89
4.5 SUMIMATY oottt sbss s st ss s sisssesssess . 90
CHAPTER 5 INSTRUCTION WINDOW SIZE TRADEOFFS AND
. - CHARACTERIZATION OF PROGRAM PARALLELISM 91
5.1 INEOQUCHON «..ovvevveresnssesssseesssssssessssssssissssssssssessssssessssssesssssssssses 91
5.2 The Analytic Performance Model eeesesaitsreieeesaiasens e 92
5.3 CoSt Of BIANCHEScoceereereerienenieerinnienesesesisssassssssessssesessasssssssassssesssssesnss 98
5.3.1 Calculating Misprediction Delay Resulting ' ,
from Speculative EXECUtIONccocvvvvvunninisveninneninniinensiiennenne 99
5.3.2 - Alternate Computation fOr P «.c..coeuervenrniivinscnniseniinreniesassensnns 101
5.3.3 - Dynamic Scheduling w1th Finite Lookahead ceesteenienae e snbesnae 103
5.4 Experimental RESUISciocciciiiiiiiniiniiiiiinniieninss e cnnesesaeniones 103
5.5 Potential Improvements to the Modelcovviniinnine. cereersseeseennes 113
5.6 SUIMIMATY ..coeevrreeruriecurserssaisesesssssssessssesstsssssssssssessesiosssssessssssssassssssssssnsens 120
CHAPTER 6 SPECTRUM OF CHOICES: SUPERPIPELINED, | :
‘ SUPERSCALAR OR MULTIPROCESSOR?cccccenviuiivnnurns 122
6.1 TMTOGUCHON .verevvsvieesesmrersesssessssssessiness s s S . 122
6.2 Delays Associated with MultiproCeSSOTSccceivveuirenrennninnsenssesiosanioses 122
6.2.1 Dependency Delaycccovceeinnennrnesininiainesieninens soverssiesesesiosors 124
6.2.2 Operand Fetch Delaycivccinniennnniecicnnnecnenioeesecioneiinnesnnes 126
6.3 Utilization CONSITAINES ..ccvevierisesreseesionscsusssssussissessesssssessissssssssessessessessns 126
6.3.1 Characteristics of Utilization Curvesccccceererrccreriororecerees s 127
6.3.2 . Alternate Characterization of Program Parallelismcc..c..... 129
6.4 RESUILS coveeriniiiieiinniinissitrecstnic st sacsteest b st s besanessbes s bssaas s s sa s nes 132
6.5 - Combined Systemsc.ccoeerurrane sentensensennssnsnsisnissasseresnesbassassessstonstsassasns 139
6.6 SUMIMAIY ..veccvererrerrercnenansssornsseossessssisssosssssasssssssssssssesisssnsossessassssesssssesnss 142
CHAPTER7 CONCLUSIONScoomummmmmenrerersreminmsasanee st srens 143
Tl SUIMIMALY ©eroroeeeeeeveeeeseesesiesssessessesesssssessesssssessssessesssssssssonsssssssmsmassssesses 143
7.2 CONIIDULONSccvrvmriiirerieitiisienisie st sssesssssnssassassssssasteseseses .. 144
CHAPTER8 FUTURE RESEARCHc.coorrrrn e S 146
8.1 Out-of-sequence Execution Versus o :
Locality of Operand Referencesccccvcvvencncniiruenessnnicnssecscceiiaessens 146
8.2 Cost/Performance Tradeoffs for Concurrency Detecuon :

. in Different Execution Phasesccovnierisiveriiorennnnsnsicnenens renreaesnenes 153

8.3 Other Measures for Distance between Instruction Pairscccoeeveunene 154

8.4 Recursive Performance Modellingcceeiciccnninerinienicineneeneeneenes 154
LIST OF REFERENCESccocovnmiininidiniisnssssinnssssissnssses 157
APPENDICES

APDPENAIX A oot e re s se s e e se s saens cernresiviessaneesanseene 163

ADPPENAIX B ..ottt esee e sse s seesse st esbesassas s snse s snsones 182

Appendix C (158 page source code listing; not included)cccovvueruieennnne. 194

Table

1.1
2.1

22
23
2.4

2.5

2.6

2.7
2.8
29

LIST OF TABLES

Comparison of concurrency detection and scheduling strategies............... ‘
Nomenclature and nominal values of model parameters.............ccconenees
Normalized throughput (G,,,,») versus static overhead () sesseees S
Normaliied throughput (G,,,m) versus dynamic overhead [0 R

Normalized throughput (G,,) versus constant term of the
utilization MOAE] (I pax) ceeeernerensiirunsiinininiiieiisesesises e sssssses s sssesscsseetasssseseens

Normalized throughput (G) versus first-order coefficient of the
utilization MOAEl (V) c...coveuiiirnnnririiiitiineeittee s ensaesisssasnsaens

Normalized throughput (G,,o,,,,) versus second-order coefficient of
the utﬂlzatlon MOACL (7) coreerreiiririrniiieeeeerrreessearerstnesssresessssneassesssasesssasssassonses

Throughput gain (AG) versus static overhead (€)ccovurueueienesinicncncnnans e
Throughput gain (AG) versus dynamic overhead (K)cccooeveivesenienunvennes

Throughput gain (AG) versus constant term of the utilization model -

(U ax) +eseeseressenseserssseessesansesessosessosesansasassesessssensessssssentosess saassonsstestsssasssssessssssenes

2.10
2.11

2.12
2.13

3.1

Throughput gain (AG) versus first-order coefficient of the utilization
INOAEL (V) e oeeiieiieeveeicrcrniititirteaesecesesrseesstsanssessssssssssassossossarssssesssorsassasssns erearenens

Throughput gain (AG) versus second order coefficient of the

UtHHZAON MOAEL (1) coveieiiiiiiiecctiniitersinnenecessrneeesessosnsasessssssassasasssssssesionsasaransss

Normalized throughput (G,) versus branch frequency (b) ' '

Normalized throughput (G,,,) Vversus segment slowdown

FIEQUENCY (X) cvevereierererererereererasesnesssssestssesesestsussesessasssssssssestosssssssnsassssssasns cresaene .

Classification of branch Strategies.coovurererecrrecrerecsensrersasercnennns JRUSTRRo

vi

56

vii

Table : : 1 Page

3.2 Table of EfINItioNScccceveerirnrninenenencseieieinntesncncasnes venrsrenens Serersnsasasasaens 68
3.3 Nominal values of model parameters............ceeuee ceeeseesnssesrentsaesaerssasens SRR
5.1 Benchmarks used in this StUAYcc.ceierrerrecreresceereon cerrtee s s resass s ar st saenes 104
6.1 Nominal values of model parameters describing hardware and

program charactenstlcs crereereereesesaesnetiesseaestesaesesnesnssensessstesstsassressaessesissassaesiesaes 133
6.2 - Optimum number of pipelines versus ratio of memory access delay,

d,, to network access delay factor, G eeiiieeenreeerenenieseesssnstessesssesesrsssssessisssinsas 138
Appendix
Table »
A.1 Commonly used SYMDOLScrrerveermereeesssnreresssncereesenee SOOIV 166

B.1 Additional benchmarks used in this StUAY .oovveiiniieeniininiesnterene reteneenasanaas 182

LIST OF FIGURES

Figure

1.1
1.2
1.3

1.4
1.5

1.6

1.7

2.1
22
2.3

2.4

25

26

Computatlon graph (b), Precedence matrix (c) and Petri net (d) for
thc sample code SEqUENCE IN (B)....cccerviriirririirensiiriisreeieniesreeesesaessessasessaessesnes

AND/OR graph (b) for the code sequence in (a). Assummg a
machine with two add/subtract and two multiply/divide units. Input
dependence iZNOTEA.cccciviiiiiinieiiiitininiinie et srse s ba s e e e aeeane e
Available design choices for superscalar processors........ ST T

Classification of scheduling SIateIesccecovurevemmuriccisiniusinincniiiisisinene,

Speedup from out-of-order execution relative to in-order execution

-as a function of pipeline depth ...

Multiple instruction issue with out-of-order execution and with
scope limited to within the basic block; assuming single-cycle
functional unit processor (a) and multiple-cycle functional unit
processor (b). These graphs are denved from results reported in

CTAKTEO] ..o s e st s snes

Architectural framework used for this research.........coovcveereecrcceneeeeenss vierereeseens
Normalized throughput (G,) versus static overhead (¢) rersvesessaseeseae
Normalized throughput (G,) versus dynamic overhead (K)..................: SUUT

Normalized throughput (G,,.») versus constant term of the
utilization model (« ma,() ...

Normalized throughput (G,,,,,,,,) versus first-order coefficient of the

’ uuhzauon MNOAEL (V) cerrrreeeiireeriireeesirereciseesistaeesssneesorsesesnsstesessansesssssasanesbassssssnn

- Normalized throughput (Gnorm) versus second-order coefficient of
‘the utilization MOE] (F) wcucviviiiiiniiiiiiiii e

“Throughput gain (AG) versus static OVEThead (C)everersreererseeeesrersecsascsiomse.

viii

43

Figure ,
2.7 - Throughput gain (AG) versus dynamic overheadl(lc) senssnsanes

28 'I'hroughput gain (AG) versus constant term of the utilization model
. umax ...

2.9 Throughput gain (AG) versus first-order coefﬁcxent of the utilization

model (v) T e
2 10 Throughput gain (AG) versus second:order coefficient of the

UHHZAtION TNOAEL (7) v.evvveriecreeeceecreeeceecrtteeseeesreresetssssesesnnesssansssasssssssesasessses
2.11 Optimal tluOughput gain (AG,,) versus static overhead (c) eiersrennne.
2.12 Normalized throughput (G,) versus branch frequéncy (/) J - veesrnenes
2.13 Normalized throughput (G,,.,) versus segment slowdown

FIEQUENCY () coovveiiniinnnniierinneinnserentisstessrsesssnessansisnessssesssssessssassnssnsssasissssneses
31 Instfuction dependency in a PIPELINEovveiereiienintineenee e v
3.2 Aninstruction plpelmc
33 A loop buffer Setestte sttt st s s st s et s RS s s e
3.4 Predict branch always taken with target COpy (PTTC) .uvervrnneniinnnnnine. cenees
3.5 A branch target DUSEET «..coviiriiiiiniiiisiinnitnsiii i saies ' :

3.6 Average branch delay versus successful' branch probability for
PBNT, LB, PTTC, DB, TNTD, and BTB Strategics.........cccovisuerrernrsincsessuensencsenses

3.7 Average branch delay versus successful branch probability for
PBNT, PTA, FTOF, PBAT, and FBP SITategies..............ccocvvuecucreccunncs et

3.8 - Average number of wasted instruction fetches per branch versus
successful branch probability for PBNT, LB, PTTC, DB, TNTD, and
BTB SIateGICS.....cccvrnrirririincieniiinieiiiiiesneiasisesssesssessssssssssssesssssssessns reessressnans

3.9 Average number of wasted instruction fetches per branch versus
- successful branch probability for PBNT, PTA, FTOF, PBAT, and v
FBP SITALEZILScoviviinriiriiriisiiniisiosessssesssissssssissssssossossessssssessssssssssssssssssssssssios

3.10 Merit ratio versus successful branch probability for PBNT, LB,
PTTC, DB, TNTD, and BTB SITAtEZIEScerermrinininisirnersresereesisesssnesesesnsssianes '

3.11 Merit ratio versus successful branch probablhty for PBNT, PTA,
FT OF PBAT, and FBP StIategi€sc.ccoceinviessiovnnsersnssessonsestovansssssesions rastesieans

ix

Figure

3.12

313

3.14

3.15

316
3.17

4.1

4.2

5.1

Avcragc branch delay versus successful branch probability for‘ o
PBNT TTCDB, TTDLB, TNTLB, and TNBTB Srategies ..cuevereeereveees evveiveisenns ee

Average number of wasted instruction fetches per branch versus
successful branch probability for PBNT, TI‘CDB TTDLB, TNTLB

- ANA TINBTB SITAEZIESccveuervereererearerasnerassasasensessssassessssasensessssasssssassessssssssssssons .

Merit Ratio versus successful branch probability for PBNT, TTCDB,

TTDLB, TNTLB, and TNBTB SITQEIEScccevurreirunresimnsessissessesessessnssarsessinsonss -

Average branch delay versus number of stages for. conditional
branch resolution for PBNT, TTCDB, TTDLB, TNTLB, and TNBTB _

strategxes ...

Avcrage branch delay versus Loop/Target buffer hit probablhty for

LB, BTB, TTDLB, TNTLB, and TNBTB SULCEIES .o E

Average branch dclay versus target fetch freeze probablhty for LB 3
BTB TTDLB, TNTLB, and TNBTB Strategi€scocevvereerersrvinsensiionnnans R

Normahzcd throughput versus number of pipelines, with the
following nominal assumptions: data cache reference probability =

0.5, data cache miss probability = 0.05; data cache miss duration =

0.5 * operation delay, branch probability = 0.2, and branch delay = :
0.15 * operation delay.........

Utilization versus number of pipelines (parametcr values same as in

FAZUIE 4.1) c.vtieiiieeiernennceeseeaeseesesanestensuesesassssesessosssssessesssssshsnsasssonsanssesssn .

Nlustration of dependencies determining conditional independence
probability, p; x. Each single arc indicates a pair of instructions that

- are given to be independent. The double arc denotes the

5.2

dependence in QUESHON fOT P; g ..veverereiinrerererninrnieseiescssesnnsiosnensassosossnssoons ...

Probability of scheduling k instructions for various values of ps and

a fixed instruction window size of 16 reetesteseseseeensstensasranrsnasenasesserrrssiosssasansannanans

53
54

5.5

Probability of scheduling k instructions for various mstructxon
window sizes and pg =0.7......ccovoioieeinisininreneinnnnninnnsnnsionsscsssses desesmneananssenes

Probability of scheduling & instructions for various 1nstruct10n =

‘window sizes and p§=0.8......ccovereiirrncirnnninniininnnnnnnsioen e

Ilustration of a program tree, a scheduled trace of exccutlon, and

~the assembly of wide instruction words with beyond-basw block,

schedulmg ... easas

Page

97

97

Figure

5.6

| 5.7'
TR
59
5.10
5.11
5.12

5.13
'5.14

5.15

Avcrage mlspredlctlon delay versus program tree depth for branch e
frequency, b = 0.2, average cost of damage undoing per percolation,

K =1, and various percolation-distance distribution parameter, q,
values. The parameter ¢ is a measure of beyond-basrc—block '

scheduhngprobablhty vitieesstssseseserrenstsssseseratransaas s snaseessnsnat s onsasansetsts ceeiesnesonee -

Measured mstrucuon scheduhng probabxhty versus dlstance for the

stanford, splce, fpppp, and tair benchmarks.........occeieesiinmsenncisiocsennnacss |

Measured instruction scheduling probablhty versus distance for the, o .

applu, cgm, fftpde, and mgrid benchmarks..........ccocvvervnininsinienseninnssivinnns einsens ‘

Measured mstructlon scheduling probability versus distance for the

"~ mdg, mg3d and bdna benchmarks....ﬂ .. eeusenanses

Measured beyond-basic-block instruction scheduhng probablhty

versus distance for the stanford, spice, fpppp, and tair benchmarks........-...v._...b...

Measured ‘beyond-basic-block instruction scheduling vprobabihty

Versus dlstance for the applu, cgm, fftpde, and mgrid benchmarks....-.’,;...7......,. '

Measured beyond-basic-block instruction scheduling probablhty o
versus distance for the mdg, mg3d, and bdna benchmarks.................

Predlctcd mlspredlctlon delay based on the emplncally collected Po |
distribution as a function of the amount of dynamic lookahead, in
terms of number of basic blocks for the stanford, splce, fpppp, and

Predlcted misprediction delay based on the empmcally collected p o
distribution as a function of the amount of dynamic lookahead, in
terms .of number of basic blocks for the applu, cgm, fftpde, and s
mgnd benchmarks ...

Predicted m1spred1ctlon delay based on the empirically collected pa,
distribution as a function of the amount of dynamic lookahead, in
terms of number of basic blocks for the mdg, mg3d and bdna

benchmarks ...

5.16

Throughput under resource and scope constraints for the stanford

~ benchmark; resources varied with instruction word width equal to

- 5.17

2,3,4,6, and 12. The compiler output was influenced by resource,f o
constramts that are not part of the model

Throughput under resource and scope constraints for the spice.
benchmark; resources varied with instruction word width equal to

. 2,3,4,6, and 12. The compiler output was influenced by resource -

constraints that are not part of the model.............. eeseseesasisasis et ssinsasesusssesbassanas '

" xi

' Page

102

106

tair benchmarks ... e - 111

5.18
5.19
5.20

521

Throughput under resource ‘and scope constramts for the fpppp
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constramts that are not part of the model..........ccoceereeerererecenrerninnne cessaseteasaseones

Throughput under resource and scope constraints for the fair
benchmark; resources varied with instruction word width equal to . .
2,3,4,6, and 12. The compiler output was influenced by resource . -
constraints that are not part of the model.........ccocoorerriensrirnninnnne. PPN S

Throughput under resource and scope constraints for the applu
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource

constramts that are not part of the model................... rereresairsbereraesaes reneaianens

Throughput -under resource and scope constraints for the cgm
benchmark; resources varied with instruction word width equal to

-2,3,4,6, and 12. The compiler output was influenced by resource

' ,constramts that are not part of the model...........cccenvirenienvniniininsiisnennnenne.

522

523

5.24

5.25

526

Throughput under resource and scope constraints for the ﬂtpde '
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource

constramts that are not part of the model........c.cviiimiiniiniinin ;

Throughput under resource and scope constramts for the mgrzd’
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constramts that are not part of the model.................... treesetssesssensssussinsesierenns

Throughput under resource and scope constraints for the mdg._ e
benchmark; resources varied with instruction word width equal to

2,3,4,6, and 12. The compiler output was influenced by resource = |
constraints that are not part of the model.......c...covvieieninininennnniinneniiiniinne.

_Throughput under resource and scope constraints for the mg3d

benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource = -
constraints that are not part of the model..........ccccevevvnviincviinnniinsionnnnnne resesens

Throughput under resource and scope -constraints for the bdna

“benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by rcsource.

. constramts that are not part Of the MOAEl.........wvvvuererrssierssssssssesisisnsssisssssesens

6.1

Combined system architecture assumed by the models..................

xii

115

117

- xiil

Figure = o | N | o | Page

| 6.2 Inter-lteratlon dependency | | 125
6.3 Sample code sequences with same o (=0. 1) but different amounts ’ |

of parallehsm 128

6.4 Asvsumed utilization curves ettt 130

6.5 a) Utrlbizatlonb versus instruction word width measured on the .
-~ Multiflow TRACE 28/200 computer and (b) utilization curves -
denved from tables on pp. 214-217 of [POI8O]...........cocvsivurinineirinirnininss feveaenes 131

6.6 Impact of utilization on throughput for superpipelines..........ccoccerueinnvane A 135

6.7 Maximum throughput (a) and optimum number of pipelines (b) as a
’ function of the fraction of code that must be executed on a single
_ functron unit (Pipeling).......cccevevereninesrescrecnennen seeeviennesesssnsssesssessssessnsase eesaaenn 136

6.8 Maxrmum throughput (a) and optimum number of pipelines ®)
versus ratio of memory access delay (d.) to network access delay = = -
factor (d5); d, values shown are 0.05 to 0.65 in increments of 0.1 reirenns 137

6.9 Max1mum throughput (a) and optimum number of processors (b) -
versus inter-iteration dependency distance; ! ranges from 0 to 0.30 in

INCTEMENTS OF 0.05couviieiririirnccinsssssiinsnisss s nsssssnsssssssssasssssessasssses eeviienns 140
6.10 Throughput plot of comblned system performance essssissarases cvireensennenes 141
8.1 Two execuuon SCENATIOSvvvevereresserenseresesnses 147

8.2 Reference pattem for a memory locatron bound to certain logical -~ =~
operand.......; tesrasarbieneenensssssessssasresssrasessatbssas etetestetetesstetetesastetesades e sesasanes 151

8.3 Entrles and exits out of data cache for a memory locatlon bound to
certam logrcal OPETANG ..o revenirerernrresiessesesesisiosessssssssenssassssssssssassnstossesssessasesss 191
8.4 Dependence ACTOSS ItETALONS ..vvvvvvvrvvvsrsereees retvesusensensarsbssranse s seen s ssabanss weeveeemene 155
‘Appendlx 3
- Figure -

Al Average branch delay versus number of substages in the instrucion =~ .
 fetch stage for PBNT, LB PTTC FBP, TNTD, and BTB strategies..........c........ 174

A. 2 Average number of wasted instruction fetches per branch versus
number of substages in the instruction fetch stage for PBNT LB, . =
‘ PTTC FBP,TNID, and BTB strategres - 174

Xiv

Figue | S - Page

A3 Merit ratio versus number of substages in the instruction fetch stage ,
- for PBNT LB, PTTC, FBP,TNTD, and BTB STategies . cccviverrueanis eveivnesessnsnenns 175

Ad Average branch delay versus number of stages for conditional
branch resolution for PBNT, LB, PTTC, FBP, TNID, and BTB
strategxes T 175

A.5 Average number of wasted instruction fetches per branch versus
- number of stages for conditional branch resolution for PBNT LB
PTTC, FBP, TNTD, and BTB strategies.............. peasanseversetsmninaneisnsnasssbsssssnseses .. 176

: A6 Ment ratlo ‘versus number of 'stages for ‘conditional branch;- ‘ :
" resolution for PBNT, LB, PTTC FBP TNTD, and BTB strategies........ce.ovuueene. 176 .

A.7> | ’Average branch delay versus number of substages in the instruction
fetch stage for PBNT, TTCDB, TIDLB, TNT. LB, and TNBTB » v
SITALEZICS.....corviruencerciriisresrisassnssansssesessaes srersssrerenstasasnssssarisasisasisasiisents reeraaivrasns 177

" A.8 Average number of wasted instruction fetches per branch versus‘
number of substages.in the instruction fetch stage for PBNT ' e
TTCDB, TTDLB TNTLB, and TNBTB strategies........ 177

"~ A9 " Merit ratio versus number of substages in the instruction fetch stage '
for PBNT, TTCDB, TTDLB TNTLB, and TNBTB SITategiesco.ccereervesrivunns 178

A.10 Average number of wasted instruction fetches per branch versus N
" number of stages for conditional branch resolution for PBNT, :
TTCDB, TTDLB, TNTLB, and TNBTB SIrategies............covereerernsisnsserereesennsvesons . 178

A.11 Merit ratio versus number of stages for conditional branch
- resolution for PBNT, TTCDB, TTDLB, TNILB, and TNBTB S
SITALEZICS (uvuvveereererernsresensscssssssessissssesssssessosssssastsasonsssssssssssssnssassnsn 179

'A.12 Average number of wasted instruction fetches per branch versus
" Loop/Target buffer hit probability for LB, BTB, TTDLB, TNTLB, .
and TNBTB (-4 1 JR esbaeresnneraesarsaraseee reiessireenees 179

A. 13 Ment ratio versus Loop/Target buffer hit probabxhty for LB, BT. B s
TTDLB, TNTLB, and TNBTB StrAtegiescceueersrrrereriemssssuessnascssversesssesessons 180

- Al4 Average number of wasted instruction fetches per branch versus
‘ - target fetch freeze probability for LB, BTB, TTCDB, TTDLB, . _
TNTLB, and TNBTB strategies et st ssssssssssssessrasatasaseiess 180

A15 Ment ratio versus target fetch freeze probablhty for LB, BTB | .
TTCDB, TTDLB, TNTLB, and TNBTB SETAEZIES ovvverernrererenererasnneat RO AR TN 181

XV

Flgure : » | BRI _.'Page_'

B.1 Measured instruction schedulmg probability versus distance for
' whetstone, tomcatv, appbt, appsp, and buk benchmarkscociriinniiiennnnnnns 183

B2 Measured. instruction scheduling probability versus distance for N
adm, gcd, track, and ocean benchmarks..........coceeeressciiisucsisssrisnnsennass eeresenees 183

B3 "Measured instruction scheduhng probability versus distance for R
dyfesm, flo52, trfd, and SPECT7 benChMATKS....covvuesesrirsssriisssssrissssenianns evesene 184

B.4 Measured beyond-basic-block instruction scheduling probability
versus distance for whetstone, tomcatv, appbt, appsp, and buk _
benchmarks 184

B.5 Measured beyond-basic-block instruction scheduling probability o
versus distance for adm, qcd, track, and ocean benchmarks........‘..................,., - 185

B.6 Measufed beyond-basic-block instruction scheduling probability -
versus distance for dyfesm, flo52, trfd, and spec77 benchmarks............ cereeneiees 185

B.7 Predicted misprediction delay based on the empirically collected p

. distribution as a function of the amount of dynamic lookahead, in
terms of number of basic blocks for whetstone, tomcatv, appbt :
appsp, and buk benchmarkss 186

B.8 PrediCted misprediction delay based on the empirically collected p o

_ distribution as a function of the amount of dynamic lookahead, in
terms of number of basic blocks for adm, qecd, track, and ocean - - '
benchmarks .. v 186

B9 Predlcted m1spred1ct10n delay based on the empirically collected pw

' distribution as a function of the amount of dynamic lookahead, in
terms of number of bas1c blocks for dyfesm, flo52, trfd, and spec77 o
benchmarks ... 187

B.10 Throughput under resource and scope constraints for the whetstone
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model..........cccoeecvcniviniinruennes eebiesissassussasanne 187

B.11 Throughput under resource and scope consu'amts for the tomcatv
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource :
constraints that are not part of the model.........cvuiviniininiiiinincininnines ceeeeaenenes 188

B.12 Throughput under resource and scope constraints for the appbr -
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.........ccocvvnnnnnninnincivinninnsivineinn 188

xvi

Figure Page

B.13 Throughput under resource and scope constraints for the appsp
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.......c.ccoeeerienneenrinnninnnnnninineinionio. 189

B.14 Throughput under resource and scope constraints for the buk
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the modcl ... - 189

B.15 Throughput under resource and scope constraints for thc adm
benchmark; resources varied with instruction word width equal to
12,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model rossenenees ceereeseenresseetesateraesatesasaees e 190

B.16 Throughput under resource and scope constraints for the ged
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model........ccovuvviiieiniiensenneiseioinsssensses 190

B.17 Throughput under resource and scope constraints for the track

- benchmark; resources varied with instruction word width equal to

2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not pan of the model......cccoccevecccnrunvennnns reeeeenees rresesaentenenne - 191

B.18 Throughput under resource and scope constraints for the ocean
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
cons'traints that are not part of the model.......c.ooiiniviiniiiinninniiircenne 191

B.19 Throughput under resource and scope constraints for the dyfesm
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model ..ot 192

B.20 Throughput under resource and scope constraints for the flo52
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource:
constraints that are not part of the model.......ccovviiiiiiiininiinnniiiiiiniccennens 192

B.21 Throughput under resource and scope constraints for the #rfd
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource .
constraints that are not part of the model..........cccocoeiirennnins eveneeisersnsinabeiiisnesesaras 193

B.22 Throughput under resource and scope constraints for the spec77
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model..........ooviiiiiniini s 193

xvii

LIST OF SYMBOLS
&ymbol 5 “ : Explanation
T . . Latency of the instruction execution logic tree with -
- no pipelining (in time units)
At Clock peribd with pipelining (in time units)
g | " Latency of the instruction execution logic tree with

~no pipelining (in units of gate delays)
- also referred to as operation gate delay

gpipe,i;,ed ' Latency of the logic tree with pipelining
: (in units of gate delays)
noo Total number of operations
T,, : Time to execute n operations
G “Throughput in terms of number of operations per time qnit
s Number of stages in a pipeline |
k. Number of pipelines
N Number of processors in a multiprocessor system
w Size of an instruction window
K , Dynamic overhead coefficient for a pipeline
c Constant overhead for a pipeline
sok, - Optimum number of segments for maximizing pipeline
throughput -
Grominal Pipeline throughput at nominal values of all parameters

Guorm | Pipeline throughput, normalized relative t0 Guominar -

Xviii
Pipeline throughput at s =5,
(normalized with respect to Gomina)

Pipeline throughput at s = ssubo
(normalized with respect to Gm,,m,,al)

Pipeline throughput at s =5Soy,0p
(normalized with respect to G ominal)

Pipeline throughput at s =S,

Pipeline throughput gain at s =5,
(normalized with respect to Gom)

Pipeline throughput gain at § =ss,p0p
(normalized with respect to G,,p)

Pipeline throughput gain at s =5gy,0p
(normalized with respect to Gop)

Resource utilization

Maximum possible resource utilization

First-order coefficient in the utilization equation
Second-order coefficient in the utilization equation

Utilization factor for the parallelizable code for
pipeline stages

Utilization factor for the parallehzable code for
complete pipelines

Utilization factor for the parallelizable code for processors
Average branch delay
Average number of wasted instructions per branch

Fraction of code that must be serially executed on one
pipeline

Fraction of code that must be serially executed on.one
processor

Maximum degree of operation (pipeline) level pafallelism
Maximum degree of iteration (processor) level parallélism

Distance between dependent instructions as a fracuon of
the size of loop body

Fraction of branch delays overlapped with execution delays'

Fraction of operand fetch delays overlapped with execution

delays

Branch frequency

Two-clock instruction frequency

Cache miss probability

Frequency of memory reference per operation
Fraction of data accesses to shared variables

Fraction of operation gate delay required for branch
resolution

Multiple of operation gate delay required for cache rmss ‘

processing

Multiple of operation gate delay required for on-chip
cache access

Average delay for wrongfully executed mstructlons per

mcorrect branch prediction

Number of cycles for undomg the damage of a wrongfully

.executed instruction

Event that instructions /; and I; are ﬁmutilallyv independent

Probability of the eventx

~ Scheduling probability of instruction I; with I

Probability of having exactly & mstrucuons d1spatchable
with I g, in a window of size W

Probability of having k or more instructions dispatchable
with I 0, in a window of size W

Throughput of a k-pipeline processor ignoring any
dependency constraints

Throughput of a k-pipeline processor under dependency
constraints _

. Dynamic distance between dependent instructions,

also used for inter-iteration dependency distance

Xix

Ps

Po

Probability of conditional independence of instructions at a
distance of 3 :

Probability of scheduling instructions past ® basic blocks

XX

xxi

ABSTRACT

Dubey, Pradeep Kumar. Ph.D., Purdue University, August 1991. Exploiting Fine-Grain
Concurrency: Analytical Insxghts in Superscalar Processor Design. MaJor Professor
George B. Adams I1I. :

This dissertation develops analytical models to provide insight into various design
issues associated with superscalar-type processors, i.e., the processors capable of
executing multiple instructions per cycle. A survey of the existing machines and
literature has been completed with a proposed classification of various approaches for
exploiting fine-grain concurrency. Optimization of a single pipeline is discussed based on
an analytical model. The model-predicted performance curves are found to be in close
~ proximity to published results using simulation techniques. A model is also developed for
comparing different branch strategies for single-pipeline processors in terms of their
effectiveness in reducing branch delay. The additional instruction fetch traffic generated
by certain branch strategies is also studied and is shown to be a useful criterion for
choosing between equally well performing strategies.

Next, processors with multiple pipelines are modelled to study the . tradeoffs
associated with deeper pipelines versus multiple pipelines. The model developed can
reveal the cause of performance bottleneck: insufficient resources to exploit discovered
parallelism, insufficient instruction stream parallelism, or insufficient scope of
concurrency detection. The cost associated with speculative (i.e., beyond basic block)
execution is examined via probability distributions that characterize the inherent
parallelism in the instruction stream. The throughput prediction of the analytic model is
shown, using a variety of benchmarks, to be close to the measured static throughput of
the compiler output, under resource and scope constraints. Further experiments provide
misprediction delay estimates for these benchmarks under scope constraints, assuming
beyond-basic-block, out-of-order execution and run-time scheduling. These results were
derived using traces generated by the Multifiow TRACE SCHEDULING compacting C.

- and FORTRAN 77 compilers.

TRACE SCHEDULING is a trademark of Multiflow Computer, Inc.

xxii

A simplified extension to the model to include multiprocessors is’ also- proposed.
The extended model is used to analyze combined systems, such as superpipelined
multiprocessors and superscalar multiprocessors, both with shared memory. It is shown
that the number of pipelines (or processors) at which the maximum throughput is
obtained is increasingly sensitive to the ratio of memory access time to network access
delay, as memory access time increases. Further, as a function of inter-iteration
dependency distance, optimum throughput is shown to vary nonlingarly, whereas the
corresponding optimum number of processors varies linearly. The predictions from the
analytical model agree with published results based on simulations.

CHAPTER 1
INTRODUCTION

1.1 Motivation

Ever since the advent of first computer, while one group of designers concentrated
on achieving an equivalent performance at a lower cost, the other group endeavored to
deliver higher performance at affordable cost. In the world of microprocessors, some of
the latter group of designers are trying to gain a better understanding of the performance
achievable by concurrent execution of scalar instructions. Processors capable of such
execution are referred to as superscalar in recent literature. Because most of the current
microprocessors (CISC or RISC) achieve an execution rate of one assémbly level
instruction per clock, there is a keen interest in exceeding this rate by executing multiple
instructions per clock. Contribution to this ongoing research is the primary motivation of
this dissertation. '

Performance studies can be broadly classified as either simulation-based or
analytical. Most of the work on processor performance has concentrated on the
simulation-based approach. The research presented in this dissertation seeks to
complement previous work by providing an alternative approach to study processor
performance based on relatively simple analytical models. Such models, when validated
through correlations with existing simulation-based performance predictions and with
empirical data when available, can provide valuable additional insights into performance
potential at a fraction of the time needed to run typical simulations or conduct
experiments to gather performance measurements.

Architects of next generation processors are often required to provide an as-far-as-
possible accurate performance estimate of the proposed design. Common performance
estimates these days for microprocessors are numbers such as, SPECmark, which is the
geometric mean of the SPEC ratios for the 10 CPU-intensive benchmarks that comprise
the SPEC suite. A SPEC ratio is the ratio of execution time for a given benchmark
relative to the execution time of that benchmark on a VAX 11/780 running the ULTRIX
3.1B operating system. (SPEC stands for the Systems Performance Evaluation
Cooperative.) The traditional performance modelling approach is to run traces of the
benchmarks on a low level model of the proposed next generation machine. While this
low level model of the new machine must be detailed enough to provide a sufficiently

accurate prediction, it has to be abstract enough to yield feasible simulation run time.

* The simulation predicament can be resolved by noting that in moving to a next
generation machine design it is the machine architecture that is being redefined and the
benchmark traces being used as input may be unchanged. Therefore if the benchmarks
can be abstracted or characterized, there would be no need to go through tedious clock-
by-clock simulation. There are several ways to characterize a machine architecture, such
as the number of pipelines and processors, cache size, branch delay and so on, that can be
useful for estimating its performance potential. An analogous set of program features that
can serve as an indicator of its performance potential has been almost absent in the
published literature. The need for program characterization has also served as a
counterpoint motivation for this work.

1.2 Review of Concurrency. Representation,
Detection and Scheduling Techniques

Given a certain end-user task, the most obvious performance measure is the amount
of real time spent in performing the task. Consider the often-repeated question: Where
does the time go ? This total time is clearly the basis of perceived performance by thc
end-user and is spent in following transformation stages:

(User level) Algorithm -> HLL -> Assembly -> Micro-instruction (Implementauon level)
The sequential nature of above transformation clearly implies that time lost at any stage
is lost for ever. In other words, an inefficiency introduced at the algorithm level can
never be recovered at the microcode level. Also, the representation at each level is
mostly sequential in nature (such as the line-by-line program representation in
FORTRAN or any assembly language). Most of the time this sequenﬁality" is not
essential from correctness point of view but is simply imposed due to representational
syntax or resource constraints. Before considering ways of detecting and exploiting the
hidden concurrency, consider a concurrency representation framework that is not only
generic enough to be common to all these levels, but also specific enough to account for
the major time consuming phases at any given level of program transformation.

Assume that at any given stage, a program description consists of a set, {¢} of
uniquely numbercd operations. Each operation ¢ is a member of a set {v} which deﬁnes
the instruction set architecture at that level. An interface space between any two levels
consists of the complete set of parameter values and storage contents shared bctween the
two levels for communicating the program transformation. For example, at the interface
of assembly and microcode, the interface space consists of the set of visible machine
registers, shared ﬂag bits for assembly level condmonal jump 1mp1ementat10n as well as '
the modifiable user memory space. o :

Program representation at each level can be described in terms of a generalized
AND/OR graph. Such graphs have been used in the past for search space representation
[Nil80]. The graph consists of nodes, i € {¢}, such that there is a node corresponding to
each program operation. There is a directed arc from node i to node j if the operation
corresponding to node j is dependent on that corresponding to node i. Simply stated, this
implies that operation j can not be initiated until the completion of operation i{. Assume
that given any two operations, i and j, the boolean relation, D(i,j) which is true if j is
dependent on i, can always be evaluated. Two nodes m and n are considered mutually
independent if neither m is dependent on n nor » is dependent on m. Nodes with two or
more children are classified into AND nodes and OR nodes. A parent node with
mutually independent children nodes is called an AND node. Each OR node represents a
choice point, i.e., a conditional branch is made to one of the arcs depending on the user
input available at run time. For simplicity, define a node with a single child as an AND
node also. A solution subgraph is defined as a graph consisting of the (unique) start
node, such that if a node is an AND node, all the arcs originating from it are part of the
graph, whereas, if a node is an OR node, only one of the arcs originating from it is part of
the graph. Thus, at any level of representation there are multiple solution subgraphs. A
node at a given level can be considered a compact representation for a similar graph at
the following level.

All the operations linked by an AND arc from some node i, can be executed
concurrently following the evaluation of the parent node. Exploiting such concurrency at
higher levels (such as the algorithm level or the HLL level) is referred to as coarse grain
parallelism, whereas that at the lower levels (such as the assembly or microcode level) is
referred to as fine grain parallelism. The time spent in a path is simply the cumulative
sum of the time spent in evaluating each node along the path. The time spent at the user
level is the time spent in the longest path in the corresponding solution subgraph. This
longest path is referred to as the critical path in the discussion to follow. The
representation permits backward arcs for loop identification. Consequently, the critical
path in the solution subgraph is not necessarily a simple path.

In the next section, a wide variety of techniques available for exploiting fine grain
parallelism are examined. A brief introduction of data structures commonly used for
concurrency representation is discussed next, followed by a survey of a broad spectrum
of available design choices and implementation tradeoffs.

1.2.1 Representing Concurrency

A variety of data structures have been suggested for concurrency representation,
that is, modelling the inherent concurrency in a given computation sequence. All such
models must satisfy the conditions of determinacy and termination [KaM66]. Informally

-4

stated, determinacy implies that the results that appear in the mterface space are invariant

under the parttcular sequence (if any) in which the concurrent operations are executed

~ In other words, a machine that is capable of simultaneously executing some or all of the
'mutually independent operations should yield the same result as a purely sequentlal

~ machine executing the independent operations in some order. Termination means: that-
there are identifiable terminating conditions that occur after a finite number of steps.

~Next consider some commonly used data structures. '

Computatzon Graphs. Directed graphs, in spite of their n'regular structures, have
received consrderable attention because of their theoretical propemes Computation
graphs refer to labeled directed graphs that were first dev1sed by Karp and Miller
[KaM66]. Each node of the graph represents an operation, whereas, 1nterpretatlon of
each edge is extended to represent a first-in first-out queue of data directed from one
node to another. A node evaluation involves taking a certain number of operands off the
~ incoming edge(s) and placing certain number of results on the outgoing edge(s). Thus, a
node can be fired (evaluated) only if the expected number of operands are available. To
keep track of the queue of data on each edge, a specific parameter tuple is associated with
each_edge. ‘This simplified model was later expanded [BBE70] to 1nclude condrtlonal
branchmg facﬂmes R

, Precedence Matrices. Another data structure that has been studled for concurrency
representation is the matrix [TjF73]. Unlike graphs, matrices have a regular structure
that makes them better suited for VLSI implementation. However, the number of matrix
elements requlred for a certain task representation grows as the square of the number of
operatlons in the task. Graphs, on the other hand, have a more space efficient

- implementation. Each operation in a task /; corresponds to the i* i** row and i** column of

a matrix M. This matrix M is defined as a precedence matrix if it is a boolean matrix
such that, M;;=true if and only if (D (i,j) OR D (j;i)) is true i.e., if the 1nstruct10ns i and
Jj are not mutually independent. The precedence matrix is symmetric and hence can be
cons1dered a. tnangular matrix with a zero diagonal, because an instruction does. not
depend upon itself. In the case of graphs, a chain of dependency (for example operatlon :
k depends on j which in turn depends on i) is represented by a path from node i to node &

. through node _], rather than a direct edge from i to k. Similarly, the precedence matrix
also does not contam entnes to represent such dependency chains. For example, in this
case, although the entries, MU and M}, are set true there is no entry for M,k To geta
complete prcture of the dependen01es between, say, n operations, one needs to use the
matrix M,,, which is given by, M 1+M2+....+M". M" indicates the matrix M ralsed to the
power r and + refers to the boolean OR operation.

. Petri Nets. A Petri net is also a graphical representatlon of program behav10r but
‘with directed edges between two different types of nodes. A node represented asa‘O’is
called a place and a node represented as a |” is called a transition. The places. having
~edges directed into a transition are called input places and those having. edges _,directed

out of the transition are called ousput places. The places have the ability to hold tokens. A
transition having a token on each of its input places is considered active and can fire, (i.e.
be evaluated). The firing results in removal of a token from each input place and adding a
token to each output place. A Petri net with every place having exactly one transition
entering the place and only one transition leaving the place is called a marked graph and
is directly representable as a computation graph.

This is illustrated in Figure 1.1 by usxng these data structures to model the
concurrency available in the assembly code sequence given in Figure 1.1.a. While the
graph representation in Figure 1.1.b is concise, the corresponding matrix representation
in Figure 1.1.c has more elements but is quite regular in shape. A comparison of
computation graphs and Petri nets can be found in [Mil73]. This paper also discusses in
detail a more general model called paralle! program schemata, which includes the notion
of a random access memory accessible to the operation nodes for reading and writing.
The presence of an arc between two nodes in the graph representation indicates the
absence of concurrency, i.e., a dependency between the operations. Therefore,
maximizing concurrency implies minimizing dependency, which in turn may result in
reducing the critical path of the solution subgraph, and lowering the execution time.

1.2.2 Dependencies

An operation can be defined as a function, ¢(.), with source operands 54,53, ***,
also known as the function domain, and the result destinations ¢(1),4(2), - -, also
referred to as the range of the function. Thus, a typical operation evaluation consists of
reading the source operands, applying the specified function, and writing the result.
Consider two operations, ¢; and ¢;, where ¢; precedes ¢; in a purely sequential
execution. Data dependency between these operations results from overlapping ranges
and/or domains. If the range of ¢; is same as that of ¢;, then ¢; is said to be outpur
dependent on ¢;. It is also called Write after Write dependency. If the range of ¢; is the
same as the domain of ¢;, and there is no operation ¢, which follows ¢; but precedes ¢;,
such that ¢, is output dependent on ¢; then ¢; is said to be essentially dependent on ¢;.
Such a dependency is also referred to as Read after Write dependency or flow
dependence. On the other hand, if the range of ¢; is the same as the domain of ¢;, ¢; is
said to be order dependent on ¢;, since the dependency exists only if the order specified
by the proper sequential execution is reversed. This is also known as Write after Read
dependency or anti-dependence. Finally, if the domain of ¢; is the same as the domain
of ¢, ¢; is said to be input dependent on ¢;. Input dependence does not imply a lack of
concurrence unless there is a limit on simultaneous distribution of input to 2 number of
different operation evaluations.

1. ADD R1,R2,R3 ;R3:=R1+R2
2. ADD R1,R4,R5 ;R5 :=R1+R2
3. ADD R3,R5,R6 ; R6:=R3 +R5

(a)

ADD R1,R4,RS

ADD R1,R2,R3

| ol of b

W -
O Of -

ADD R3,R5,R6)

(b)

@ ‘ indicates a piace with a token

O " indicates a place without a token

Fig_ﬁre 1.1 Computatlon graph (b), Precedence matrix (c) and Pctn net (d) for
, ’ the sample code sequence in (a)

Resource dependency which is sometimes referred to as operational dependency,
among operations ¢; and ¢; may exist if both correspend to the same function, ¢. Thus,
data-independent operations may not be executed concurrently if they must use the same
resource for evaluation. Concurrent evaluation of resource dependent operations is
possible if the resource can be shared by muitiple operations with the same function or if
there are multiple resources. In other words, resource dependency implies lack of
concurrency only when the number of permissible concurrent operations is exceeded.
Generally speaking, resource dependency also includes the lack of requisite
interconnection paths to transmit source operands and/or results.

An operation node having an OR node as an ancestor may never need to be
evaluated if it is not part of the solution subgraph. In other words, an operation is
considered procedurally or control dependent on all the preceding conditional branch
instructions. Thus, while data and resource independence of two operations implies that
the operations are executable concurrently, procedural dependence tells whether they
even need to be executed. Figure 1.2.a lists a typical assembly code sequence, whereas,
the corresponding AND/OR graph is given in Figure 1.2.b illustrating the dependencies
explained above.

To further explore the nature of dependencies, consider an ideal machine with
infinite resources. On such a machine, it should always be possible to remap the range of
operation ¢; such that it does not overlap the domain of any of the preceding operations.
For example, in Figure 2.a R2 can be mapped to, say, R11 so that X3 is no longer order
dependent on X1. Similarly, it should always be possible to remap the range of any
operation such that it does not overlap the range of any of its followers. For example, the
destination register R2 can be mapped to, say, R12 so that X5 is no longer output
dependent on X3. Resource dependency becomes a non-issue in such an ideal
environment. Further, assume that whenever a choice point is encountered, resources can
be replicated such that different OR arcs can be concurrently explored until the control
dependency is resolved, at which time the incorrect paths can be discarded. As a result,
for an environment with infinite resources, procedural dependency does not imply lack of
concurrency either. In this environment only one type of dependency remains, essential
dependency. Hence, all dependencies other than the essential data dependency can be
considered different variations of resource dependency.

A solution subgraph may have cycles resulting from loop structures in the program,
consequently the critical path may consist of one or more iterations of certain sets of
nodes. Operations that belong to the same cycle but are data independent in different
iterations of the cycle are called cyclically independent. These operations may still be
resource or control dependent across different iterations and they may be data-dependent
in the same iteration. Next take a look at some important design choices for concurrency
detection and scheduling.

XO0: BEGIN

X1: MUL R1,R2,R3 :R3:=R1*R2

X2: MUL R4,RS5,R6 ;R6:=R4*RS

X3: ADD R7,R8,R2 ;R2:=R7+RS8

X4: SUB R6,R7,R9 +R9:=R6-R7

X5: SUB R2,RI10,R2 ;R2:=R2-R10

X6: CMP R9,0 ; set zero flag if R9 =0

X7: JMPZ X9 + Jump if zero flag set
. X8: INC RI0 ;R10:=R10+ 1

X9: DIV R1,R2,R3 ;R3:=R1+R2

X10: ADD R4,R3,RS ;R5:=R4+R3

X11: ADD R6,R3,R7 ;R7:=R6+R3

X12: ADD R8,R3,R9 ;R9:=R7+R3

(a)

order

AND node: ' @
OR node:

essential

()

‘Figure 1.2 AND/OR graph (b) for the code sequence in (a). Assuming a
machine with two add/subtract and two multiply/divide units.
Input dependence ignored.

1.2.3 Detecting, Dispatching, and Scheduling Concurrent Operations

Concurrency detection implies examining a certain number of operations for
isolating the data-dependent pairs, whereas dispatching refers to issuing some or all of
these operations detected concurrent for scheduling. For example, say 16 instructions at a
time may be examined for concurrency detection but only the first 4 of them that are
found independent may be issued for scheduling. The distinction between detection and
dispatch is subtle and the distinction does not exist if all detected concurrent operations
can always be sent for scheduling. Scheduling is the process of assigning specific
operation functions and the corresponding source and result operands to designated
resources at designated times under the constraints imposed by data dependency and
limited number of resources.

An optimal schedule is defined as the one that minimizes the number of distinct
execution time slots and, ignoring resource limitations, it corresponds to a schedule
constrained solely by essential data dependency. This can be achieved by scheduling
together all operations that are essentially independent of all incomplete operations.
Thus, an optimal schedule minimizes the critical path length for the corresponding
solution subgraph leading to a compact (less deep) graph representation. Viewing each
operation as a fask and each resource as a processor, the problem of resource constrained
processor scheduling, can be mapped to the optimal scheduling problem. The resource
constrainted processor scheduling problem is a known NP-complete problem [GalJ79].
Therefore, optimal scheduling is NP-complete also.

Although instruction is sometimes used to refer to multiple operatiohs that have
been scheduled together, these are used interchangeably in this section except when the
distinction is critical. ‘

Scope of concurrency detection. Concurrency detection begins by examining a
consecutive set of operations from the serial execution sequence. The number of such
operations simultaneously examined for detecting a concurrent subset defines the scope
of concurrency detection. The larger the scope, the greater the probability of detecting a
larger subset of concurrent operations. Identifying a stream of instructions that would
necessarily be executed in sequence in a purely sequential execution is complicated due
to the presence of conditional branches. Such branches direct the execution sequence
along one of the multiple solution paths and the choice is known only at run time,

- whereas concurrency detection must precede execution. A basic block is defined as a
maximal sequence of instructions containing a single conditional jump which is the last
instruction in the sequence. There may be one or more unconditional jumps within a
basic block.

Concurrency detection techniques can be classified into two categories depending
on whether the scope is limited to within the basic blocks or stretched across basic
blocks. The speedup achievable in the second category can be significantly more than

10

that obtainable in the first category, as evident from the comparison given in Table 1.1.

Expenments done by Tjaden and Flynn [TjF70] and Riseman and Foster [RiF72] are
some of the earliest results reported in the area of concurrency detection. In the first
: pubh_shed report on concurrent execution, Tjaden and Flynn predlcted an average
speedup of about 1.86 through simulations in an IBM 7090 environment and litniting the
~ scope to be within basic blocks. Riseman and Foster estimated an average speedup of 51
in an ideal environment with infinite resources. This showed that the speed'up, achievable
with scope not limited to basic blocks can be an order of magnitude better than that
»poSsibie"Wit’h scope held within a basic block. A wide range of experiments reported so
. far (refer to Table 1.1), confirm the range of speedups reported by TJaden/Flynn and
Rrseman/Foster

Another important factor influencing the scope of concurrency detectlon is whether
the detecuon is being done at run time (dynamically) or at compile time (statlcally) At

run time only a fixed size instruction window can be used to examine a set of . -

instructions, whereas at compile time potentially the entire program can be examined.
While static detection techniques can afford a larger scope, they are limited to comp11e
time information only. Dynamic techniques, with run time informm_ion available, are
 limited to a much smaller scope. The complete machine state is known only at-run time,
hence, an instruction sequence such as Multiply/Load/Multiply may create a resource
dependence at compile time but could be non-existent if the Load caused a cache miss
that.sufﬁciently‘"delayed the following Multiply. Wedig [Wed82] provides an analysis of
‘the complimentary nature of static and dynamic concurrency detection. Static techniques
restricted to basic blocks are also known as techniques for local code compdction,
- whereas those extended across basic blocks are considered aimed. at-global code .
compacnon o _ :
Level of C',o'ncurrency_v Detection. Four different levels (or stages) of program
speciﬁCation '(transtrmation)' were outlined at the beginning of Section 1. 2. “Attempts
have . been made to detect concurrency at all four levels. Systolic architectures [Kun§2]
explort concurrency at the algorithm level. Data flow architectures (such as, [PHS85])
and recent VLIW architectures attempt concurrency detection at the level of microcode.

- Processors capable of concurrent execution of multiple scalar operations at ‘the
assembly level have been referred to as superscalars (earliest reference to this term.is

found in [AgC87]). Imagine concurrency detection at assembly level with a’'scope

limited to adjacent instructions only. Consider two adjacent divide operations:
S DIV R1,R2,R3 ;R3:=R1/R2
DIVRI, R4,RS ;R5:=R1/R4
If the machine organization is restricted to a single ‘divide unit, then these two'divides
would be- serialized. However, suppose each divide corresponds to several lines of
mxcrocode and the concurrency detection is attempted at the microcode level. Now it is
certainly feasible to overlap certain micro operations corresponding to the two divides.

Table 1.1 Comparison of concurrency detection and scheduling strategies

Scope Level Issue Execution Scheduling | Reported
Strategy within/beyond high-level sequential Completion strategy Speedup
besic block sssombly out-of-order soquential
micre-code out-of-ordsr
Tomasulo [Tom67] within assembly sequential * out-of-order | data-flow n/a
Thomton [The70] within assembly sequential * sequential | control-flow n/a
Tjaden/Flynn [T;F70} within assembly out-of-order | out-of-order | control-flow 1.86
Riseman/Foster [RiF72] beyond assembly out-of-order | out-of-order | control-flow 51.2
Tjaden [Tja72] within assembly out-of-order | out-of-order | control-flow 1.96
static-siroam
Kuck [KMC72] beyond high-level out-of-order | out-of-order static 8
Wedig [Wed82] beyond high-level out-of-order | out-of-order | control-flow 3
static-stream
Weiss/Smith [WeS84] within assembly out-of-order * | out-of-order data-flow 1.58
Nicolau/Fisher [NiF84] beyond micro-code out-of-order out-of-order static 90
Trace
Schoduling
HPSm [PHS85] beyond micro-code out-of-order out-of-order data-flow n/a
Uht [Um86] beyond high-level out-of-order | out-of-order | control-flow 2
static-stresm
Hsu/Davidson [HsD86} beyond assembly out-of-order | out-of-order static 1.3-39
Decision
Troe
Scheduling
Acosta et.al. [AKT86] within assembly out-of-order out-of-order | control-flow 2.79
Sohi/Vajapeyam [SoV87] within assembly | out-of-order* | cut-of-order data-flow 1.8
iWARP [Lam88] beyond micro-code out-of-order out-of-order static 3
Software
Pipolining
CYDRA [RYY89] beyond micro-code out-of-order out-of-order data-flow nfa
Smith et.al. [STH89]
ideal fetch unit beyond assembly out-of-order | out-of-order | control-flow 2.3-4.1
non-ideal fetch unit beyond assembly out-of-order | ocut-of-order | control-flow 1.9-23
Johnson [Joh91] beyond assembly ‘| out-of-order | out-of-order | control-flow 2

Note: Unless otherwise indicated, all control-flow strategies are based on dynamic instruction-stream.
Issue strategies marked with an asterisk (*) are limited to a meximum of one instruction per clock.
Other issue-strategies can issue more then one instructions per clock.
Speed-ups given without a range are best-case speedups.
Speed-ups reported should be taken with caution, as they are not relative to the same baseline processor.

12

For example, it may be possible to load the source operands to the divider inputs or do
the d1v1de-by-zero check on the second divide before the first one finishes. But in order
to be able to detect such opportunities, the scope of detection must go beyond adjacent
microcode lines. Thus, as the program transformation moves closer towards the machine
level away from the user level, potential parallelism goes up along with the scope
required for its detection (which also makes the detection a harder task).

In an ideal sense, concurrency detection done at the microcode level with an infinite
scope has maximum potential. For example, in an extreme sense, this would even explore
the possible microcode overlap of two different sort operations specified at the highest
algorithmic level. But this also implies exposing lowest level machine resources at the
highest level of specification, which may not be desirable. While most of the concurrency

“detection experiments have been attempted at the assembly level, certain techniques are
aimed at concurrency detection at the lowest level. Dynamic techniques of this type fall
into the classical data flow category [DeM74, ArG82], whereas some such recently
emerging static techniques are referred to as the VLIW approach [NiF84]. -

Very Long Instruction Word (VLIW) machines are characterized by a central control
unit issuing each cycle a single wide instruction word consisting -of independent
operations. Note that these instruction words are machine instructions (microcode lines)
and, hence, there is no additional level of interpretation involved. Similar to earlier
vector machines, VLIW machines carry out many fine grained and tightly coupled

operations simultaneously, whereas, in contrast to the vector machines, these concurrent
| operations are dissimilar and logically unrelated. Typical instruction word length for
some 1mplementatlons ([Fis83], [CNOB88]) range from 512 to 1K bits.

This horizontal format leads to poor code dens1ty in case the available parallehsm is
limited. In an attempt to improve code density, iWARP. [CGL89] relies on two
instruction formats. It uses a short instruction format in case of limited parallelism and a
long format otherwise. The Multiflow TRACE [CNO88] uses a variable length memory
representation that eliminates NOPs from the fixed length machine instruction format to

-improve the code storage efficiency. There are two other important implications of such
a design strategy. Firstly, considering the fact that about 5 to 10 percent of operations at
the lower levels (assembly or microcode) are conditional branches, a. wide instruction '
word . would- contain multiple independent conditional branches. Therefore, 'such
machines must be capable of performing tests for multi-way jumps to s,eparfate» targets.
Secondly, the memory system should be capable of supporting multiple memory
references, which in turn should be scattered among different memory banks. Although
such concerns are current implementation barriers for VLIW machines, the problems
they- represent are applicable to almost any approach to exploiting high fine grain
concurrency. -Responding to' interrupts with restartable machine state poses another
challenge for VLIWs and is discussed later.

13

Directly Executable Language machines. A machine architecture that retains all the
information of the high level language allowing greater possibility of concurrency
detection (done at the language level) has been proposed by Flynn and Hoevel [FIH79].
This representation, referred to as Directly Executable Language, provides a one-to-one
correspondence between the states in the high level language and the machine states.
Although at lower levels potentially more parallelism can be detected, this parallelism
besides being fine grain (for example, overlapping micro-ops as opposed to overlapping
say, FOR loop iterations) is also harder to detect. This is because at a machine level of
representation that does not bear direct correspondence with the high level
representation, most of the coarse grain concurrency information is not preserved in an
easily recognizable form. For example, a FOR loop iteration count is more easily
recognizable for concurrency at the language level than at the assembly level, and is still
more difficult to recognize at the microcode level. Wedig [Wed82] provides details of
concurrency detection at the language level.

Static Concurrency Detection and Scheduling. These techniques are based on
information available prior to run time. One of the earliest and most extensive works in
this area was done by Kuck and his colleagues [KMC72] for concurrency exploitation in
a serial language such as FORTRAN. Their work explores height reduction techniques
for program graphs, semantic analysis, and branch elimination to extract significant
amount of hidden parallelism. While some of the static optimizations are strictly aimed
at reducing non-essential data dependency and/or procedural dependencies and are thus
machine independent; others also rely on explicit information about machine resources to
resolve other dependencies.

Sometimes the range or domain of operations may be indirectly specified. For
example, instead of a direct specification, like R2 or A[2], the domain of the j th
operation may be A [/], whereas the range of a preceding i** operation may be A [m].
~ These two operations are data independent if the array indices m and / are not the same.
Because, m and [may be arbitrary expressions, this anti aliasing or disambiguation may
be difficult or even impossible to perform at compile time. In case of any doubt, the only
safe option is to assume dependence in such cases. At times, a simple analysis may
reveal the independence. For example, if m=2x+1 and /=2y, then there are no integer
values of x and y such that m=/, since m is always odd and [is always even.

Banerjee [Ban79] has developed efficient algorithms for determining whether m and
I, where each is a polynomial, may imply reference to the same variable, and hence a
conflict. Nicolau [Nic89] proposes an alternative solution to the disambiguation problem.
This technique known as run time disambiguation, relies on assumptions about the run
time behavior of memory references to allow compile time code restructuring to extract
available concurrency. For example, based on run time statistics, suppose m and [are
most likely unequal. Given this information, the compiler is allowed to extract any
potential for concurrency resulting from this disambiguation, conditioned on the fact that

m#l. This conditional (IF m#l) is evaluated at run time and if found to be untrue,
sequential execution proceeds as if no optimization was done. On the other hand, in the
more likely case of m=l, introduced optimization results in increased parallelism. The
overhead of additional condition evaluation may be nil if it can be overlapped w1th some
previous operation.

A similar. approach can be taken for evaluating conditional branches. On the bas1s
of run time statistics, the compiler can be made to pick the most hkely branch path
resulting in a larger basic block size which in turn implies larger potential for concurrent
evaluation. -

Trace Scheduling, developed by Fisher [Fis81], replaces block-by-block local code
compaction with simultaneous code compaction of a trace across many basic blocks. A
trace is defined as a loop free sequence of instructions which might be executed
sequentially for some choice of data. Improved performance is obtained by optimizing
along the trace most likely to be followed at run time. Heuristic or profile-based branch
predictions are used for picking the trace along the solution path with highest probability
‘Such an approach is quite likely to result in schedules that will not correctly preserve the
semantics in case the less likely off-trace path is taken at run time. A post processing
phase inserts compensation code into the program graph on the off-trace branch edges to
undo these inconsistencies, thereby restoring program correctness. Such concurrency
detection has been typically attempted at the microcode level, and the large block size at
this level implies wide instruction machine word formats. For data-dependent condmonal '
branches, the fundamental assumption that there exists a most frequently executed
solution path is questionable. In such cases the overhead of compensation code can
offset any speedup in the off-trace paths. h

After picking the most likely trace, trace scheduling generally does not dlsungmsh
the off-trace paths on the basis of their probabilities. As a result, the schedule _generated
“is not very sensitive to the actual path probabrlmes Hsu and Davidson [HsD86] propose
a refined heuristic that addresses this issue. This techmque decision tree scheduling,
while much more sensitive to actual path probabilities, is intended for code reordering to
make efﬁcient use of guarded store and jump instructions. These guarded instructions
make efficient use of the delayed part of a conditional branch instrucvtionv;(ti,me slots
taken .for the branch resolution). Each guarded instruction is accompanied by a guard
expression, which is just a boolean valued expression. Whenever, a guard eXp'ression
evaluates to fault, it inhibits writing the final result, i.e., the update of the interface space.
This effectively converts the guarded instruction into a NOP. The performance potential
of this strategy is a function of how many time slots are available during branch
resolution. “The speedup reported for this technique in the Table 1.1 is based on a
pipeline - uniprocessor model for the scalar portlon of the CRAY-1 computer with
branches takmg a constant 14 cycles

15

Iterative constructs, or loops, are very common in numerical applicatio_ns, and so
deserve special attention. Two techniques have been most commonly used for loop
optimization: loop unrolling and software pipelining. Loop unrolling consists of
replicating the loop body n times, where n is the degree of unrolling. All conditional
branches are removed from the replicated blocks except for the last one, and the index
register increment is removed from all but the last replicated biock. An advantage of this
approach is elimination of some conditional branches, resulting in larger basic block size
and hence the possibility for more speedup ([Nic89], [WeS87]). A disadvantage is that
unrolling expands object code size.

Software Pipelining refers to successive initiation of iterations of a loop at constant
intervals, even before the preceding iteration completes so that the loop throughput is
improved. Using this approach, unlike with other techniques, pipeline stages of the
functional units are not emptied at the iteration boundaries or some fixed multiple of
iteration boundaries (as is the case with loop unrolling). The objective is to minimize the
the interval at which the initiations take place. Such techniques are certainly not new and
have been explored in a generalized sense (for example, initiations do not have to be at
constant intervals and can instead follow a fixed pattern of intervals) for hardware
pipeline scheduling [PaD76]. However, Lam [Lam88) proposes software pipelining as an
effective and viable scheduling technique for VLIW processors.

Because the problem of finding an optimal schedule is NP-complete, static
scheduling techniques rely on. heuristics to restrict the search space. A hierarchical
reduction scheme is proposed in [Lam88] to make software pipelining applicable to all
innermost loops including those with conditional statements. Conditional OR nodes of
the program graph are reduced to a single node with scheduling constraints representing
the union of the scheduling constraints of its children. In addition to cyclical data
dependency constraints, such a scheduling technique must also take into consideration
resource constraints. Assume the initiation interval is m. If a resource is in use by an
operation in some i iteration, in some cycle s, it will also be in use by successive
iterations in cycles s+m,s+2m,.... and so on. Therefore, another operation belonging to
the i** iteration may not use the same resource in cycles s modulo m. This is known as
the modulo constraint [RaG81]. Software pipelining has been used for compile time
concurrency detection and scheduling on the iWARP machine [CGL89].

Another technique for detecting parallelizable loop iterations similar to run time
disambiguation is run time dependence checking [Nic89]. Unlike the former,
probabilistic estimates are not used, instead loops are prepared for run time dependence
checking. This is achieved by inserting appropriate code that helps perform automatic
dependence checking on different loop iterations and simultaneously schedules
independent iterations. '

The scheduling techniques mentioned above are mostly applied at lower levels of
program transformation. Percolation scheduling can be used for program graph
compaction for extracting both fine grain as well as coarse grained .parallel’ism.v The
technique is based on certain core transformations which, when applied on adjacent
nodes, help percolate them towards the top of the program graph. The goal of such
transfonnations is to compact the program graph by moving operation nodes from the
* bottom of the’graph for grouping with independent operation nodes towards the top of
‘the graph Thcse transformations consist of various dependency checks and can be
.combined with a variety of guidance rules to direct the optimization process. Details of
these transformations can be found in [Nic85]. '

At the mlcro operation level, as the nodes percolate up, nodes grouped together can
be treated as a long instruction word with independent operation fields. Thus, percolatron'
scheduhng offers another alternative to code generation for the VLIW ‘machines. ‘While
trace scheduling explores the program graph in a fop down fashlon along a trace,
percolation scheduhng searches the graph in a bottom up manner If pos31ble, operatlons
belongmg to different branch paths (traces) along with the condition for: branch
resolution: are evaluated sitnultaneously and the undesired result d1scarded

Dynamlc Concurrency Detection and Scheduling. Dynamic concurrency -detection
‘techniques -have the advantage of precise run time information. for: resolving
dependenclcs related to conditional branches and indirect memory references. Complle.
time techmques, such as run time checking, although used during the compllatlon phase,
_provide run time support for concurrency detection and it is generally believed that a
combination of static and dynamic support has performance potential exceeding either
technique 'in isolation. A comparison of different dynamic techniques is given in
[AKTS86]. 'The order in which compiled instructions are executed during a purely
sequentlal execution forms the dynamic instruction stream. The order in- .which
instructions are generated by the compiler, which is same as the order in whxch they
appear in system memory, forms the static instruction stream. Dynamic concurrency
detection is either performed on the dynamic instruction stream or on the static
instruction stream. The advantage of static stream analysis is reduced memoryﬂ traffic,
because instead of a memory load of each .instruction to be executed, ' static stream
detection works with a single load of the static sequence. Furthermore, statrc stream
analys1s can achieve the same amount of concurrency as that using dynam1c stream
analys1s [Wed82] -

7 Schedulmg can either be done centrally at the time of decode, orina drstnbuted
‘manner in the functional units themselves. The former approach is called control flow
schedulzng, the latter is called data flow scheduling. o
There is a global station for control flow scheduling that receives 1nformatlon from the

functional unit to -detect and dlspatch independent instructions. One of ‘the earliest v
1mplementat10n of this idea is found in the CDC 6600, where the central statton is called

17

a scoreboard [Tho70]. Under this scheme, an instruction to be executed on a functional
unit can be issued even if its source operands are not available. The unavailability of the
operand is indicated using a ready bit. As soon as the operand becomes available, the
functional unit producing it notifies the central scoreboard, which updates the -
corresponding register and its associated ready bit. This updated information is also
conveyed to the waiting functional units. Some important features of this algorithm are:

1) There 1s no direct communication path among the functional unlts ~ they
communicate via the central station, the scoreboard,

2) Instruction dispatch (issue) logic blocks when it encounters an 1nsn°uct10n that is
v resource dependent or output dependent on a pending instruction,

3) An instruction [; j that is order dependent on an instruction I; is allowed concurrent
» executlon with /;, but the functional unit associated w1th I; stays busy until the
execuuon of I; completes,

4) Dispatch logic is limited to one instruction per cycle.

Tjaden and Flynn [TjF70] suggest a lookahead scheme capable of more than one
instruction issue per cycle using a predecode stack as the central station. This stack stores
instructidns in a modified format that explicitly encodes their dependency information.
This approach further relies on a register renaming technique to reduce dependencies. An
instruction that is independent of all instructions above it on the stack is dispatchable.
Simultaneous bit-by-bit compare is used to detect and dispatch independent instructions
on the stack. A stack size of around eight is found to be enough to extract all available
concurrency. Acosta, et. al. [AKT86]. present another variation of this idea using a
dispatch stack which reduces the associative compare overhead associated with the
former: approach. In this case, the instruction format is further expanded to contain
“counters for its source and destination registers. There is a counter with each source
register indicating how often it is designated as a destination registers in the preceding,
incomplete instructions on the stack. Two separate counters are used to track how many
- times the destination register is designated as a source and destination register in
~ previous incomplete instructions. These counters are added to compute an issue index for
each instruction. This computation simplifies the issue logic. All instructions with null
issue index are simultaneouély dispatchable. As instructions complete, the stack is
properly updated. Although the stack update requires content addressability, comparison:
hardware required overall is likely to be less than the previous approach.

The techniques described so far all work with the dynamic instruction stream. One
of the first experiments using the static instruction stream for dynamic concurrency
detection and scheduling was reported by Tjaden [Tja72] using ordering matrices for
concurrency representation. This work was further extended by Wedig [Wed82]. An
important problem with static stream analysis is the complexity of representing machine
state at any time during execution. Instructions that complete execution have their

' dependenc1es deacuvated so that they are excluded from further analysis. For’

mstructlons that are executed multiple times, Tjaden associates a flag which is set on
~ instruction execution and allowed to be reset if the instruction is to be re-executed This

avoids multxple loading of such instructions for concurrency detection. An alternative
“representation is proposed by Wedig, that associates an execution vector wuh the task
~ being analyzed The elements of these vectors keep track of number of times: drfferent :
 instructions have executed.

Unhke the control flow approach, dependency resolutlon for data flow schedulmg is
distributed ‘across different functional units. The IBM 360/91 [AST67] was. the first
" system to use data flow scheduling. Although the original algorithm was devised by
Tomasulo [Tom67] for the floating point unit of this machine, it can be easily generahzed
to any system with multiple functional units. Under this scheme, each functional unit
~contains a set of reservation stations, where instructions are held pendin‘g"ex‘ecution.
Each station contains a field for each of its source operands and the result. Each operand
field either contalns the operand value (if available) or it contains a tag 1nd1cat1ng the
functional unit’ that is supposed to produce that value. Each machine register- is
augmented by a busy bit. If this bit is clear, register contents are valid, else the register
contains a pomter or a tag to the functional unit that i is expected to produce: the result as
its next output ‘When a result is produced, a common data bus simultaneously relays it
to all ‘reservation stations as well the machine register ﬁles, which use associative
companson with their tags to read the result off the bus. As compared to Thomton 'S

- algorithm:

1) Thereis no central scoreboard and thus dependency resolutlon where precedence is
: controlled by means of tags, takes place in a distributed manner.

2) A common data bus provides a direct communication path between functronal units.

3) Automattc regrster renaming reduces order dependency. For example in the
‘sequence shown in Figure 1. 2.a, register R2 in instructions X1 and X3 would be
- mapped to two reservation stations. As a result, not only execution of X1 and X3
- .can be overlapped, but unlike Thornton’s approach, X3 can finish before X1
" because. the original contents of R2 have already been copied. to the reservation
station of the functronal unit executmg X1. This resolves order dependen01es '

4) Output dependency does not block instruction d1spatch1ng either, smce the regrster

'\ tagis always updated to point to the most recent functional unit from whlch the} v
- result is expected ,

5) Instrucuon issuing is blocked when there are no available reservatlon statlons for
» jthe desued functional unit. Issue rate is still limited to one instruction per cycle

Welss and Smith [WeS84] simulated performance of the CRAY 1 scalar
archrtecture using a variation of Tomasulo’s algorithm. The scheme proposed uses a rag
pool consisting of a finite set of tags for assigning destination tags. Therefore, unlike

19

Tomasulo s algorithm, the tags are not in one-to-one correspondence w1th the reservatlon

stations, and instruction issue can also be blocked if there are no-tags. avaxlable in the

pool This variation was based on the observation that only a subset of all poss1b1e ‘

reservation station fields may be active smultaneously, hence the common tag pool

would reduce the associative search overhead. In another experiment, they propose a tag

* search table to eliminate the need for associative tag search. This restricts a parncular tag

to be used with only one reservation station. The search table is indexed by tag value and

~ contains the address of the corresponding reservation station. A used bit associated with

every tag in the pool blocks its multiple usage. They found that even this restricted

~ version of ‘Tomasulo’s algonthm retains much of the performance gain usmg the
assocratlve version. S

_ The work of Weiss and Smlth was further extended by Sohi and VaJapeyam

[SoV87] In addition to a separate tag unit, responsible for managing the tag pool, this
scheme contains another common pool for the reservation stations. As’ indicated earlier,
under Tomasulo’s algorithm instruction issue would block if there are no reservation
station available for the desired functional unit, even though there may be unused stations
with other units. Therefore, a common pool of reservation stations that are dynamrcally
as51gned can be expected to provide improved performance. '

At this point it can be seen that the machine orgamzatlon starts to resemble that of
data ﬂow computers, which are characterized by token issuing and matchrng units sumlar
to the tag pools described above. In the data flow model of computation [ArG82],
executlon of an operation is only contingent upon the availability of its input operands
‘and a free functional unit. Thus, when implemented at a fine grain level, data flow tends
to expose all available concurrency in the program graph. Complete concurrency
exp101tat10n at the machine level is facilitated by high level program specification usmg a
functional language This has traditionally been met with reluctance in the user
' community, since it implies setting aside a vast-amount of software built over the years in
traditional laniguages like FORTRAN, PASCAL, or C. Furthermore, programs written in
functional languages tend to consume large amounts of memory space due to the single
~ assignment rule and copying of data arrays. Some recent experiments have relied on
some of the properties of the data flow model to utilize fine grain concurrency, while
Vkeepmg the traditional program specification at the high level.

v Patt, et. al. [PHS85] report a variation of data flow referred to as restrlcted data flow
archltecture Unlike classical data flow machines, the data flow graph of only a small
subset of the program is kept in the machine at one time. Thus, fine grain parallelism

‘present in this active instruction window is utilized. A merger unit takes the data flow
graph of each instruction from the dynamic instruction stream, resolves any existing data
.dependency using a variation of Tomasulo’s algorithm, and merges it into the data flow
graph resident in the active instruction window. An instruction that completes execution
is retired from the active window when all the preceding instructions have also retired.

220

- Directed data flow, coined in connection with the Cydra-5 architectural des1gn
[RYY89], refers to an architecture that supports the data flow model of computation in a
compiler directed fashion. The compiler support is similar in many ways to the VLIW
' approach' In addition, it provides hardware support for overlapping execution of different
loop iterations.- It combines the register storage and functional unit inputs and outputs
into a single entlty referred to as the context register matrix. This provides a. new context
for each new loop iteration. These iteration frames are dynamically allocated at run time.
Control dependencies are handled at the micro operation level by associating a predicate
with each operation. This predicate determines whether the corresponding 'c'peratiou
- needs to be evaluated at all. As soon as all the control dependencies are resolved, the
predicate is set, which makes this operation immediately schedulable.

In-sequence or Out-of-sequence detection and scheduling. In-sequence detectron 1mp11es

‘that concurrent instructions are restricted to be in monotonically increasing number
sequence, or in the sequence of a purely serial execution. As a result, the instructions are
examined in sequence, and detection and scheduling block every time a dependent pair is
encountered. ‘Out-of-sequence detection and scheduling means out of order concurrent
instructions are allowed to be simultaneously executed. While, the former is "simpler to
implement, the latter may have significantly higher concurrency potentlal in a large
scope. Foster and Riseman [FoR72] describe a preprocessing algorithm that generates a
reordered code sequence which has the property that if the instruction at the top of the
dlspatch stack is found dependent and, hence, not immediately dlspatchable, there will be
no instruction below it that is ready for dispatching. - '

~ Independent of whether instructions are issued in-order or out-of-order they may be
allowed to complete in-order or out-of-order. The least restrictive option, that is allowing
out-of-order -instruction issue and out-of-order completion, exploits maximum
concurrency. A major difficulty with out-of-order execution is restoration of machme
state for restartablhty in case of interrupts. :

1.2.4. Implementation Tradeoffs

Interrupt Handling. Interrupts pose a special challenge to architectures ‘that overlap
executions. of elementary operations. Interrupts can be defined as normally unexpected
events that are detected at run time and require modifications in the current execution
sequence. The unexpected nature of interrupts means that the program correspondmg to
an interrupt »»s’ervice routine must be inserted arbitrarily into the executing program,
during its execution. This does not deserve any special attention for machines with-purely
sequential execution, since it is accomplished simply by inserting a branch to the service
routine immediately after the execution of current operation. However, for machines that
overlap operation execution, an operation ¢; that is found independent of all incomplete

.preceding operations and hence scheduled together with some operation ¢;, may be
' dependent on a newly inserted (and hence incomplete) operation ¢, that belongs to the
interrupt service routine and precedes ¢ ; in purely sequential execution. Furthermore, on
machines that permit out-of-order execution, ¢; may have completed execution long
before ¢k is detected, which can happen only after ¢y is inserted. As a result, any
schedule can potentially be rendered incorrect at run time if it does not include the
poss1b111ty of ‘branch to service routmes at arbitrary points of sequenual order of
execution.

A possible solution to this problem can be to insert an OR node corfespending toa
possible branch to different service routines after every operation in the purely sequential -
“model of execution. While it would guarantee robust schedules under all combinations of
interrupts, ‘it reduces the basic block size to one instruction. Such a solution is
unacceptable. An alternate solution is to start with a program graph that excludes the OR
nodes corresponding to different interrupt possibilities. When the interrupt is detected,
. the schedules are modified to incorporate the newly added nodes. This approach is '
similar to trace scheduling, in that the emphasis is on concurrency exploitation along the
' most likely program trace, which is the one with no interrupts or exceptions. As a result,
the additional overhead of providing compensation is incurred for any damage caused by
the wrong guess when an interrupt is detected. This need to compensate further implies a
delay between interrupt detection and recognition, where the recognition refers to start of
execution of the corresponding service routine. This delay is sometimes known as
interrupt latency. | .

At the time of interrupt recognition, if the state of the interface space is same as that
during a purely sequential execution, the corresponding interrupt is called a precise
interrupt. Precise interrupts have a long latency, since the recognition takes place only
after the effects on the interface space of all the operations following the interrupt
detection point have been undone. Not only this repair is expensive to implement, it has
an unavoidable adverse side effect on performance because the operations undone need
to be reexecuted. Not all interrupts require a complete restoration of machine state to
- that of a strictly sequential execution for program correctness. There are cases when a -
- partial or even zero recovery would be acceptable, which leads to the concept of
- imprecise interrupt. Such interrupts allow the state of interface space at the time of

" recognition to be different from that during a strictly sequential execution. An imprecise

interrupt can have its own degree of impreciseness depending on the difference between
the two interface spaces.

Interrupts can also be classified into two categories depending on whether they are
~ caused by an event internal or external to the program execution. Examples of internal
interrupts (also known as exceptions) include events such as divide by zero, a page fault
on an operand fetch, or an incorrect branch prediction. External mterrupts are events
such as, an I/O interrupt or a request to relinquish a shared bus.

22

Implementation. .of Precise interrupts. ‘Smith and Pleszkun [SmP85] present

_imp'lemen'tatio'n details for different strategies aimed at implementing"precise'interrupts o

in pipelined processors. The options suggested there can be broadly classified into two
categories: o

1) Reorder buffer. This strategy employs buffers to reorder the updates to the 1nterface .
space such that an operation is allowed to update the space only if all the precedmg E
operations have completed without any exceptions. The results waiting in the

reorder buffer are unavailable for further computation, hence, although 51mpler to e
implement, this scheme forces in-order ‘completion of instructions and the L

‘associated performance degradation. Variations on this scheme try to provide
associative search ability in the reorder buffer to be able to bypass the interface
space for items waiting in the buffer to be committed [SmP85] The
1mplementat10n cost of such variations 1s high., ’ .

2) . History buffer. These buffers are used to keep a copy of the ongmal contents of the

registers and memory locations that get updated. When an instruction successfully‘
completes execution, the corresponding history buffer entry is deleted On
detecting an interrupt, the offending instruction is used to index the buffer for
restoring the machine state as if none of the following instructions had any effect on
the interface space. | '

Sohi and Vajapeyam [SoV87] and Hwu and Patt [HwP87] have suggested further
variations of above ideas.

Implementation of i zmprease interrupts. Although these are much sxmpler to 1mplernent

there are tradeoffs. Once an interrupt is detected either all operations in progress can be
aborted, or they can be allowed to run to completion before interrupt recognition, or the
entire machine state can be saved so that the program execution can be restarted at the
~ point of 1nterrupt after servicing the interrupt. The first option has minimum latency, but
suffers from the performance loss of reexecuting the partially executed operatlons The
third option suffers from the cost of saving the entire machine state. Thus, the second
option offers a good compromise. In case of VLIW machines, where each mstructmn
word issued consists of several independent operations, sometimes not all the
information needed to carry an operation to completion is issued at the same-time
[RYY89]. In such cases, care has to be taken to selectively mask operations which would
initiate new operations and allow only operatlons which are needed for completmg the
~ pending ones.

Concurrent and overlapped execution. The methods discussed so far have emphasxzed
detection and concurrent execution of independent operations. Consider two operations
¢; and ¢; at a given level (say, assembly level) of program transformation, and the
corresponding set- of sub operations @y, &y, " and Gy, c ¢y, - cafter
transformat’ibn to a lower level (say, the microcode level) of representation. It is quite

23

- possible that ¢; and ¢, are detected as dependent but some sub-operations ¢, and ¢;; are
found independent, and hence executed concurrently. The simultaneous execution of 'di;k
and ¢j, while a concurrent execution at the lower level, contributes to overlapped
execution of ¢; and ¢; at the higher level. If certain set of sub-operations is repeatedly -
used during the transformation in a regular sequence (for example, fetch the instruction,
fetch the operand, execute the operation), it lends itself very naturally to a p1pe11ned form
of 1mplementauon SRR

Resource utilization has not been an explicit concern so far. It has been 1mphc1t1y
~ assumed that care has been taken to ensure proper utilization of resources at all levels. In
fact, it is this very concern that manifests itself in the form of resource dependency. In
order to achieve a cost-performance balance that is globally optimum, systemresoufceS
at every level should be locally optimized, too. At times when concurrent execution is
sacrificed in favor of better resource utilization, the performance penalty resulting from
the resource dependency can be mitigated by using an optimized pipelined design for the
- existing resource.. Thus, a combination of concurrent and overlapped (pipelined)
execution holds the key to an optimal design. Machines with wider instruction words
tend to have a slower clock period to be able to generate control signals for the additional
hardware. A p1pe11ne with twice the number of segments can potentially have about the
same throughput as two pipelines of half the size. However, under less than ideal
‘conditions, doubling the number of segments does not mean halving the clock period.
Only if the optimal performance obtainable from one pipeline is significantly less than
that from two would a resource duplication would be justified. Experiments done by
Sohi and Vajapeyam [SoV89] report the performance potenual of ‘machines with
restricted instruction word width and deeper pipelines. ' ~ -

Instruction fetch Limitations and Branches. The adverse impact of condltlonal branches
in introducing control dependencies and thereby limiting the ability to lockahead has
been discussed in detail in the previous sections. There are two other ‘ov.'erlieads that are
‘associated with both conditional and unconditional branches: target address calculation
and target fetch. In order to sustain a steady rate of multiple instruction issue per clock
the system must also be capable of fetching multiple instructions ata time, to avoid
starvation. This is easily done with a wide memory (cache) interface when the
instructions to be fetched form a contiguous block of code with a known starting address.
This is not the case when a branch is encountered. ’

For example, suppose a system is capable of simultaneously fetching six contiguous
instructions and the third instruction in a group happens to be an unconditional branch.
This means the last three instructions are incorrectly fetched and would need to be
" refetched after calculating the branch target. Compile time preprccessing can be u'sedvto
alleviate the situation. A technique known as target copying is used to modify the
instruction sequence by copying several lines of code from the branch target to the
address locations immediately following the branch instruction. In the preceding

24

example, the compiler can ’copy three lines of code from the branch target to the
locations ,right -after the branch instruction. As a result, all the six instructions. fetched
simultanéouSIy from contiguous locations are valid. This further allows the overlap of
target address calculation with processing of the instructions copied from the target, so
that éontiguous’fetches can continue without any interruption from the target addreSS

A similar approach can also be taken for conditional branches using static branch
predrctlon techniques and target copying for branches predicted to be taken. A drawback
of this technique is the resulting code expansion. Smith, et. al. [STH89] and Johnson
[Joh91] report a variety of experiments exploring the impact of such instruction fetch
limitations on potential speedup using dynamic detection and scheduling techniques.
Instruction fetch inefficiencies caused by branch delays and instruction misalignment are
reported to be the primary performance impediments.

Operand fetch Limitations. A typical instruction requires more than one operand. A
-steady rate of, say, x instruction executions per clock can only be supported if the system
is also capable of supplying operands in excess of x per clock (more likely 2x operands
per clock). Unlike instruction fetches, operand fetches are from non-contiguous memory
locations and a significant number of operand fetches refer to recently computed results
still residing in a local register file. The approaches taken to address this problem either
at the main memory interface or at the register file interface fall into two- categones
mu1u~ported shared bank or single-ported multiple banks. A bank can be either a main
memory (or cache) module or a register file. A multi-ported shared bank has better
utilizatiOn than single-ported multiple banks, but is normally a costlier implementation.
This tradeoff has been studied in detail for evaluating alternatives for a shared memory
implementation for a multiprocessor system and a recent study of this tradeoff apllied to

register file 1mp1ementat10n appears in [SoV89].

- Johnson [Joh91] provides a quantitative comparison for four major hardware
features for exploiting instruction level parallelism at the assembly level: out-of-order
execution, register renaming; branch prediction, and .a four-instruction decoder. The.
conclusions are derived from trace driven simulation in a general purpose;environmerrt.
The incremental speedup due to out-of-order execution, given the other three features, is
found to be in the range of 1.5; that due to register renaming and branch prediction is
reported in the range of 1.3. These features are interdependent. As a result, these
incremental speedups can not be considered in isolation. : '

1.2.5 Summary

‘This section surveys the wide variety of options available for representing,
detecting, and scheduling concurrent instructions. Data structures for concurrency
representation including dependency graphs, ordering matrices, and petri nets were

descnbed Dependencies are grouped into data dependency, control dependency and
© resource dependency. The available design choxces have been classified in’ categorles
related to the scope (within or beyond basic blocks), level (high level, assembly, or
rmcrocode level), time (comp11e time or run tlme) and order (in-order or out-of-order) of
detectlon scheduhng, and completion (Figure 1.3). Run time scheduling techmques are
further classified into centralized control flow and distributed data flow approaches. ThlS
set of available options is illustrated in Figure 1.4. Certain important 1mplementat10n
tradeoffs were analyzed, including those related to interrupt handling and to mstructlon

and operand fetch limitations. : : |

The data presented in Table 1.1 show a broad range of potenual speedup, however, '
if the reports of Rlseman and Foster [RiF72] and Nicolau and Fisher [NiF84] are
excluded, “the picture is more limited. These two studies can be interpreted as"
perforrrtance limits without implementation constraints. Exclusive of the_se two-reports,'
the reported speedup speedup varies from about 1.8 to 8 times that of execution on
conventional pipelined systems. The results of some of these studies can be summanzed
. as follows ’

In-order versus out-of-order execution. The advantage of out of order execution is
strongly dependent on the depth of the execution pipeline. The longer the delay in
executing ‘various operations, the more significant the advantage of out of order
execution. If all instructions execute in unit time and they are decoded every time unit in
order, then there will be no advantage to their execution out of order. The longer the
, delay in execution, the more the advantage realized in the additional overlap provxded by
their out of order execution. In other words, deeper pipelines are more effectlve in
‘ trhzmg the additional parallelism exposed by out-of-order execution. “A similar
.observatron is made by Sohi and Vajapeyam [SoV89], in a somewhat different context.
‘They report the effectlveness of deeper pipelines in utilizing the parallelism exposed by
loop unrollmg or multiple operation issue. Based on reported results [AKT86 Sov87]l,a
performance plot of the type shown in Figure 1.5 can be expected. - Out-of-order
execution. when applied to a pipeline of depth about three achieves roughly 20 perc_ent ’
speedup relative to machines with same pipeline latency and in-order execution. A
pipeline as deep as 8 or 10 stages may achieve a relative speedup as high as 50 percent.
A deeper pipeline has disadvantages associated with its poorer utilization due to longer
flush times during branches. As a result,: the low latency processor w1ll still ‘have
superior performance speedup.

Multiple instruction issue with out-of-order execution. In this situation there are two 7
' variables~ the number of instructions that are inspected for independence during the '
decode stage, and the number of detected independent instructions that actually can be
1ssued for executlon Again, the results of Acosta [AKT86] seem Trepresentative. Flgure

Désign Choices
Scope Lelvel * Time
wi\ﬁbc\yond High Microcode Compile Run
basic basic level Assembly time time :
block. block : ' - Scheduling Completion

In-order Out-of-order

- Figure 1.3 Available design choices for superscalar processors.

| Scheduling Strategies

) Stzlltic " i)ynatnic
‘Trace Percolation Software " Control Daia
scheduling ~ Scheduling pipelining flow flow

P
Static Dynamic ,
© stream stream
/\

Classical . Reduced Directed
data flow data flow data flow

- Figure 1.4 Classification of scheduling strategies.

26

27

2
Rglatlve 15
Speedup
,1 T ' I
1 5 10

Pipeline depth

Figure 1.5 Speedup from out-of-order execution relative to in-order execution
as a function of pipeline depth. o

g

1.6.a shows the. maximum available speedup giVen an ideal processor. For the ideal
processor the baseline execution (speedup = 1) represents either in-order or out-of-order

execution, since all the execution units execute with a unit delay. Issuing two -

instructions 1nd1cates a potential speedup of slightly less than L.75 over the basehne.
Issuing four instructions provides almost 2.5 speedup. The hrmt of the speedup is 2.8.
Note that potentlally almost all of the advantage is gained by inspecting erght 1nstruct10ns ‘

- and 1ssu1ng four. For Acosta [AKT86], the speedup is limited by basic block s1ze,t

because scope of concurrency detection is limited to within the basic block. “This is ‘

generally consistent- with most earlier studies showmg maximum- speedup potentlal

somewhere in the range of 1.5 to 3. When more reasonable hardware constraints are - -

. placed on the processor model [AKT86], as shown in Flgure 1.6.b, the relative speedups 1 B
remain much the same as ideal. However, some of the relative advantages- Shlft Now,
whenever limited to single instruction issue per clock, out-of-order issue and execution
achieves a 40 percent performance improvement over the baseline case of in-order issue
and execution. An intermediate performance point (not shown in the figure) would be

* sequential issue with out-of-order completion, as in the CRAY-1. Speedup in this. case is

typically around 20 percent [AKT86]. Still, the overall speedup potential is. hmlted to
.about 2.5 and most of the gain is agam achievable w1th an 1nstructlon wmdow of about' '
elght mstructlons : ‘ : '

Software Asszstance Ach1ev1ng significant speedup requrres technlques that allow.' ‘: |
concurrency detectlon beyond the basic block. This can be done in hardware, i m software, -

or both. Hardware alone, because of the complexrty involved, seems 10 have 11m1ted

potent1a1 Us1ng combinations of hardware and software techmques, it may be possible o

to achieve speedups of four to eight times [Wed82]. Parallehsm and speedup uncovered'
by software duplicates in part the parallelism uncovered by. the hardware In one
expenment in this area, Wedig [Wed82] reports an overall speedup in hardware plus'
software detection of concurrency of three, but the hardware or software alone would
have accomphshed a speedup of two. Thus, software detection of concurrency is

potentially complementary to hardware, but overlap is present. The system designer -

vshould carefully partition the problem of concurrency detection lest duphcate effort
"detect the same events.

F1na11y, ,branches pose a significant bottleneck to concurrent execution. Future
research needs to be directed to compile time and run time effort to reduce the branch
overhead and to implementations that can simultaneously resolve multlple branches to
mdependent targets Memory system design would also be cons1derably affected by
concurrent “execution. The discussion in this chapter has ignored the details of the
memory system enhancements essential to sustaining instruction and operand throughput.
To map the simultaneous memory réquests to independent memory banks would;bevital
to achieving overall performance improvement. On the other hand, loops (especially for

29

3 —
window siz’é = 32
2.5- T
L window . size =8
Relative ;
‘Speedup
1.5
1 | 1 | l 1 1
Baseline 1 2 3 4 e unhrmted
~ Maximum number of i mstrucuons issued per cyclc
(@
¥
3 o
o : wmdow smd 32
254
;R_élative o — ~window size =8 |
Speedup 7] .
1.5
1 T T 1 1,
Baseline 1 2 3 4 ... unlimited

Maximum number of instructions issued per cycle
(b)

 Figure 1.6 Multiple instruction issue with out-of-order execution and with

e scope limited to within the basic block, relative to a processor with
in-order execution and smgle instruction issue per cycle; assuming
single-cycle functional unit processor (a) and multiple-cycle
functional unit processor (b). These graphs are’ derlved from
results reported in [AKT86].

30

scientific applications) hold significant speedup potential due to their regular dependency
and control structure. A combination of complementary compile time and run time

. support _may be the key to concurrency extraction and for resolving most of the
performance barriers. |

1.3 Dissertation Overview

The research described in subsequent chapters assumes a common. architectural
framework shown in Figure 1.7. Under ideal conditions, the organization is capable of
providing a throughput of k results per cycle. For k=1, the system reduces to the
classical *single pipeline architecture. Chapter 2 concentrates on optimizing the
performance of a single pipeline. Optimization of a pipeline here refers to vparti_tioning
the pipeline into the number of segments such that overall throughput is ‘maki'mized.
Architectures that opt for deeper single pipeline as opposed to multiple p'i'pelinés'have
been referred to as superpipeline architectures. Branches pose a serious performance
bottleneck for such pipelined machines, as they interrupt the sequential flow of the
instruction stream. Chapter 3 builds a common analytical platform for comparing
different branch strategies in use for single-pipeline processors. Commonly-used branch
strategies reduce the branch delay by predicting a certain execution path and continue to
fetch along the predicted path. In case of incorrect prediction, the instructions fetched
along the predicted path are wasted. Chapter 3 also examines this associated cost of
wasted instruction fetches. Chapter 4 considers the cost-performance tradeoffs between
the superscalar and superpipeline architectures. Performance of superscalars is critically
dependent on the utilization of the multiple resources. The essential and control
dependencies in the instruction stream are the primary limiting factor against the perfect
utilization of the k pipelines. Chapter 5 proposes an analytical model for tliésevprOgram
depe’nd'en(:ies.’ The inputs to the proposed model also provide characterization of the
inherent parallelism in program traces. A number of benchmarks are characterized using
the Multifiow TRACE compiler.. This characterization is used. for predicting the
attainable speedup under resource and scope constraints. The predicted speedup is close
to the actual theasured throughput of the compiler generated traces. Chapter 6 discusses -

a simplified extension of the model to include multiprocessors. The extended model is

used to analyze combined. systems, such as a supcrpipelincd multiprocessor and a
superSCalar multiprocessor. Chapter 7 summarizes the work and the contributions of
dissertation. Finally, Chapter 8 outlines some ideas for future work in this area.

Main Mcmory
1 instruction /cycle 1 operand /cycle
i-cache» d-cache
k instructions‘/cyclé
Branch Target Buffer
k instructions /cyclé
i-window
(W instructions)
‘k instructions /cycle.
1 1} 1
2 2
1L iz k| < ppeines
T o 1+ s stages each
S s B s
k results /cyc:lc
]

" Figure 1.7 Architectural framework used for this research

31

32

CHAPTER 2
OPTIMAL PIPELINING

2.1 Introduction

Pipelining is one of the most attractive and widely used design altematives in high-

speed computer systems as it offers a potent1al speedup of s when s pipeline stages are
used. This chapter is an attempt to understand the tradeoffs and overhead that limit this
theoretical speedup. A mathematical model is developed to provxde 1nS1ght into the

effective roles: played by different parameters involved. - '

The followmg are the main practical constraints that limit the performance of

pipelined processors:

i)

ii)

iii)

Instruction dependencies. An instruction may be dependent *on previous
instructions for either data or control. This may cause less than full utilization of the

' pipeline..

Resource conﬂzcts An instruction may require the use of a certain plpelme resource
durlng the same period as an earlier instruction; thus necessitating a delay in its

- start. This can also limit utilization of the pipeline [KuS86]. -

Latch overhead. This places some constraints on the maximum clock frequency
that can be used. There are three main components of this overhead [KuS86]:

‘a) propagation delay through the latch,

b) data skew resulting from the difference between the minimum and maximum
. signal propagation times through various logic paths, and '

 ¢)clock skew between the different stages of the pipeline.

- 1v)

Partitioning overhead. A pipeline stage must consist of an integer' number of gate
levels, hence the propagation delay of a pipeline stage is quantized, which may

- reduce the maximum clock frequency used for the entire pipeline.

Setup, or flush time, overhead. The larger the pipeline the more the time required to
fill it and flush it. This time can have a significant effect on the overall throﬁghput
Note that apart from the initial setup time, additional ﬁushes result from mstrucnon
dependency

vi) Control path limitations. The time required to generate control 81gnals for the

pipeline. stages also determmes a mmlmum data path delay w1tlun any p1pe1me . ._ o

segment [Ku886]

: The above constraints may be typed as those that limit the full utlhzatlon of the-r :
pipeline and those that limit the maximum clock frequency. Besides the constraints~

mentioned above, insufficient utilization of a pipeline can also result from not having =

enough data to keep the pipeline full. Such a restriction arises frequently in"'systems :

where full utilization of a computational resource is lnmted by, for example, msufﬁc1ent T

I/O bandwidth..

' 2.1.1 Previous Research

A srgnrﬁcant body of work has been reported on detecting p1pe11ne hazards S
resulting from instruction dependency or resource conflict, and optimal scheduhng_ -

[Sha77, TJF70] However, most of these studies assumed no restriction on clock penod " o
In the area of latch timing, Cotten [Cot65] and Hallin and Flynn [HaF72] de_veloped

some basic latch timing constraints. Hallin and Flynn’s work was extended by Fawcett

[Faw75] Kunkel and Smith [KuS86] further analyzed Fawcett’s constramts and. also

provided some CRAY-1S simulation results to illustrate the effect of dtfferent overheads ;' :

They- 51mulated the specific case of the polanty -hold latch with a single-phase clock

The followmg latch timing constraints [Faw75, HaF72] form the basis for analyzmg R

and modelling the latch overhead:

i) Minimum clock high time: The clock pulse must be wide enough to ensure that '
valid data is latched, : S

i) - Maximum clock high time: The clock pulse must be shorter than th'e minimum o o

propagation delay from the input of one latch to the input of the next, and

iii) Minimum' clock period: The minimum clock period must be longer than the h :
maximum propagation delay from the input of one latch to the mput of the next o . o

' ensure valid data is latched.

Kunkel and Smith [Ku886] begin with performance measurements assumlng no .
latch overhead Next, they include the data skew component of latch overhead Finally,
clock skeéw is incorporated, first assuming two-level fanout and then assurmng four-level
fanout circuitry. In each case scalar, vector, and combined loops are used as the three
kinds of inputs. Based on these results they conclude that 8 to 10 levels of gate delay per
segment yields optimum, combined (scalar and vector) performance : '

Kunkel and Smith do not provide much insight i into the factors governing the nature S
of the performance curves, i.e., the reasons behind certain characterlsucs d1sp1ayed by the R

Y34

performance meéasurements. This omission provides the motivation for this chapter:
““Can ‘a theoretical model be developed that will include different overheads

associated with a generic pipeline and provide insights which will help predlet the nature
- of modulattons in the performance curve and the optimal performance?””

: The next section presents a theoretical model armed at better understandmg of the
behavror of a smgle-plpelme architecture. : ‘

2.2 A Generic Model

Let T be the latency ofa logtc tree w1thout any plpelmmg If the tree is leldCd into
s segments without consrdenng any kind of overhead, the clock period with plpelmmg is
At=TIs .

Consrdermg full utilization, throughput G is

| v G=1/At . |

- Pipeline uti_lization can be quantified in terms of a utilization parameter_, u defined as-
e U=sg /s , | '

where sm, 1s the average number of segments actrve at a time. .

Thus, u=0 for unutilized pipelines and u=1 for fully utilized p1pe11nes Therefore,

actual throughput can be written , : ,

T G Wikt | | | {2 1)

Equatron (2.1) represents the effect of pipeline limitations that result in mefﬁcrent

utilization of the pipeline.

The actual clock period would not simply be inversely proportlonal to the number
of segments, but rather involve certain overhead components. Pipeline overheads can be
grOuped into the following two categories:

a) Static overhead (c): This overhead is associated thh each prpelme stage and is
- independent of the number of partitions of the pipeline. Propagation delay overhead
: (thrOugh the stage latch) and the clock-skew overhead fall in this category. ’

b) Dynamzc overhead (x): This overhead is a function of the number of partitions of
the pipeline, i.e., it is a function of s. Data skew overhead, setup and flush time
overhead, and partitioning overhead belong to this category. ' ’

With statlc and dynamic overheads 1ncluded clock period, At becomes -

35

Ar=x(T/Is)+c . ‘ {22}

‘Under ideal conditions, i.e., without any overhead, k=1 and ¢=0. For example,
- consider some of the timing constraints developed by Kunkel and Smith [KuS86] on the
basis of 'earlier work in this area by Fawcett [HaF72]. Assuming polarity-hold latches
and a smgle—phase clock, after satisfying the constraints mentioned in Section 2.1.1, the
minimum clock period with pipelining, as derived in [KuS86}, is

At=(n+2)tma » , '{2.3}

‘where 7 is the number of gate levels between latches (excluding two levels of gate delay
in the latch itself) and ¢, is the maximum gate delay.

Using the terminology developed in this section, Equation (2.3) can be written as
- At=TIs+2tmax

after separating the constant overhead term. In order to satisfy the lower bound on clock
period (third constraint in Section 2.1.1), there must be a minimum number of gate levels
between latches for proper operation. Thus, if s is large, delay padding may be required.
Again, repeating the result derived by Kunkel and Smith [KuS86], assummg w1re-de1ay-
padding, the clock penod in this range is

At=(1=p)T/s H6—4 1) fra o 24

where [is the ratio of minimum gate delay to maximum gate delay. This indicates a
dynamic overhead, x=1-}1, and a static overhead, ¢ =6—4}.. Interestingly, x is less than 1
in this example. Recall that Equation (2.4) is valid only when using delay padding to
satisfy the constraint on the minimum number of gate levels between latches. Since s is
typically large in this circumstance, any apparent reduction in A due to reduced x is
‘more ‘than offset by a larger constant overhead term ¢, as compared to Equation (2.2)
under ideal conditions. '

Combining Equations (2.1) and (2.2),

Uu

i {2
KT/s)+c » { >)

The number of segments which maximizes the throughput can be obtained by solvmg,
%ii—O cus +KTus+u1cT : - {2.6}

where i is the first order derivative of u with respect to 5. The above equation does not
presume any specific utilization pattern. Hence, it can be used for any known utilization
pattern.

' Clearly pipeline utlhzauon is a function of the number of pipeline segments In
only the simplest problem, a linear function u=b—as (where a and b are arbitrary

36

constants) can be expected. Normally, shorter pipelines are easily filled and hence result
in higher utilization. As the number of segments starts to go up, utilization starts to drop
in a nonlinear manner. There is an upper limit to pipeline utilization independent of the
number of segments which can be set, for example, by the maximum memory bandwidth.
‘ This maximum utilization, .y, is independent of s. As loading in a program
environment is likely to cause at least a second order term, in this chapter a second order
utilization pattern is assumed for the purpose of simulation, thus, '

‘ _ U=Umex =752 —Vs . : o - (2.7}
 Therefore,) -
| u==-2rs-v , . {28}

where the coefficients r and v are constants for any given program environment. These
can be empirically determined and depend upon the amount of vectorization and
instruction dependency in a given program, in addition to other factors. In Equation (2.7),
r represents the effect of increasing dependency and issuing delay between instructions.
For example, a two segment pipeline can only have a single stage dependency but with
increasing number of segments, utilization would tend to drop due to increased
dependency. Varia_ble v represents the first order coefficient in the utilization model.

This is one of the simpler possible models for program utilization. The second
order equation has been chosen only so that, as the number of segments changes, the
utilization changes at a varying rate. Any equation of order two or more can capture this
effect. Altemanve and more complicated approaches to modellmg p1pe11ne utilization
are discussed in the following chapters. SRR

Us1ng Equauons (2.7) and (2.8), Equauon (2.6) can be 51mphﬁed to,

esd+fs2+gs+h=0, | (29}
where S
| e=2rc
- f=cv+3xTr
g =2xTv

v Equatlon (2 9) can be solved to obtain the optimal number of partmons sop, under
different condmons of utilization and overhead parameters. This equation is used to
generate performance tables (Tables 2.2 - 2.6) and corresponding graphs (Figures 2.1 -
2.5) to illustrate sensitivity with respect to each parameter. Utilization coefficients have
been varied over a range such that the utilization given by Equation (2.7).is between 0

~ Table 21 Nomenclature and nominal values of model péramcters'.

Symbol

Throughput gain at § = Soyrgp =10, relative 0 Gpom

Explanation Nominal |
value
Latency of the logic tree T 100 ns
Nominal number of segments Snom 5
Throughput of the pipeline G ’
Optimum number of segments Sopt
| Constant term in the utilization equation U max 06

| First-order coefficient in the utilization equation v 0.0.01 _
Second-order coefficient in the utilization equation r 0.004
Constant overhead term ' c 10 ns
Dynamic_ovérhead term K 1.3
Branch frequency v b 01

- | Two-clock instruction frequency X 01 |

Throughput at nominal values of all parameters G rominal)
Throughput, normalized relative to Gominal G,,o,m
Throughput at § = Sopt» normalized relative t0 Gpominal Gop:
Throughput at § = Sg,p0p =1, normalized relative to G pominal Gubop
Thraughput at § = S,y,0p =10, normalized relative t0 Gpominat ~ Govrop

- Throughput at § =Sy, Grom
Throughput gain at § = 5, relative to Grom AG oy

v -Throughput gain at § = Sgyp0p =1, relative 0 Gpom AGupop

37

38

and1. 7
‘A given partitioning of a pipeline can be considered sub-optimal or over-optimal
depending on whether the number of segments in the pipeline is less than or more than
the optimal number of segments, respectively. Performance measurements have been
taken at sub-optimal, optimal, and over-optimal points. All the throughput measurements

are normahzed with respect t0 Gpominat» Which represents the throughput -at certain
nominal valucs of all parameters, as listed in Table 2.1.

There are clearly other options for normahzatlon The chosen option is preferred

assuming ‘an interest in estimating throughput with respect to an existing (nominal)
‘computer design. Under the nominal conditions here, static overhead is as_sumed to be
about one tenth of the period without pipelining. Dynamic overhead is assumed to be 1.3,
as compared to 1 in the ideal case. The assumed nominal values of the utilization
coefﬁcients result in about half utilization of the pipeline.

Suppose there is an existing pipeline design with a certain number of segments,
Snom, and corresponding throughput, G,,,,. Now, if the number of partitions is changed
to s with corresponding throughput G, then the throughput gain in movmg from 5, tOo S
‘ plpehne segments can be defined as the ratio '

AG =G /Gpom - o (210)

Tables 2.7 through 2.11 and the corresponding graphs, Figures 2.6 through 2.10
show the '"Sensitivity of this gain as a function of overhead and utilization coefficients.
All theé gain calculations are with respect to a reference pipeline havmg number of
SEgMENts Spom = 5

2.3 Inferences

The effects of the overhead and the utilization coefficients on the actual
(normalized) throughput can be summarized as:

i) - As the static overhead (c) increases, the optimum throughput (Gopr) and the

optimum number of partitions (s,,) decreases. From Figure 2.1, it can be seen that

- for small values of ¢, changes in ¢ have a predominant effect. This indicates. the

possibility of dramatic change in the optimal throughput (Ggpr), as well as optimal
partitioning (s,,), if a balanced clock (negligible unintended skew) is disturbed

n) As the dynamic overhead (x) increases, ‘Gopy decreases whereas, unlike the previous

case, S, increases. From Figure 2.2, it can be seen that similar to the earher case, a

given Ak has more effect when «x is small than when it is large. In a typical system

where Kis close to 1, and ¢ is close to 0, on comparing Fxgures 2 1 and 2 2,itcan be

Table 2.2 | Normalized throughput (G,,,») versus static overhead (c).

Static Optimal _
overhead, number of Nommalized throughput

, segments, :

¢ (ns) . Sopt Gisubop Gopt G&vrdp < f
0 6.29 0.36 1.47 062
10 5.51 0.33 1.01 0.35
20 5.03 031 0.78 0.24.
30 4.69 0.29 0.64 '0.19
40 444 0.28 0.55 0.15
50 - 423 0.26 048 S0.13 -
60 - 4.05 0.25" 043 0.11-
70 391 0.23 0.39 0.10
80 3.78 0.22 0.35 0.09
90 3.66 0.21 0.32 0.08

100 3.56 0.20 0.30 0.07

Table 2.3 Normalized throughput (G,) versus dynamic ovérhead x). -

Dynamic

Optimal , :
overhiead, number of Normalized throughput
: ’ segments, : '
.S Sopt Gsubop Gopt_ Gavrop
, 100 5.34 043 1.20 0.40
1.10 5.40 0.39 1.13 038
- 1.20 5.46 0.36 1.07 0.36
1.30 5.51 0.33 1.01 0.35
1:40 5.55 0.31 0.96 033
1.50 - 5.59 0.29 0.91 0.32
1.60 5.62 0.28 0.87 0.31
1,70 5.65 0.26 0.83 0.30
1.80 5.68 025 0.79 0.29
1.90 5.71 0.23 0.76 0.28
2.00 5.73 0.22 0.73 0.27

40

Table 2.4 Normalized throughput (G,,.,) versus constant “term of the
utilization model (4 pax)-
Constant Optimal
term of the number of Normalized throughput
util. model, segments,
U max Sopt Gsubop Gopt Govrop
1.00 7.08 0.56 206 1.74
0.95 6.91 0.53 1.92 1.57
0.90 6.73 0.51 1.78 139
0.85 6.54 0.48 1.64 1.22
- 0.80 6.35 0.45 1.51 1.04
- 0.75 6.15 0.42 1.38 0.87
=0.70 5.95 0.39 1.25 0.70
-0.65 5.73 0.36 1.13 0.52
0.60 5.51 0.33 1.01 035
0.55 5.27 0.31 0.89 0.17
0.50 5.02 0.28 0.78 0.00
~ Table 2.5 Normalized throughput (G,,,») versus first-order coefﬁc1ent of the
PR utilization model (v).
- First-order . Optimal »
coeff. of the | . number of Normalized throughput
util. model, segments,

v Sopt Gsubop Gopt ’ ’ Gavrop
0.0010 6.09 0.34 1.14 0.66
0.0030 5.96 0.34 1.11 0.59
0.0050 582 0.34 1.08 0.52
0.0070 5.69 0.34 1.05 0.45
0.0090 5.57 0.34 1.02 0.38
0.0110 5.45 033 -1.00 0.31

-0.0130 5.33 0.33 0.97 024
0.0150 5.21 0.33 0.95 0.17 -
0.0170 5.09 0.33 0.92 0.10

- 0.0190 4,98 0.33 0.90 003 |

41

Table 2.6 Normalized throughput (G,,,») versus second-order coefficient of
the utilization model {r).

Second-order Optimal
coeff. of the number of Normalized throughput
| util. model, segments,

r Sopt Gsubop Gopl Gavrop
0.0005 - 11.03 0.34 1.57 1.57
0.0010 9.02 - 0.34 1.40 1.39
0.0015 7.90 - 034 1.29 1.22
0.0020 714 0.34 1.21 1.04
0.0025 6.58 0.34 1.15 0.87

. 0.0030 6.15 0.34 1.09 0.70

- 0.0035 5.80 - 0.34 1.05 0.52
0.0040 5.51 0.33 1.01 0.35
0.0045 5.26 033 0.97 017 - .
0.0050 5.04 0.33 0.94 - 0.00

2
1.5
c=0
Normalized :
throughput, 1 c=1(
Grorm
0.5+
= _"_100 ===
0]]] | I L | | |

Number of segments, s

Figure 2.1 Normalized throughput (G,,,) versus static overhead (c).

2
1.5 4
Normalized
throughput, 1
Gnorm)

Number of segments, s

Figure 2.2 Normalized throughput (G,,,n) versus dynamic overhead (). .

42

43

25
Cad /
Normalized 5| #max=10,
throughput, .
Grorm 1-
0.5
U max=0.5
04 I T | T I T T

1 2 3 4 5 6 7 8 9 10

Number of segments, s

Figiifc 2.3 Normalized throughput (Gp.n,) versus constant term of the
utilization model (¢ yax)-

1.54
Normalized - - ‘ v=0.019
throughput, 1 - /{;i_ =
Gnorm o ‘ =
0.5 - B v=0.001
0 I 1 i ! | | | |

1 2 3 4 5 6 71 8 9 10

Number of segments, s -

Figure 2.4 Normalized throughput (Gp,m) versus first-order coefﬁcmnt of the
ut111zat10n model (v).

, r =0.0005
1.5 —
Normalized | =
throughput, 1+
Guorm . » >
0.5 | ~ r=00050
0 T T | T — T T T

1 2 3 4 5 6 71 8 9 10

Num'ber of segments, s

Figure 2.5 Normahzed throughput (G,rm) versus second-order coefﬁment of
the utilization model (7).

Table 27 Throughput gain (AG) versus static overhead (c).

Static

Optimal

overhead, number of Throughput gain

0 segments, ' .
c(ms) Sopt Aerubop A_Gopt AG iy
0 6.29 0.26 1.06 0.44
10 5.51 0.33 1.01 035
20 5.03 0.40 1.00 0.31 -
30 4.69 0.46 - 1.00 029

- 40 444 0.51 1.01 0.28

50 423 0.55 1.02 0.27
60 4.05 0.59 1.02 0.26 .
70 3.91 0.63 1.03 0.26
80 3.78 0.66 1.04 025
90 3.66 0.69 1.05 025
100 3.56 0.71 1.05 0.25

Table 2.8 Throughput gain (AG) versus dynamic overhead (k).

Dynamic - Optimal »

overhead, number of Throughput gain

' o segments, ; o :

K Sopt AGsubop AGopt » AGoiarop

1.00 5.34 0.36 '1.00 033 |
1.10 5.40 0.35 - 1.01 0.34
120 5.46 0.34 1.01 0.34
1.30 5.51 033 1.01 1035
1.40 5.55 0.33 1.01 035
1.50 5.59 0.33 1.01 - 036
1.60 5.62 032 1.01 0.36
1.70 5.65. 0.32 1.01 0.36
1.80 5.68 0.32 1.02 0.37
-1.90 5.71 031 1.02 - 0.37
2.00 5.73 0.31 1.02 0.37

45

46

Table 2.9 Throughput gain (AG) versus constant term of the utilization
model (¥ max)-
Constant Optimal
term of the number of Throughput gain
“util. model, segments, , e
~ Umax Sopt AGsubop AGopt ‘ A’Gav'rop
1.00 7.08 0.30 1.09 092
0.95 6.91 0.30 1.08 0.88
0.90 6.73 0.30 1.07 0.83
.0.85 6.54 0.31 1.06 0.78
- 080 6.35 0.31 1.05 0.72
0.75 6.15 0.32 1.04 0.65
- 0.70 5.95 0.32 1.03 - 0.57
0.65 573 0.33 1.02 0.47
- 0.60 5.51 - 0.33 1.01 0.35
0.55 5.27 0.34 1.00 0.20
0.50 5.02 0.36 . 1.00 0.00

~ Table 2.10 Throughput gain (AG) versus ﬁrst—order coefﬁcwnt of the

utilization model (v).

First-order Optimal :
coeff. of the number of Throughput gain
util. model, segments,

v Sopt AGgupop AG o AGoyrop
0.0010 6.09 0.31 1.03 - 0.60
0.0030 5.96 0.31 1.03 0.55
0.0050 582 0.32 1.02 049
0.0070 5.69 0.33 1.02 10.44
0.0090 - 5.57 0.33 1.01 0.38
0.0110 545 0.34 - 1.01 0.32°

00130 5.33 0.34 1.00 0.25

10,0150 521 0.35 1.00 0.18
0.0170 5.09 0.36 1.00 S 011

- 0.0190 498 0.37 1.00 - 0.04

47

Table 2.11 Throughput gain (AG) versus second-order coefﬁcxent of the
' utilization model (7). .

Second-order Optimal ,
coeff, of the number of Throughput gain
util. model, segments, ,

r Sopt AGgupop AGopt AGovrop
0.0005 11.03 0.28 1.32 1.31
0.0010 - 902 0.29 120 1.19
0.0015 790 0.30 1.13 1.07

0.0020 7.14 0.30 1.09 0.94
0.0025 6.58 0.31 1.06 0.80
0.0030 6.15 0.32 1.03 0.66 ..
0.0035 5.80 0.33 1.02 ‘0.51
0.0040 - 5.51 0.33 1.01 0.35
0.0045 526 0.34 1.00 0.18-
0.0050 5.04 0.35 1.00 0.00

iii)

i)

ii)

48

concluded that a given Ac would normally have stronger impact. on _systcm
pcrforma.ncc than an cqulvalent Ax.

As utilization (u) increases, G, opt 88 well as sopt increase. A study of Figures 2.3 -
2.5 leads to the conclusion that: higher-order coefficients have a stronger effect on
optimal partitioning (Sopr) and on the optimal throughput (G,y) as compared to the

.lower-order coefficients. In other words, higher-order coefficients would require

ughter control in order to maintain a certain level of performance. Also, for large s
the slope of the performance curves (i.e., 9G/9s) in Figure 2.3 becomes highly
insensitive to the variations in 4.y, the constant term in the utilization model. A
mathematical explanation for this, although not presented here, can be dcnvcd from
the expression for dG/ds given in a later section. ‘

The following conclusions can be made from the gain plots:

As the static overhead (c) increases, gain increases for less than the existing
nominal number of segments, (S,,,, see Table 2.1). For more than s,,, segments,
gain decreases with increasing ¢ (Figure 2.6). A gain can be considered an incentive
if it is greater than 1. Thus, with increasing static overhead, there is higher
incentive to modify an existing (reference) pipeline to have a lesser number of
segments. This behavior is seen as a result of Sopt going down with increasing c.

As the dynamic overhead (x) i increases, gam decreases for fewer than the rcfcrcncc
number, S,,, Of segments. For more than the existing number of segments, gain

,_‘increase's with increasing x (Figure 2.7). Therefore, with increasing x, there is less

iii)

incentive to change an existing pipeline to a smaller number of segments and vice
versa. '

As the utilization (u) increases, gain decreases for less than the existing number of

- segments. For more than the reference number of segments, gain increases with

increasing utilization (Figures 2.8 - 2.10). Again, because s,,, increases with higher
utilization, there is increasing incentive to redesign an existing pipeline to have a
larger number of segments. Note that a variation in any of the utilization
coefficients has a stronger performance impact on the system with large number of
segments than the system with fewer segments.

An interesﬁng but not obvious property of thebthroughput gain plots is the non-

monotonicity of the optimal gain. Look at the plot for gain versus static overhead (Figure
2.6). It can be seen that the optimal (maximal) gain is at its minimum for a fixed static
overhcad when ¢ is at 20ns. Figure 2.11 shows the effect of utilization change on the

ptlmal gain minima. If the utilization is increased, a shift of minima is notlced to when ¢
is at 50ns. -

Therefore, for a certain change in the static overhead c, say from ¢ = 25ns to 435ns,

scalar code (smaller utilization) can show an increase in optimal gain, whereas vector

49

s

Throughput.
gain, =
AG

0.5

i 2 3 4 5 6 7 8 9 10

Number of segments, §

Figure 2.6 Throughput gain (AG) versus static overhead (c). - -

1.5 -

Throughput - i
gain,.
AG

T T | E— T T

Number of segments, §

| Figure 2.7 Throughput gain (AG) versus dynamic overhead (k).

1 2 -3 4 5 6 7 8 9 .10

50

1.5
Umax = 1.0
- 1
Throughput . Umax =0.5
gain,
- AG
: 0.5 - 05
Umax = 0.
Umax = 1.0 o
0 I] T T 1 T T T

Number of segments, s

Flgure 2.8 Throughput gain (AG) versus constant term of the utilization
model (¥ max)-

1.5

Throughput
gain,
AG

Number of segments, §

VFigure 29 Throughput gain (AG) vcrsufs first-order coefficient of the
A utilization model (v). ’

51

1.5 ‘
PR r=00005 - —
Throughput 1 _ :]
gain, r=0.0050 ' "
AG , .
g r =0.0005 r =0.0050
0 l B m— — 1 —

1 2 3 4 5 6 7 8 9 10

Number of segments, §

Flgure 2.10 Throughput gain (AG) versus sccond-order coefficient of the
utlhzatwn model (). ,

12
116
Optimal 1.12 4 _
gain, » Second-order coefficient
AGopt 1.08 - of the utilization model
: S (see Equation 2.5),
1.04 r =0.0040 .
_ r=00025 |
1 | ' I ...li r N ..i i l ‘ -
0 10 20 30 40 50 60 70 80 90

Figure 2.11 Optimal throughput gain (AG;,,,,) versus static overhead (c)

Static overhead, ¢

52

53

code (higher utilization) continues to show a decrease in the optimal gain. A similar
effect is observed in Kunkel and Smith’s simulation results, when as a result of moving
from 2-level fanout clock skew overhead (i.e., a clock distribution logic with 2 levels of
gate dclay) to 4-level fanout clock skew overhead (in other words, moving to higher
constant ‘overhcad); scalar optimal gain increases, whereas the vector optimal gain
decreases. The optimal gain minima occurs when 5o, drops t0 Suom. Since sop is greater
for a vector environment, with an increase in ¢ it drops to Spom later than in the case of a.
scalar environment.

2.3.1 Correspondence with Previously Publishcd Experimental Results

As illustrated in Section 2.2, the minimum clock period expressions in the Kunkel
and Smith’s paper [KuS86] can be rearranged to highlight static and dynamic overhead
terms. In the range where s is large, inclusion of data skew overhead decreases. the
dynamic overhcad (x), while the static overhead (c) increases. The decrease in K and the
increase in ¢, both result in a reduced throughput gain reported by Kunkel and Srmth
Also, there is dramatic reduction in actual throughput because of a change in ¢ from zero
to a positive non-zero value. The increase in static overhead (c) also reduces the optimum
number of segments, 5,,;. This reduction in s,,, becomes noticeable for the scalar code
in their study. But for the vector code, because of higher utilization than the scalar code,
Sopr Still stays high enough to be unnoticed. Inclusion of clock skew overhead further
increases the constant overhead (c) and hence, s, continues to move towards a smaller
number of segments. With increasing static overhead, throughput gain continuously
increases in the suboptimal region, whereas it decreases in the over-optimal region of all .
the performance tables obtained in [KuS86]. .

2.4 Potential Improvements to the Model

The definition of the utilization parameter, , as given in relation to its role in
‘Equation (2.1) best fits the case of pipelines where each segment always takes only one
clock period to perform its operation. Such pipelines are typically at the subsystem level,
e.g., a floating point'bmultiplier pipeline. If ’pipeline“s have variable delay, where a
segment may take more than one clock to complete, are included then u as defined earlier
does not’ﬁt the need. For example, if every stage takes 2 clocks then though ' the
utilization as defined may be 1 (or 100 percent), the throughput would only be 1 result
every 2 clocks and not 1 result every clock, as given by Equation (2.1). Such pipelines
are typlc_ally at «the»system level, e.g., an instruction fetch-decode-execute pipeline.

54

In Equation (2.1), in a more generic sense, pipeline utilization () should be thought
of as the factor by which the maximum possible throughput (1/A¢) is modified to yield
the actual throughput (G). Actual throughput is strictly determined by the rate at which
the outputs are available from the last segment. If any data item takes more than one
clock in the last segment, a decrease in throughput results. Similarly, if any data item
takes more than one clock in any segment, say segment i, the effect of this slowdown of
segment i will ripple through the pipeline and result in the same slowdown at the last
segment, segment s, after (s—i) clocks. Assume that while the effect of slowdown of one
stage is rippling to the final stage, there is no other stage that slows down. Undcr these
condluons the following equation provides a model for u, '

1 o
u= s J {.2‘11}

1+=1)b+ Y TG~

i=1j=2

where b is the average number of setup and flush sequences per data item, J is the
maximum number of cycles any data item spends in any segment, and x;; is the
probability that a data item takes j cycles in the ith segment.

For example, consider a 5-stage instruction pipeline in an environment such that an
average of 1 out of every 10 instructions takes 2 clocks in the execution stage (last
segment) and 1 out of every 10 instructions is a branch instruction. Then, s=5, b=0.1,
J=2, x52=0.1, and, x13=x92=x32=x42=0. This gives u=10/15. Any random
sequence of 10 instructions would be expected to lose 4 clocks during a branch and 1
~ clock due to a 2-clock instruction and, hence, take 15 clocks. '

For further analysis, assume a s1mp11ﬁed view of an mstrucuon plpelme such that
J=2 and for any segment i, x; 2 =x. As an example, if the i*" segment refers to the
operand fetch stage, x refers to the fraction of instructions spending an additional clock
during operand fetch. Typically, each stage would have its own independent fraction of
instructions which occupy the stage for more than one clock; because this is not critical
to the current discussion, additional variables are not introduced, From Equation (2.11)

_ 1
T 14+(s-Db+sx

{2.12)

. Therefore, throughput can be written
| G= ! « 1
1+(-1)b+sx «x(T/s)+c

. ’(l—b)xT o |
Sopt = —(x+b)c . [2.14}

{2.13}

For maximum throughput,

s

As static overhead (c) approaches zero, the optimum number of segments (o)
.approaches. mﬁmty As observed before, for small values, ¢ has a dominant effect.
~ Tables 2.12 and 2.13 and corresponding graphs, Figures 2.12 and 2.13, show the

variation in normalized throughput as a function of the number of pipeline segments. As

branch frequency (b) decreases, s,y and corresponding optimal throughput both increase.

In other words, for a fixed partitioning, the pipeline becomes suboptimal as b decreases.
. The same Qbservation holds for segment slowdown frequency: (x).

Effect of Buffering: So far, additional buffering at a segment output has been
ignored. In the presence of such buffers, slowdown of an intermediate segment does not
necessarily slow down the final segment. Although it is quite often used in system-level
pipelines (e.g., instruction FIFO), its inclusion would considerably complicate the model.
The solution to a general model of this type can be derived usmg qucuelng theory
techniques.

Second-order Effects: The utilization model assumed in Section 2.2 also hides
certain second-order details. For example consider the rate of change of throughput with
Tespect to §. From Equatlons (2.1) and (2.2), I

G _i, wd sy

os T s2As? R
Considering the given utilization model, with increasing 5, the first term in the Equation
(2.15) becomes more and more negative, whereas the second term becomes less and less
positive. In other words, dG/ds monotonically decreases with increasing s leading to
‘diminishing fctum (reduced throughput improvement) with increasing 5. In an actual
cnvironmc:ht this may not be the case. Utilization of a pipeline does not necessarily go
down with an increasing number of segments. For example, if a larger number of
partitions leads to better mapping of the reservation tables (i.c., better resource
allocation), utilization might even go up. Also, for the same number of segments,
* utilization may change in a statistical and/or periodic fashion. If these possibilities are
incorporated into the utilization model, throughput curves could potentially have multiple
maxima and minima and there would be points of maxxmum and minimum return from
1ncremcntal change in partitioning.

2.5 Summary

This chapter provides an approximate model of the behavior of a pipe'line and the
understanding of the factors involved in determining the optimal performance. In spite of
its simplicity, the model can be considered a useful first-order tool for comparative study

Table 2.12 Normalized throughput (Gpor,) versus branch freqixency (b).

Branch Optimal
frequency, number of Normalized throughput
~ segments,

b Sopt Gsubop . Gopt .Govrop
0.02 10.30 044 1.36 1.36
0.04 9.44 0.44 1.26 1.26
0.06 8.74 0.44 1.18 1.17 -
0.08 8.15 0.44 1.10 - 0.09
0.10 7.65 0.44 1.04 1.03
0.12 7.21 044 0.99 0.97
0.14 6.83 0.44 094 091
0.16 6.48 044 090 0.86
0.18 6.17 0.44 0.86 0.82
0.20 5.89 0.44 0.83 - 078

Table 2.13 Normalized throughput (G,,m,) versus segment slowdown
’ frequency (x). ' ‘ 1
Segment Optimal
slowdown number of Normalized throughput
frequency, segments,

X Sopt Gsubop Gopt Govrop .
0.02 9.87 048 - 142 1.42
0.04 9.14 047 1.30 1.29
0.06 8.55 0.46 1.20 . 119
0.08 8.06 045 1.11 1.10
0.10 7.65 0.44 1.04 1.03 .
0.12 7.29 0.44 0.98 0.96
0.14 6.98 043 093 0.90
0.16 6.71 042 0.88 ‘ 0.85
0.18 6.46 041 0.84 0.80

-0.20 6.24 0.41 0.80 0.76

57

1.5

b=0.02

Normalized
throughput, = 1-

Gnorm

0.5 -

Number of segments, s

Figure 2.12 Normalized throughput (G,,,,,) versus branch frequency (b).

2
1.5
Normélizcd‘
throughput, -~ 1
Gn‘ofm
0.5 1g

L e
1 2 3 4 5 6 71 8 9 10

Number of segments, s

Figure 2.13 Normalized throughput (G,,.,) versus segment slowdown
i frequency (x). ‘ ‘

58

or sensitivity analysis of the performance of a pipeline in different environments with
different overheads. Pipeline utilization models were presented for both sub-system as
well as system level pipelines. Effects of branching and segment slowdown were also
considered in the case of simple system-level pipelines. '

Small changes in the constant overhead term were shown to have a large impact on
optlmal pipeline behavior. Increasmg dynamic overhead increases the optimal number of
segments, whereas increasing static overhead requires fewer segments for optimal
performance. The results obtained are found to be in very close agreement with CRAY-1
simulation results obtained by Kunkel and Smith {KuS86], providing an analytical basis
for their results as well as additional insight in the pipeline optimization problem.

It is fair to conclude at this point that there are constraints that limit the speedup
attainable through a single pipeline. One way to move beyond the optimum throughput of
a single pipeline may be by adding several such pipelines. Architectures adopting such
an approach are referred to as superscalar architectures and they form the basis of
discussion in the Chapter 4 that models multiple pipelines. :

As alluded to in Section 2.4, branches pose a significant threat to high pipeline
utilization. The drop in utilization due to the inability to fetch the instructions arising
from the uncertainty due to conditional branches gets further magnified on systems with
multiple pipelines. A wide variety of branch strategies have been proposed to reduce the
branch delay. Next chapter analyzes these strategies through a probability based model in
the context of single-pipeline systems. Chapters 4 and 5 extends this analysis to
superscalars with speculative execution.

59

. CHAPTER 3 _ ‘
BRANCH STRATEGIES: MODELLING AND OPTIMIZATION

3.1 Introduction

Instruction dependency introduced by conditional branch instructions, which are
resolved only at run-time, can have a severe performance impact on pipelined machines.
A variety of strategies are in wide use to minimize this impact. Additional instruction
traffic generated by these branch strategies can also have an adverse effect on the system
performance. Therefore, in addition to the likely reduction a branch prediction strategy
offers in average branch delay, resulting excess instruction traffic can be an important
parameter in evaluating overall strategy effectiveness. The objective of this chapter is
two-fold: to develop a model for different approaches to the branch problem and to help
select an optimal strategy after taking into account the additional instruction traffic
generated by branch strategies. The first section presents the details of the model which
also forms the basis of a new classification of the different branch strategies commonly
employed. The following sections derive certain inferences from the results obtained and
lead us to some hybrid strategies. ' E |

3.1.1 Previous Research

Throughput in a pipeline environment is obtained by overlapping different
instructions in different stages of execution. This implies an ability to predict and issue
successive instructions before the complete execution of a given 'instruction.
Dependence of an instruction on the result of a predecessor instruction limits this ability.
Tjaden and Flynn [TjF70] provide an early framework in the area of formalizing the
concept of instruction dependency. The effect of conditional branches on system
performance was further substantiated by Riseman and Foster [RiF72]. Interest in
different branch strategies for minimizing performance impact has been renewed with the
advent of new RISC machines. Most of the recent work in this area has concentrated on
specific branch strategies and on improving prediction accuracy. -Smith [Smi81]
discusses in detail different strategies for improving prediction accuracy. Lee and Smith
[LeS84] and McFarling and Hennessey [McH86] examine a range of schemes for

60

_reducing branch penalty. DeRosa and Levy [Del.87] provide a quantitative comparison
for different design alternatives for the branch instruction. Hsu and Davidson [HsD86]
suggest a scheme whereby a large number of branch delay slots may be filled with

- guarded ﬁinstruCtions, on machines such as the CRAY-1, where »conditional branch
resolution may take 14 clocks. These instructions are considered ‘‘guarded’ 4>’ because if
‘branch resolution is not as expected, they are effectively treated as NOPs. Ditzel and
McLellan [D1M87] and Grohoski et. al. [GKT90] discuss branch strategles as
1mplemented on the Chpper and RS6000 Processors respectwely ‘

3.2 The Model

Con81der a pipeline with s segments (Figure 3.1) executing an instruction J, Wthh
enters the- p1pe11ne the very next clock after instruction /. Assume a plpehne segment
delay as equlvalent to the system clock period. Suppose the instruction J at the start of
its p;* j stage of execution requires the result available at the completion of the q, ' stage
of execution of instruction I. The degree of dependency in such a case is deﬁned as
dij=q;~ p,, where g; > pj. Suppose that instead of entering the p1pe11ne the very next -
clock after I, J followed after an additional delay of x;; j clocks. Thus, if 1nstructlon I
entered the plpelme at clock i and J entered at clock j, then xXijj=j—i- 1 The degree of
dependency is now reduced to R

ij=((1i-Pj4xij)' S }} | {31}

where a segment freeze possibility, i.e., the possibility that a data item may spend more
than one ‘clock .in a certain pipeline segment, is ignored. If d;; < 0, I and J have null
pipeline dependency, which means this dependency has no impact on Dpipeline
throughput.” On the other hand If d;; > 0, / and J have positive pipeline dependency,
which suggests this dependency has impact of d;; clocks on the pipeline"throughput In
other words there is no pipeline output for d;; clocks. The degree of dependency is -

o max1mum whenpj =Pjminy =1, qi = q,(m)—sandx,, -x,,(m,,,)—O 1e d,,(,,,ax) -—s 1

' Next consider instruction dependency due to branch instructions. Let I represent a
condltlonal branch instruction. In that case, the followmg instruction J, cannot be
fetched gnnlv the execution of I is complete. Assuming that the instruction fetch (IF)
 stage is the first stage of the pipeline (p; = 1) and the execution (E) stage, which tests the
condition code, . as the last pipeline stage (g;=s), this leads to maximum pipeline
dependency of s — 1. Although condition code testing by the branch instruction / can be
typically done in a stage prior to the execution stage, normally it can only be done after
the previous 1nstructlon I-1 clears the execution stage and sets the condition code. So,

branch 1nstructlons can potentially result in the ‘maximum possible slowdown of s—1

61

Instruction J in its p** stage rcquirés the result
available from the ¢** stage of instruction L

) dij=q;—pj—Xij

Instructions

J' ' |“—'1—|T|'? ------ '|Ti'----
E Xij ' _
L ‘T‘T’I’ --------- -I—TI—-—+-—--
Time

'Figlire 3.1 Instr_uctibn depcnder'lcy‘in a pipeline.

Conditional

- | | branch |
| I__IP_S'_@C_IE?‘_‘_PieECh ; Decoé boeeimmeeeee, “rcsoluti’o# 1___-_;: |
y | o
Sbu |
Sbe

Sy : number of sub-stages in the instruction fetch stage
Spu : pipeline stage that resolves unconditional branches
Spe : pipeline stage that resolves Co_nditiqnal branches

' IiFig_urev 32 Aninstruction pipeline.

62

clocks. In general, branch instructions need not wait until the last pipeline stage for their
resolution, especially unconditional branches.

A pipeline stage is considered frozen if it cannot accept a new data item at the end
of the current clock period. Such a situation arises when some unexpected condition is
encountered, such as a cache miss or a branch. A freeze implies delay at the subsequent
pipeline "s:tages as they wait for the frozen stage output. A successful branch instruction
involves the fetch and execution of an out of sequence instruction. Fetching the branch
target instruction consists of i) a target address calculation and ii) a target fetch. Each of
these steps .can cause a freeze. In this chapter other possible ﬁeeie conditions are
deliberately ignored. '

3.3 Classification of Branch Strategies

Branch Strafegies‘ can be classified based on how they attempt to reduce the branch
penalties, as shown in Table 3.1. The names of most of the strategles are self-
descriptive. The unobvious ones are briefly described below. R

The Loop buffer strategy is based on a high-speed memory in the mstructlon fetch
stage of the processor. Some CDC machines (6600, 7600, and Star 100) as. well as the '
CRAY-1 have used this idea. These buffers (Figure 3. 3) can detect if the branch target
(forward or backward) lies within the environment captured by the buffer and if so, the
instruction fetch delay and the possible freeze delay are eliminated. Since a hit in the
loop buffers avoids any external memory access, it also reduces extra instruction traffic
in case of incorrect prediction. Although, loop buffers may appear to be similar to
instructionbcaches“,' they are much smaller in size and, hence, lower in implementation
cost. This »Strateg"y further assumes that branches are not likely to be taken.

‘Usually branch instruction execution does not require any operand fetch. Some
IBM machines (370 series) use the operand fetch (OF) slot of the pipeline for fetching
from the branch target path. The branch is still assumed not likely to be taken.. The
Fetch Target in OF-slot strategy is based on this techmque :

" The Fetch Both Paths strategy, also used on some IBM machines (370/168 3033)
uses the brute-force approach of fetching (not decoding) both the sequentlal and non-
~ sequential instruction streams in case a branch is decoded. s

The Delayed Branch [McH86] and Predict Branch Always Taken wzth Target Copy
strategies modify the instruction sequence at compile time. The former delays the entry
of the’dependent:branch instruction by inserting instructions that are common to both the
sequential and"fnon-sequential paths. In the latter strategy, a portion of target code, as
dictated by the effective pipeline length for branch resolution, is copied (Figure 3.4)

Table 3.1

Classification of branch strategies.
" Strategy Label Reduce dependency by Reduce Reduce
increasing | decreasing | increasing | target-fetch | address-calc
Pj q; Xij freeze ‘ freeze
Predict Never Taken PBNT X
Loop Buffer LB X X
Pre-calculate Target Address PTA X ’ X
Feich Target in OF-slot FTOF X X X
Predict Always Taken PBAT X
Predict Always Taken
with Target Copy PTTC X X X X
Fetch Both Paths FBP X X X
Delayed Branch DB X X X X X
Taken/Not-taken Switch
‘in the Decode Stage TNTD X
Branch Target Buffer BTB X X X

Note: X indicates how the strategy attempis to reduce branch cost.

i

3 Loop Buffer
(256 bytes)

Instruction to be
decoded
in case of a hit

Most significant address bits

compared to determine a hit

Figure 33 A loop buffer.

65

following the branch instruction. This strategy is also assumed to predict branches as
always taken. Note that the Delayed Branch and Target Copying strategies also
indirectly reduce the address calculation and target fetch freezes by delaying reliance on
the target code and thereby offering time to calculate the address and fetch the target.

The last two strategies in Table 3.1 are based on active branch prediction [LeS84].
This prediction information can be obtained and improved for accuracy in many different
ways [Smi81]. Branch Target Buffer (BTB) refers to a small associative memory in the
instruction fetch stage of the processor. Instruction fetch addresses are associatively
matched with the buffer contents and in case of a hit it predicts the most likely branch
outcome as well as the most recent target address (Figure 3.5). As a result, target fetch
does not need to wait for the branch decode and target address calculation. In case of a
miss in BTB, branch instructions are handled in a manner similar to the Predict Branch
Never Taken strategy. :

3.4 Branch Prediction

Branch strategies do not eliminate branch delay, they reduce it with a certain
probability. An implicit assumption about the most likely branch outcome and
commitment to the sequential or to the branch path is made to varying degrees. This
commitment normally reduces the penalty associated with the chosen path but may
increase the penalty of taking the discarded path in case of incorrect prediction. As a
result, overall performance improvement becomes critically dependent on the probablhty
of correct prediction.

Table 3.2 defines and explains the terms associated with the model. Note that for
K =0 or b=0, performance throughput, G, is assumed to be at its peak rate of one
instructions per cycle. Thus, all other pipéline overheads (discussed in Chapter 1 and also
in [DuF90]) are ignored. ,

Cost of Branch Prediction. The discussion above has centered around assessing the
performance of different branch strategies. Consider the two primary costs involved: i)
implemehtation cost and ii) operational cost. Implementation cost refers to the
hardware/software costs involved in implementing the branch strategy. Since such costs
are variable with technology, this cost is ignored. On the other hand, operational cost
refers to the added run time cost, for example, the additional instruction traffic that
resuits on the system bus with every incorrect branch prediction. Although incorrect
predictions are the primary source of extra instruction traffic, even delayed correct
prediction can cause wasted instruction fetch. For architectures that allow machine state
update by instructions in the predicted path, there is an additional run time overhead of

- 66

CMP R1,R2
JZ XX
* ADD R3,R4
- * SUB R3,R5
* INC R4
* ADD R3,R4

MOV = R6,R7
ADD R6, R2
MOV Ri, mem

XX: . ADD R3,R4

' ‘ SUB R3,R5
INC R4
ADD R3,R4

Xx+4: MOV R6,R3

Instructions marked with an asterisk (*) are the instructions copied from the target (xx) at
compile time. In the case of a successful branch, control transfers to the label xx+4, after
executing the marked (*) target instructions via sequential fetch. In case the branch is

not taken, marked instructions are discarded without execution after fetch and decode. '

Figure 34 Predict branch always taken with targetvéopy (PTTC).

Branch
.] Branch
instruction ediction
T
address P

Predicted
target
address

Figure 3.5 A branch target buffer.

67

Table 32 Table of definitions.
Instruction
Predicted Actual Probability Branch Traffic
' : Penalty Penalty
no branch- | no branch Pnn Knn I
no branch . branch Pnb Knp Iy
branch no branch Pbn Kpn Iin
branch branch Po.b Kpp 1 b.b

Av. Branch Penalty, K =p,, , * K,,',, +Dnb* Knp+Don * Kon+Do6 * Koo

Average Throughput, G =

1

1+K*b

Av. Wasted Instruction Traffic, /* =Pnn* Tnn+tDnb* Tnp+Pon * Thon +pb-!"* Y

Merit Ratio, MR =

1

(1+K*b)* (1+I**b)

Notes:

68

All four probabilitieé, Pn,ns Pn,b>Pb,n,andpy 5 can be expressed in terms of the probability

Appendix-A).

Variable b denotes branch frequency.

- of branch—to—be—taken prediction and the probability of correct prediction (refer to

69

shadowing the original machine state to be able to recover from an incorrect prediction.
For the sake of simplicity; this cost is not included in the calculations, and it is not. '
‘expected. it to alter the conclusions. The only operational cost studied is that of the
additional instruction traffic. Refer to Table 3.2 for the terms associated with this cost of
wasted instruction fetches. - ' |

An ideal machine which can always correctly predict the branch outcome and if
needed, can start fetchmg the target path right after the branch instruction fetch, would
have, K =I*=0 and, hence, G =1, resultihg in unit merit ratio, MR, irrespective of the
branch frequency, b. Interestingly, freeze conditions, which tend to increase the branch
delay, reduce the average additional instruction traffic. When a certain path is predicted,

freeze situations reduce the number of instructions that can be fetched, which reduces the
number of wasted instruction fetches in case of incorrect prediction. This reduction has
been taken into account in the calculation details provided in Appendlx A (also in
[DuF89]) ' co

The followmg simplifying assumptions have been made (Figure 3 2)

a) The Instruction fetch stage is assumed to consist of sy slots (each contammg a
prefctched instruction) followed by the decode stage.

b) Let sp refer to the pipeline length up to the stage that resolves a pcndmg branch
instruction. For unconditional branches, branches are assumed to be resolved as
soon as they are decoded, therefore, s, =sp, =57+ 1. For conditional branches, sb =
sbc, ‘and is dependent on the pipeline stage that sets the condition code.

¢) Each instruction is assumed to make a common trip through the pipeline stages. For
pipelines with functional-level stages, such as fetch and execute stages, thlS should
be a reasonable assumption.

d) Additional instruction traffic during freeze handhng, e.g., in softwarc page fault

' handling is ignored. 7 :

e¢) For the sake of simplicity, handling of multiple pending branches in the pipeline is
restricted. If a branch is predicted as likely to be taken, it is assumed that additional
branches are not encountered. before resolving the first branch. This assumption
can be a source of some significant inaccuracy only for very long pipelines with
prediction schemes which allow this possibility.

f) Finally, any on-chip instruction cache has been ignored in the discussion as it has no
impact on the relative nature of the branch delay and additional instruction traffic
performance curves. ‘

70

3.5 Results

The model described above can be used to obtain the average branch delay (K),
average number of wasted instruction fetches per branch (/*) and the overall merit ratio
-(MR) once the variables defining the system environment are defined. Certain nominal
values are assumed for some of these variables (Table 3.3); e.g., branch frequency, b =
0.25, where 80 percent of the branches are conditional. The probability of a freeze
during target address calculation is assumed to be 0.5 with a freeze duration of 2 cycles.
The probability - of freeze during target fetch is ignored. For the delayed branch
approach, an average of one useful common instruction (i.e. 4 = 1) is assumed. One such
machine employing the delayed branch approach, MIPS [McH86, GrH86], reported use
of a single delay slot about 70 percent of the time. There may be special cases, such as
- when using guarded instructions [HsD86], where a significant number of delayed branch
-slots may be utilized. Based on Smith [Smi81], a correct prediction probability of 0.85 is
assumed for conditional branches. For Branch Target Buffer, the probability of correct
target address“‘prediction is optimistically set at 0.9, assuming stable branch targets
[Smi81]. The: probability of a BTB-hit for non-branch instructions for writable code
segments is assumed very low at 0.05. Assume nominal loop buffer hit ratio, py, = 0.6
and nominal BTB-hit ratio, p,, = 0.8. Peuto and Shustek [PeS77] report a hit ratio of 0.6
for a loop buffer of $256 entries, whereas Lee and Smith [LeS84] report a :hivt ratio of
around 0.8 for a target buffer with 256 entries and a set size of 4 or 8. Set size refers to
the degree of associativity in contrast to the fully associative BTB search. T

~ The " initial focus is on the input parameter, pg,, successful branch probablhty
(condmonal and unconditional combined). Results are obtained for the three performance
parameters: average branch delay, K; average number of wasted instructionife,tches, I,
and the cosﬂt-performance merit ratio, MR, as shown in Figures 3.6 th’rou'gh' 3.11.
Appendix A provides details of these calculations. While py, is varied, other parameters
are kept at thelr nominal values. o

3.5.1 Inferences

- The followmg inferences can be made regardmg the three performance parameters
asa functlon of the successful branch probability (pg): o

a) The BTB outperforms the others over the entire typical operating range (. 55 <D
<0, :

b) The predrct—branch always -taken scheme with target copy (PTTC) emerges as a
good second choice around pg, of 0.65 or more. Interestingly, even without any

- Table 3.3 Nominal values of model parameters.

1

Avérage branch frequency, b

Average fraction of conditional branches
Overall fraction of successful branches, p,
|~ (conditional/unconditional combined)

.| Number of pipeliné stages until unconditional branch resolution, sp,

- | Number of buffer sub-stages in the instruction fetch stage, s7
| Number of pipeline stages until conditional branch resolution, s,

| Probability of freeze during target address formation
Duration of target-address-calculation freeze

"VProbability of freeze vdurin’g target-fetch, py
| Duration of target-fetch freeze

Probability of loop-buffer hit, py

| Probability of BTB hit, py,

| Probability of correct address prediction from BTB
Probability of BTB-hit for non-branch instruction -

Averégc number of delay-slots filled in delayed branch approach -

| For cases with active prédiction schemes

(TNTD, BTB, TNTLB, TNBTB)

Correct prediction probability for unconditional branches
Correct prediction probability for conditional branches

025
08

06

B =

.05
2cycles |

0

10 cycles

06
08
0.9

-0.05

.',.lv,

1.0
0.85

72

¥ |
Average
branch :
delay, I
- K
\
K
035 04 045 0.5 055 0.6 0.65 0.7 075 08 0.85
Successful branch probability, psb
Figure 3.6 Average branch delay versus successful branch probability for
: - PBNT, LB, PTTC, DB, TNTD, and BTB strategies.
3.8
3.4
3 ;,
Average 26-8---m__
branch .
delay, 2"-2i
K 184
1.4
1
0.6 . , . T — 1
035 04 045 05 055 0.6 065 0.7 075 0.8 0.85
Successful branch probability, Dsb
- Figure 3.7 Average branch delay versus successful branch probability for

PBNT PTA, FTOF, PBAT, and FBP strategies.

73

264
\x\
Average 2.2 S ‘
number of ‘xP’}TC &
wasted 1.8+ X, - | m"'.— .
instruction 14 ‘ ".\\ /a,,—,
fetches] DB .-~ ¥
Pel'branch, ’ 1_ PBN —’,I" . T‘]NETP._B_:EEE:fE:::Q
I+ ‘ =_g---9--‘9" - =IC4& <\X
-8z B ___gz-==&-" -~
06‘# e __gzzcETTT ~4
;===g===f" - BTB
0.2 4 l

035 04 045 05 055 06 065 07 075 08 0.85
Successful branch probability, pg,

Figure 3.8 Average number of wasted instruction fetches péf branch versus
successful branch probability for PBNT, LB, PTTC, DB, TNTD,
and BTB strategies.

Average
number of
wasted
instruction
fetches
per branch,
1+

0:35 04 045 05 055 06 065 07 075 08 085
Successful branch probability, pg,

Figure 39 Average number of wasted instruction fetches per branch versus
successful branch probability for PBNT, PTA, FTOF, PBAT, and
FBP strategies.

74

- Merit
ratio,
MR

. T T | T T T T
035 04 045 05 055 06 0.65 0.7 0.75 0.8 0.85
Successful branch probability, ps

Flgure 3.10 Merit ratio versus successful branch ‘probability for PBNT, LB,
~ PTTC, DB, TNTD and BTB strategles

% - «--- FTOFE

Ment
ratio, 0 5 -

MR 045]

03

0.35 04 045 05 055 0.6 065 07 075 08 085
Successful branch probablhty, Psb

Figure 3.11 Merit ratio versus successful branch probability for PBNT, PTA,
' FTOF, PBAT, and FBP strategies.

d)

75

active branch prediction support, it exhibits better performance potential than BTB

~around pg, 2 0.75. This advantage stems primarily from the fact that this scheme
does not have to pay the delay penalty of incorrect target address prediction. BTB
has a cost for ianrréct target address prediction even with ‘;ICOrrect branch
prediction. As a cautionary note, PTTC also exhibits the steepest slope in terms of

all the three performance parameters as opposed to the relatively stable performance
curves of the active prediction schemes like, Branch Taken/Not-taken Swztch in the
Decode Stage and BTB. :

‘In terms of excess instruction fetches, loop buffer scheme perfoﬁhs almost as well

as thc BTB. Loop buffers can significantly reduce the cost of excess instruction
trafﬁc resulting from incorrect predictions.

At nominal pg, (0.6) both Predict Branch Never Taken and Predict Branch Always
Taken have the same branch delay. Which of the two should be the preferred
scheme? A look at the additional instruction traffic cost can help resolve the issue.

" Predict Branch Always Taken has lower cost of wasted instruction fetches

- and hence has better merit ratio (MR). In the absence of any address calculation -

€)

freeze (or target fetch freeze), Predict Branch Never Taken on average wastes more-
mstructlons during misprediction than Predict Branch Always Taken A similar
dllemma between Predict Always Taken with Target Copy strategy and Delayed
Branch can be resolved in favor of Delayed Branch, due to. its lower added
instruction traffic ~cost. For both the schemes 1mplemcntat1on costs are almost
identical,. ‘hence for the two strategies in question, hence the excess instruction
traffic is the’ important decisive factor. Interestingly, at pg = 0. 5, three dlffercnt
strategles predict branch never-taken, target fetch in the OF-slot, as ‘well as the

_-scheme to fetch both the paths, show almost identical ‘merit ratios. Here

implérhentation cost can probably be the only decisive factor.

Not only does excess instruction traffic cost help choose bctweeri' two almost

equally performing strategies, it can also caution us about otherwise very well
performing strategies. FBP (fetch both paths) provides an interesting example in
this regard. In terms of average branch delay (K) it performs almdst as well as the
BTB strategy. But, after considering the cost of wasted instruction fetchcs, in terms
of the overall merit ratio (MR), FBP is not much better than the worst performing
Predict Branch Never Taken strategy. Thus, the average branch delay alone does

- not determine overall performance. conclusion based solely on average branéh v

delay, K may be elusive one as far as the overall system-performance is‘_considcred.
Garcia and Huynh [GaH80] discuss the efforts made to reduce the resulting high
contention on the system bus in an early IBM 370 implementation using FBP.

The variation in system performance as a function of the number of buffer stages in -

the instruction fetch stage has also been computed. Again BTB Qutperforms every other

76

strategy, followed by Predzct Always Taken with Target Copy, in terms of average branch
delay (K) for any amount of buffermg in the fetch stage. ‘Al the strategles are seen to
v‘have almost identical performance slopes on the merit ratio curve and show 1dent1cal-
sensxt1v1ty w1th respect to sp. Flgunes AltoA3in Appendlx A contain these plots

_ Fmally, performance curves were generated as a function of sbc, ie. the total
number of pxpelme stages required for conditional branch resolution. BTB contmued to -

" be the first chorce for any number of segments in terms of overall merit ratto But for .“ _
long pxpehnes (sbc > 6) it slipped, instead fetching both paths (FBP) ﬁnally won with its

- constant branch delay with respect to Sbc- Note that just a branch taken/not-taken switch
in. the decode stage (TNTD scheme) significantly reduces the branch delay The
addmonal reduction in branch delay obtainable through BTB rapidly: decreases with
larger sp.: Fxgures A.4to A.6in Appendix A contain these plots,

Therefore, in- the typical operating range (0.6 < py <. O 75) there are three

competing strategies: Loop Buffer (LB), Predict Branch Always Taken with Target Copy
(PTTC) and Branch Target Buffer (BTB). The branch delay numbers for Predlct Branch

Never Taken, Delayed Branch, and BTB under. nommal conditions come quite close

- (within 30 percent) to those reported by McFarling and Hennessey . [McH86], ‘even
~though the nominal conditions while close, are not exactly the same as theirs. Assummg
branch frequency, b = 0.2, the results indicate a throughput (G) of around 10 Ppercent in

the above. mentloned operating range of pg,. This is also in close agreement with MIPS N

s1mu1at10n nesults [Gro83] of around 9 percent and the- analysrs of DeRosa and Levy»
[DeL87], suggestlng an 1mprovement of around 8 percent ’ N

In the followmg sectron some hybnd strategres are dlscussed that are based ,
pnmanly on these three strategies. Delayed branch and T aken/Not—taken Switch in the
Decode Stage also show good performance potentlal in posslble combmatlons w1th above’ _

- strategres

3.6 Hybrid Strategies

The followmg hybnd strategies are consrdered

_ a) Predict Branch Always taken with target-copy and delayed branch (TTCDB) Th1s is
~ the only hybnd strategy considered with almost no ‘additional 1mplementatlon cost and
-,only some software (compller) cost 2 : '

b)- Predtct Branch Always taken with target-copy, delayed branch and Loop buﬁ‘er o .
(TTDLB). i

77

c) Taken/Not-taken Switch in the Decode Stage with Loop buffer (TNTLB).

d) Taken/Not-taken Switch in the Decode Stage with Branch target buﬁ'er (TNBTRB).
Fmally, consider a combination of TNTD and BTB. For a miss in the BTB, instead of
falling back on the default Predict Branch Never Taken case, this strategy assumes a
' branch taken/not-taken switch in the decode stage similar to TNTD. - ’

‘ 3.6.1 -Infer’ences

Sensmvuy plots of the performance parameters, K, I, and MR are obtamed with
respect to Psb and sp,. (Figures 3.12 - 3.15). - ‘

‘a) ‘Around the nominal values of system parameters and of the hybrrd strategles the
minimum implementation cost strategy, TTCDB, performs better than every non-
hybrid strategy except BTB. For pg, around 0.7, it even outperforms BTB in terms

of average branch delay (K) as well as merit ratio (MR). '

b) Around the nominal condmons, the last three hybrid strategies: TTD[B TNTLB,

‘and TNBTB are almost equally competitive. For shorter pipelines (s, < 5) TTDLB

- . has a slight edge over the other two. For longer pipelines active branch predlctlon

becomes more important and TNTLB and TNBTB perform better than the rest and

~ continue ‘to follow each other closely. Therefore, on a system with- a branch-

taken/not—taken prediction switch in the instruction decode stage, if one were to

jchoose between the addition of either the loop buffer or the branch target buffer,

careful consideration should be given to 1mplementatlon cost issues which may t11t
the balance slightly in favor of the loop buffer based TNTLB scheme. . B

o). ;For psb = 0.7 or more, at nominal s;., TTDLB strategy outperforms the others and

:emerges as the first choice, in terms of all the three performance parameters.
"Around pg, = 0.7, TTDLB reduces the branch delay to less than one third as
compared to the Predict Branch Never Taken strategy. :

Effect of loop (target) buffer hit probability. Target buffer based strategies 'show more
sensitivity to. the hit ratio, py, than the loop buffer based strategies in terms of average
branch delay (Figure 3.16). Loop buffer based strategies are more sensitive than the
target buffer based strategies in terms of the excess instruction traffic cost with respect to
the corresponding hit-ratio py, (see Figure A.12). As a result, both classes of strategies
exhibitélmost identical slope on the merit ratio performance curve (see _Figure A.13).

Eﬁ’ect of Target fetch freeze probabzlu‘y The d1scussron so far has 1gnored any potentlal
for a freeze (due to say, cache miss or page fault) while attempting to fetch the branch
target. Assuming a fetch freeze duration of 10 clocks, the performanc_e sensitivity with

78

’Average 54
branch)
delay, = -
T
eem--- BT '
-m--- CIlfze<De~cB--- .
0.4 4— T — —

035 04 045 05 055 06 065 07 075 0.8 085
- Successful branch probablhty, Dsb

Flgurc 3.12 Average branch delay versus successful branch probablhty for
' PBNT, TTCDB, TTDLB, TNTLB, and TNBTB strategies.

28

| PBNT
)) . 2:4
Average '2
number of S J:TSDB
wasted 1.6 - *~\\~\
instruction 4 T
- fetches 12— ~
per branch, 0.8 e : |
It .8 ---*___*iTTDLB TNBTB SO
Dt E___.E—-——E""‘B E
04_ ===ig-% ::Z.--:.I::i.-_*:::._-_.-_:, ‘
v .-- - " TNTLB | ’ *--~*‘f-e,‘ o
0 ! I | T T

035 04 045 05 055 06 0.65 0.7 075 0.8 0.85
Successful branch probablllty, Dsb

Flgure 3.13 Average number of wasted instruction fetches per branch versus
' ~ successful branch probability for PBNT, TTCDB, TTDLB TNTLB,

and TNBTB strategies.

79

09
_ 0.84% -
0.7 4
Merit
ratio, 0.6
MR

0.4 S

0.3

| T] ! A] | | !
035 04 045 05 055 06 065 07 075 0.8 0.85

‘Successful branch probability, pg,

Figure 3.14 Merit Ratio ‘versus successful branch probability for PBNT,
TTCDB, TTDLB, TNTLB, and TNBTB strategies. ‘

3.6

3.2 4
2.8 :
Average 2.4 PBNT ey
branch TTCDB-" .-~
24 T
delay, _ _~°"_.-" TTDLB
K‘ 1.6— ",'/’,X/’ 3---"" ?
1.2 4 -2 g~~~ "INTLB f
__,__-::5"’::/ ————— 8--"""
(R R BT "Ll “NBTB
ff::=8°‘='—
0.4 5 | T I T T
2 3 4 5 6 7 8

Number of stages for conditional branch resolution, 55,

Figure 3.15 Average branch delay versus number of stages for conditional
branch resolution for PBNT, TTCDB, TTDLB, TNTLB, and TNBTB

strategies. ,

80

2.3— \‘\
2.1 > | | LB
1.9 + ’ Ss o ’
Average 1.7 '
branch '1;5—I'==g-~'~ TNTLB >
dClay, 13_ ~~-*:_:é;~:" ~
kK O] TIDLB & TSsaiplligiogs.
L1- =N R N TN
S) = ‘o -::i
019'— . TNBTB ‘\S ~o
0.7 - LR
0.5 —

1 | T T | T 1 | T
0 01 02 03 04 05 06 07 08 09 1

Loop/Target buffer hit probability, py, Pen

Flgure 3.16 Average branch delay versus Loop/Target buffer hit probablllty for
LB,BTB, TTDLB, TNTLB and TNBTB strategles

Average 1.8 - ﬂCDﬁcf”* fore A"
branch . | et P O -
delay, ° *x=” - ,:_g:::i—-‘i
o 144" INTLB ___.gilige=s ¥ TIDLB
K A - :;:E:—‘A',’— H
1.2 ::Ii:::/' a-"

.‘ 0.6 1 l 1 l I T T T
0 002 0.04 006 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Target fetch freeze probability, rr

Figure 3.17 Average branch delay versus target fetch freeze probablhty for LB,
- BTB, TTDLB, TNTLB, and TNBTB strategies.

81

respect to the fetch-freeze probability (py) is analyzed next. Loop buffer based strategies
are at an advantage in such a case because a hit in the loop buffer also eliminates any
page fault potential associated with external memory access. As a result, loop buffer
based strategies show more performance stability with respect to py than the BTB-based
strategies. For example, if p increases from 0 to 0.1 average branch delay for the loop
buffer based TNTLB strategy increases by 20 percent, whereas that in the case of the
BTB-based TNBTB strategy increases by more than 75 percent (Figure 3.17).

37 'Sunvlmary

A common analytical platform, based on certain system and program parameters,
can be developed for classifying and comparing different branch strategies. Such an
approach has the advantage of being far less time consuming and more flexible compared
to simulation-based approaches. Excess instruction traffic caused by different branch
strategies has been overlooked in the past. Additional instruction traffic helped to
distinguish an overall performance difference between some apparently equally well
performing strategies. A branch strategy using a branch-taken/not-taken switch in the
decode stage is found to be almost as effective in combination with the loop buffer as
with the branch target buffer. In a typical microprocessor environment with less than
five segments with a successful branch probability around 0.6, a branch strategy based on
default prediction of branch always taken, along with compiler support for target copy
and delayed branch is shown to provide performance potential comparable to a branch

strategy based on Branch Target Buffer.

Finally, certain components of branch delay have been ignored in this chapter. For
example, some machines [SJTH89] have an added delay during branches if the target is
misaligned. Also some compilers, such as trace scheduling [Fis81] compiler have an
additional overhead of patch-up code if their compile time prediction of a branch is
found incorrect at run time. These delay components are analyzed in detail in Chapter 5.

82

CHAPTER 4 |
SUPERPIPELINED VERSUS SUPERSCALAR

4.1 In‘troduction .

Recent advances in technology have made it now feasible to put multiple execution
pipelines on the same chip. Previous chapters have explored some of the issues issues
associated with optimal design of single pipelines systems. This chapter extends the
analysis into the realm of superscalar processors. An analytical model is proposed as an
alternative tool for analyzing the tradeoff between superpipelined processors. The
factors that contribute to performance limits are analyzed. The duality of superpipelines
and superscalars is examined in detail and certain imperfections of this duality ar¢
described. Jouppi and Wall [JoW89] studied tradeoffs of superpipclihed and superscalar
machines via simulations. Smith, et. al. [STH89] investigated the performance limits of
such machines as a result of instruction fetch inefficiencies.

4.2 Superpipeline/Superscalar Tradeoff Model

Consider performing an operation using a circuit having g gate-levels of
propagation delay. The quantity g is the operation gate delay. Suppose there are n such
operations and a set of & pipelines, each s stages deep, to support execution (see Fig. 1.7).
Each pipeline latency is assumed to be s clocks. If inter-stage buffers are assumed to
have one gate-level of delay then, gpipelinea =8 +5 —1+€, where € is the smallest imeger
such that g,,0ineq €venly divides g +s5—1+¢€. The quantity s —1+€ is the overhead due
to pipelining. If the circuit is not pipelined, i.e., s =1, then €=0 and pipelining overhead
is null. Atmost, €=s— 1, so the worst case pipeline overhead is 2(s—1) '_gaté delays.

For n a multiple of k * s, the first set of k results from the k pipelines is produced
after s clocks, and the remaining n —k results take (n —k)/k clocks. Let T, be the time to

‘execute n operations. Then, ' |

83

T,= [s + 2 ;k] [g,, ipelined] gate delays
: . t s , _

IA

[s +Z ;k] [g ha 2§s b))] gate delays (worst case). : (4.1}

The 1deal throughput represented by Equation (4.1) is difficult to achieve in practlce
due to addmonal delays that can be grouped into the following categories:

a) Scheduling Delays: ‘
i) Instruction Fetch Delay: delay due to restricted main memory bandw1dth on an
instruction cache miss, . ‘
ii) Branch Delay: instruction fetch delay due to uncertainties in the execution path,
ii1) Dependency Check Delay: delay due to run time dependency check in an -
instruction window, and '
iv) Dependency Delay: delay scheduled to satisfy dependency constraints.

b) . Execution Délays:
i) Operand Fetch Delay: delay in fetching the operand(s) from memory, and
ii) Multiple Cycle Operations: delay due to operations that take more than one
clock in the execution stage. | |

Although the delays llsted above are faxrly independent of each other there is some
overlap For example consider an instruction 7 that takes multiple cycles to execute.
Also assume that the following instruction J is data-dependent on I. In such a case, the
execution delay of instruction / can also be viewed as the scheduling delay for instruction
J. Alternatively stated, the dependency of an instruction J on an instruction I lingers for
multiple clocks, 1f the execution of I takes more than one clock. For s1ng1e pipelines,
lingering dependency can be modelled the same way as the effect of multiple cycle
operationS in Section 2.4. However, in this chapter the delays due to mhltiple cycle
operations and restricted memory bandwidth for instruction fetch are ‘ignored on the
premise that the hardware is designed to deliver k operations per cycle throughput on a
sustained basis. Delays due to run time dependency checking are ignored on the
assumption either compilation was done conservatively to eliminate the possibility of run
time dependencies or that sufficient hardware is provided to do dependency checklng
without i 1ncumng any delay.

Let the branch probability be b with each branch taking g*dj gate delays for
resolution. For example, d,=0.5 implies that the branch delay is half the operation gate
delay, or roughly half the pipeline length because of pipeline overhead.

84

Operand fetch delay is modelled assuming that on-chip cache has no access delay
and internal bandwidth (cache to pipelines) is kX operands at a time. Further assume that
external bandwidth (main memory to cache) is limited to one operand -at a time, hence,
miss processing is sequential. The operand-miss probability is e=w * (1—h), where w is
the probability of operand reference for an operation and h is the cache hit probability.

Assume cache miss processing takes g*d,, gate delays. |

These further assumptions are made:

1) Instructions are issued simultaneously to the k pipelines, and there is no 'inter~stagé
buffering of intermediate results. This means that if there is a pending branch in
any one of the pipelines that delays its following instruction fetch, then all the k
pipelines freeze. Similarly, any cache miss on an operand fetch for one pipeline
delays all pipelines. Thus, pipelines are synchronized. To do otherwise is a
complicated hardware task of dubious cost effectiveness. '

2) In the absence of any branch delay, assume that k operations are always issued to
the k pipelines. Thus, issuing constraints imposed due to data dependency are
ignored. This is the weakest of all assumptions and it is further addressed in
following chapters where utilization constraints due to such dependencies are

 discussed in detail. '

3) . Delays as a result of instruction cache misses are ignored. Note that instruction
-cache misses on branches can be assumed included in the branch delay.

Assuming only one cache miss at a time, the additional delay term to be added to
Equation (4.1) is:
- " nlbgdy+egd,—bemin(dy, dy)g]l ,

where the last term accounts for the overlap of the instruction fetch and o'pefand fetch
delays due to branches and cache miss, respectively. ’

"The instructions undergoing simultaneous execution must be independent in order
to have been scheduled together. Simultaneous cache requests are then independent
random variables, and are assumed to be identically distributed. Thus, multiple cache
misses follow a binomial distribution. Allowing one operand fetch per pipeline per
clock, there can be up to k simultaneous cache misses. Allowing for multiple
simultaneous cache misses Equation (4.1) becomes

k) »
n[bgdb+egdm]—_;ci[%gbeimin(db_,idm) K (42}
=)

where €; is the probability that i cache misses occur simultaneously, and

s

=4Cie' (1-e)*”!

The mean value of the distribution is k& and *C; ——'(:—)‘— Assummg further that
djp, < d,,, Equation (4.2) becomes
| g bdp (1-20)

ng (bdy+ed,)— (43)

k _
Combining Eqgs. (1) and (3), the total time (in terms of gate delay) for n operations is

T.< [s} n-—k} [g+2(s_1)]+ng(bdb+edm)— n g bdy, (1-g) (4.4)

k s k

Equation (4.4) is useful in deciding whether or not an additional pipeline will yield
a significant throughput improvement justifying its additional cost. Figure 4.1 plots
throughput as a function of the number of pipelines (k). '
: Rcsqurce utilization, u, is
' wasted time slots in units of gate delay
total available time slots in units of gate delay

where the numerator is the delay from Equation (4.2) and the denominator is the sum of
the delays from Equations (4.1) and (4.2). Figure 4.2 shows utilization versus number of
pipelines.” The duality of superscalar and superpipeline systems, i.e., any throughput
achieved using a pipeline of certain depth can also be achieved using a corresponding
number of pipelines of depth one, is evident. The throughput benefit for a given increase
in pipeline number or depth decreases for greater initial pipeline .number or depth.
Because pipelinc replication is more area-intensive than additional segmentation, and
segmentation is more and more difficult to obtain, the guiding rule of de81gn should be:
segment plpelmes to the extcnt feasible, then replicate pipelines.

4.3 Performance Limits

- Looking at the throughput curves in Figure 4. 1 it would be reasonable to ask What
are the performance limits as another segment or another pipeline is added 2
| Flrst consider the throughput limit when using additional plpehnes Reérrange

Equatlon 4. 4) by grouping terms that are functions of k and those that remam The
rearranged form can be written '

~ Throughput,
instructions per
unpipelined
operation
gate delay, g

Figure 4.1

86

18
16 _ Number of pipeline segments, s = 10
14
12
10 4

—

6 —

Number of pipeline segments, s=1 |

0 -

» I 2 T —
1 2 3 4 = 5 6
‘ Number of pipelines, &

Normalized throughput versus number of pipelines, with the
following nominal assumptions: data cache reference probability =
0.5, data cache miss probability = 0.05, data cache miss duration =
0.5 * operation delay, branch probability = 0.2, and branch delay =
0.15 * operation delay.

87

14
0.9
08-
0.7 -
0.6
05—
0.4 -
034
024

Number of pipeline segments,s=1 | -

Utilization,
u

Number of pipeline segments, s = 10

| l l — —T T
1 2 3 4 5)
Number of pipelines, &k

, Figﬁre 4.2 Utlllzauon versus number of plpelmes (parameter values the same |
L " as in Figure 4.1). .

88

-1

ng A
2 =G=}|—+8B 4.
T, G P] v {4.5}

where

' : 1 2 2

A=t Z% _pad (-
st 2 b (1—€p)
and

"B=l+bd,,+ed,,,——i-+ 2 1,2
n gn gns ns gn

—

For a continuous instruction stream, n can be assumed to be large. Therefore,
B=bdy+ed, .
Ask — oo,

G-oB l=(bdy,+ed,)" .) {4.6)

This limit is independent of s and is simply a function of the branch penalty, which limits
instruction fetch, and the cache miss penalty, which limits the execution time. For the set
of parameter values used in Figure 4.1, the above limit evaluates to G =23.53.
Considering the fact that normally b > €, the above limit has been referred to as the ferch
bottleneck, also sometimes known as Flynn's bottleneck [Fly72]. '

~ Now consider the performance limit when deepening the plpehncs Equation (4.4)
can again be rearran ged to yield

-1
8 _G-= £+Ds+E] ’ {47}
T, s
where
1 2 2 1 2
C=———"++—-—, D=—-
k gk gn n gn
and

_4 .2 _bdy(1-¢p)
™ gn gk k '

Unlike the previous case, as s — e, G — 0. This is because the overhead of additional
buffers grows with additional segments. Therefore, beyond a point, this overhead
overtakes the gain due to segmentation. The issue of optimal pipelining was studied in
detail in Chapter 1 and in [DuF90]. Ignoring synchronization overhead, (which is a
reasonable assumption for superscalar-type processors, unlike multiprocessors), there is

" ;89‘,‘ |

no reason why throughput should decrease due to the addition of a p1pel1ne ‘Thus, the
duality of superplpehnes and superscalars is not perfcct Ass grows, g must remain at
least of the same order as s, so for large n : :

| ~bd,(1- |
| "-C“'ilc' Ds =0 , and Ez—b—,(c——-e?l+bdb+ed
‘Therefore, as § increases, _
‘ o _ 31
- bd, (1~
G- bd,,+ed,,,———”—%—5'2 {48)

. This limit is sameas that given by Equation (4.6) except the last term, which vanishes for
~large k. Recall that this last term represents- the saving due to hiding some branch delay
when overlapped with data-cache miss processing for one of the pipelines. This saving is »
apportioned over the k pipelines and hence becomes negligible for large k. For the set of
parameter values used in Figure 4.1, the limit on throughput given by Equauon (4 8)
evaluates to 23. 92 » :

4.4 Modelling Resource Utilization

o 'l‘he__s“cheduliug and execution delays listed in Section 4.2, althOugh.different in their
- original causes, have a common impact. They introduce unwanted bubbles (pipeline

o stalls) in the system, which finally ripple through different stages to cause loss of net

‘system throughput As one stage is delayed in delivering the intermediate result to its .
. successor, the successor stage waits idly, and hence the system utilization drops It is
~relatively much easier to predict a system performance in an ideal settmg, assurmng no
- -such loss. In other-words, modelling this drop in system utilization i ina non—1deal real- ’
t1me environment is the key to an accurate performance predlctlon L

Con51der the generic drop in utilization as system resources of a certain kmd are

’added such-as increasing the number of pipeline stages, 1ncreasmg the number of

plpelmes, or addmg more processors. If these added resources are fully utilized and if
any overhead is ignored, system throughput should increase in an easily predicted
manner. For example, if two pipelines are always busy, the throughput should be twice
‘that of the smgle-plpelme system But the added resources are often accompanied by a
reduction in- overall utilization. There may be different approaches to utilization

- modelling:

a) A purely empmcal approach would be to expenmentally collect the utrhzatlon data
as a function of the number of resources for the »chosen set of benchmarks being

90

used for performance measurement. This data from a certain machine can be used
in future as a guide in performance prediction for a similar machine. Th1s approach
has been used in Chapter 6 for generating some utilization curves.

b) One problem with the previous approach is its inability to predict the utilization
' beyond_" the range of experimentation. A formal approach to alleviate this drawback
~ would be to characterize the nature of the empirically collected utilization curves

with the aim of extracting some key components that might aid in predicting beyond
the range of experimentation. For example, the rate of decrease in utilization might
exhibit a simple relationship with the number of resources. In a strict mathematical
sense, the collected utilization curve can be approximated by a polynomial (using
standard approximation procedures). This was the adopted approach in Chapter 2,
which assumes a generic polynomial utilization model that is empirically-derived.

" ¢) One major drawback with both previous approaches is that they do not offer any
useful insight to the system designer. Often a system designer is faced with the
question of whether it would be more profitable (in terms of improved throughput)
to reduce the dependency delays in the instruction stream and thereby increasing the
‘'system utilization, or to simply replicate system resources with reduced utilization.
Neither of the previous approaches can resolve such tradeoffs. An alternative
zipproach would be to model such specific utilization related tradeoffs based on
‘some characteristic empirically collected distributions. This approach is illustrated
in the following chapter. ' | '

4.5 Summary

.- The analytical model developed in this chapter allows easy, comparative evaluation
of superpipelines and superscalars. It is extended in Chapter 6 to include
multiprocessors. The parameters contributing to throughput numbers are given in units
of gate delays, facilitating model use by IC designers. When validated by measurements
on actual systems, the model allows evaluation of possible benefits to be obtained by
modest modifications of the basic parameters of circuit organization. With respect to
superpipelines and superscalars tradeoff, the model supports the following design rule of

‘thumb: segment a pipeline to the extent possible to improve throughput, then replicate
the pipeline for further throughput increases. The performance limit for these systems
has been derived and it supports the fetch bottleneck observation of previous researchers.

~ The next chapter provides an analytical model for dependency delays that were 1gnored
in this chapter.

- 91

CHAPTER 5
INSTRUCTION-WINDOW SIZE TRADEOFFS
AND :
CHARACTERIZATION OF PROGRAM PARALLELISM

5.1 Introduction

Identifying independent operations that can be scheduled for execution in pafallel
has -always been a key to execution speed enhancement. At the instruction level,
detection of concurrent operations begins by examining a consecutive set of instructions
from a serial execution sequence, or instruction stream. The instruction stream can be
analyzed either at compile time or at execution time. The number of instructions
simultaneously examined for detecting a concurrent subset is the scope of concurrency
detection. On computers that do run time concurrency detection, the instruction window
comprises the set of instructions examined for possible scheduling for simultaneous
execution. The larger the scope, the greater the probability of detecting a subset of
instructions of a given size that can be scheduled for concurrent execution. '

The conditional branch instructions of a program partition it into a collection of
basic blocks, or instruction stream segments each ending with a conditional branch. A
conditional branch directs the execution sequence along one of two or more possible
paths and the direction taken is known only at run time. Yet, a consecutive set of
instructions of size equal to the desired scope must be available and concurrency
detection must precede execution. This dilemma can be overcome by using branch.
prediction to identify the most likely execution sequence. Concurrency detection can
then proceed using the instruction stream as assumed by the branch prediction method.

Conditional branch predictions will err occasionally. Therefore, any concurrency
detection scheme that groups operations across conditional branches (i.e., beyond basic
blocks) must also have a mechanism to undo the effect of executed operations, if any,
that do not lie on the actual execution path.

A variety of studies have been done to assess the performance potential of
concurrency detection techniques. While some studies, based on idealistic hardware
resource assumptions, report a speedup potential in the range of 50 to 100 [RiF72,
NiF84], others report a speedup potential of only 1.5 to 10 for specific architectures and
specific sets of applications. In the latter category, studies considering only

I

within-basic-block concurrency detection, such as those by Tjaden and Flynn .[TjF70], o

Weiss and Smith [WeS84], Acosta, et. al [AKT86], and Sohi and Vajapeyam [SoV87],, o

report speedup of about 1.5 to 2.5. Wedlg [Wed82] and Smith, et. al. [SJI-189] assume
beyond-basic-block concurrency detection and find potential speedup of about 2 to 4.
Acosta, et. al. [AKT86] and Smith, et. al. [STH89] have also reported the performance ,
impact of instruction window size on dynamxc concurrency detection through 51mulatlon -

based techmques Finally, the studies [KMC72, Lam88, HsD86, CGL89] rely on |

compile time support to enhance speedup potentla.l and have reported speedups in the'
range of 4t0 8. S
The following section describes the analytic model used to study the performance

tradeoffs associated with instruction window size, and introduces a measure of the
available amount of parallelism in an instruction stream. In Section 5.3, different costs

~associated with conditional branches are introduced and a measure of the cost of

_extracting the available parallelism is defined. Experimental results are presented in

Section 5.4. Finally, Section 5.5 describes the issues to improve performance predlctlon' SR

accuracy.

5.2 The Analytic Performance Model

Cons1der an instruction window of size W+1 consisting of a stream of 1nstruct10ns R

labeled I, I 1» I, ..., Iy, where I is the first instruction in the window. A necessary
- condition for two instructions /; and I, to be schedulable for simultaneous execution is

that they have no dependencies. An instruction is dependent on another if it uses the S o
“result of the other, or if it overwrites a value to be read by the other, or if it overwntes the -

result of the other. An instruction dependent on another cannot be executed prior to or
. simultane’ously with the instruction it depends upon without changing the meaning of the

program. The sufficient condition for scheduling I; and I}, together is that there must also' h R

be no instruction I in the instruction stream between I; and /; and on Wthh I; depends
If such an /; exists, then /; must execute after that 1;, and by implication, after I;.

Let I; ; represent the event that instructions I; and /; are mutually mdependent and o

let [; . represent the event that instructions /; through Ik in the instruction: stream are' _
pairwise independent. P (I k) denotes the probabllxty of theevent/; . .- a

Because instruction /o is dispatched uncondmonally, consider the remaining
instructions in terms of whether they are scheduled together with /o or not. Let I;:y -
represent the event that instruction J; is scheduled with 7, and let I;: n represent the event
that instruction /; is not scheduled with Iy. Because I; ; can be scheduled w1th I 0 only ifI;

is 1ndependent of all the preceding instructions between Iy and];, ‘ :

93

PUiy)=PUjjlj2,j i3, s 10,))

=P(Ij—1,j)P(Ij—2.j|Ij—l.j)P(]j—S.jIIj—l,jalj—z,j) s Plojl Lo dj-gjs s 1)) {5.1}

Let p,k=P(I,k| k> for all j such thati <j<k) (see Figure 5.1). This p,k is the
v | condztzonal mdependence probability of instructions f; and . Thus

P (ijY)=H'P(i—t>,j :
=1

Assume the instruction stream is a stationary random process, that is, the probability of
-instruction independence is independent of the instruction window position with respect
to the instruction stream, then p; ; is a function only of the distance between I; and /;.
Hence, p; , may be written p 5, where 8=k—i. Then,

j , o
PUpy)=11prs - ' _ {5.2}
&=1
If p 5 is constant, then
J : : e
P;:y)=IIps=p-p -+ p=p’ ‘ {53}
=1

Note that a constant ps does not mean that any two instructions, say I and I, are
equally likely to be independent of a third instruction, say /. Rather it does mean that
I, and Iyo are equally'likely to be independent-of ¢, provided that I 10 is not already
dependent on an intermediate instruction, I, for 0<m < 10. (There is no instruction
between Igandl;.) P(I;:y) reflects the influence of both compiler des1gn and hardware
resources on inherent program character. However, ps is more purely representative a
given, fixed program sequence. Here, the program level is assembly language.

The probability that exactly k—1 instructions in the w1ndow are dispatchable along
w1th Igis :

P Una 2, e I =P gy o Ty P Ui)+ Prc (1 g, oy By)*P (in) {5.4)

, ‘At run time, the probability of being able to dispatch at least k instructions is of
more interest than the probability of having exactly & dispatchable instructions. The
probability of having at least k—1 dispatchable instructions in addition to /¢ is

W .
sz—l (11.12,...,Iw)= Z Pj(]].!IZ’ ...,Iw) .
J=k=1

The above equation can also be written in the following form, which may be more
computatlonally efficient :

04

Instruction
Stream

Figure 5.1 Illustration of dependencies determining conditional independence
: probability, p; ;. Each single arc indicates a pair of instructions
that are given to be independent. The double arc denotes the

dependence in question for p; 4. L

95

PZO(II’IZ»,IW)'—"l

P (11,12, v dw) =1=3 Pi(y,1q, ... Iy) ,fork>1 .
j=0
Figures 5 2 through 5.4 depict P, as a function of ps and W. The followmg
observatlons can be made:

1) ::Flgure 5.2 shows that a given variation in pg, for higher (lower) values . of Ps

’;.jfvbe;comes_ increasingly more (less) crucial as k grows. For example, a compile time

| effo'r"t’ to ‘increase ps (say, by register renaming) from 0.55 to 0.65 while quite

nottceable ‘when there are three dispatchable instructions (k=3), is almost

" unnoticeable for k=5. An increase in ps from 0.75 to 0.85 although unnottced for
k=2, i significant when k=4.

2) Larger window size can only be justified with an accompanying compile time effort
to reduce dependence by increasing the conditional mdependence probabthty, as is
evident from Figures 5.3 and 5. 4, :

_ Plots such as in Figures 5.2 through 5.4 can be useful in 1solat1ng execution
- performance bottlenecks. Based on the operating point, the plots reveal whether the
‘bott_leneck’ is insufficient inherent parallelism in the stream (low p3, suggesting more
compiler effort for reducing instruction. dependencies), or not examining enough
instructions: (suggesting increased window size which might further indicate the need to
do ‘beyond-basic-block scheduling), or insufficient resources for utilizing available
parallelism (suggesting good payoff for additional hardware). The operating point for a
new processor-design can be determined at an early stage, so Figures 5.2 through 5.4 can
be useful in guiding the design effort. Sometimes loop unrolling is used at compile time,
to increase the scope of concurrency detection. There is no performance gain in
unrolling beyond the point where scope of concurrency detection is not a performance
~ bottleneck any more. Therefore, the information from figures such as Figures 5.2 through
5.4, can also be used to limit the amount of unrolling. v -

' Figures 5.2 through 5.4 are based on the assumption that p 5 is constant. This may
be an inaccurate assumption for many programs. Near successors of an instruction are
more likely to be dependent on it than the instructions further removed. Thus, pj is
expected to rise with & for small values of 3. But, beyond the immediate vicinity, i.e., for
‘large values of 3, p 5 may be fairly constant.

Consider a 4-pipeline superscalar processor system. If due to dependency
constraints, only two operations can be issued for 30 percent of the time, then the system
behaves effectively as a 2-pipeline system 30 percent of the time. Thus, the effective
‘throughput Gy, under dependency constraints for a k-p1pelme processoris -

Probability
of
scheduling

k instructions 4 —

- Figure 5.2

8
s
.6 -

- 96

Instruction window size, W = 16
Conditional independence probability =p 5

94

34
24
14 P&=
0.05 _
0 i | 1 1 - |
1 2 3 4 5 6 1 8

Number of independent instructions (at least), k

Probablhty of scheduling k instructions for various values of pg

and a fixed instruction window size of 16.

97

Conditional independence
probability, p5=0.7

Probability 6

- of '
scheduling

kinstructions

T T —
1 2 3 4 5 6 7
- Number of independent instructions (at 1east), k ‘

Figﬁrc 5.3 Probability of scheduling k instructions for various instruction
window sizes and p 5 =0.7.

1 =] N~
9 ' = Conditional independence -
. >~. probability p5=0.8
R. T R >
- ‘ ..
Probability . | \\W__= 16
- of _ A
‘scheduling 7 W=10
kinstructions] i
‘ 34 S
2 W=2
14 '
0 | I T ! T
1 2 3 4 5 - 6 7

Number of independent instructions (at least), &k -

- Figure 5.4 Probability of scheduling k instructions for various instruction
' window sizes and p 5 =0.8.

98

_) o
Ge=X8in Pilly, 12, . Iw)+ 8k Pk U1, 12, . Iw) - {55}
i=0
where g;, for 1< j <k, is the throughput for a j-pipeline processor calculated ignoring any
dependency constraint (always having j'SChedulable instructions), but including such
delays as cache misses and conditional branch resolutions. This is same as the
throughput computed using Equation (4.4) of Chapter 4. ' '

5.3 Cost of »Branchcs

Let b be the probability that an instruction is a branch instruction. On every clock
cycle an instruction packet consisting of £ instructions is fetched. Let the cache line size
be a multiple of k. If instruction words have fixed length, then in the absence of any
branches, all instruction references will be aligned and a fetch bandwidth of k

instructions per cycle will be sustained.

‘The cost of branches may be categorized as follows:

a M zspredtcnon delay. Every time a branch prediction is mcorrect a certaln dclay is
incurred. Let D; be the average delay associated with each mlspredlctxon In the
case “of out-of-sequence beyond-basic-block execution, a branch misprediction
means that more than just the execution pipeline may contain incorrect execution:
instructions from much earlier may need to be undone. So, mlspredlcuon delay
may be significant. :

b) Wasted fetch delay. Every time a branch is detected, the remaining instructions that
are part of the packet of k instructions may be wasted. (Delayed branching may .
reduce this waste.) The wasted execution bandwidth corrésponding to these
instructions is added as a delay to the branch instruction. Since the total execution
bandwidth of a packet of k instruction is 1 clock, the wasted bandwidth of the last j
instructions in a packet is j/k. This delay has been studied with respect to a variety

“of branch strategies for the single pipeline case 1 in Chapter 3 (also 1n [DuF89
‘DuF91])

) M isalignment delay. For normal execution, assume that a cachc line can be fetched
from the instruction cache every cycle. An instruction reference ‘is considered

* misaligned, and hence requiring an additional fetch, if the group of k instructions
spans a line boundary. Every time a branch is predicted to a target s‘uchb that the
corresponding group of k instructions spans a line boundary, a delay of an extra
clock results because only one cache line can be read at a time. '

99

d) Cache miss delay. The cache miss probability for the branch target may be
somewhat more than the typical cache miss probability on instruction fetches

5.3;l Calculating Misprediction Delay Resulting from Spcculative Execution B

Scheduhng techniques usmg a concurrency detectron scope extendmg beyond a
basrc block i incur additional delay for an incorrect prediction because they need to undo
the damage if any, caused by execution of instructions outside the current basic block
The cost of undoing a wrongfully -executed instruction is dependent on the specrﬁc
1mplementat10n support for damage undoing, and can be considered mdependent of the
specific instruction type. For example, instructions that allow updates to user memory
(interface space) before branch resolution would need to restore the mcorrectly updated
locations. Let the time cost of undomg the damage of a wrongfully executed 1nstruct10n
be u cycles -

Consrder a program tree where each node represents a basic block and imagine
'followrng a program trace using some branch prediction mechanism (see Figure 5.5).
- Let p, be the probability that an instruction is scheduled with an instruction from a basic
block that is ® levels up the program tree. Assume p, is independent of depthin the

- program tree. Also assume that the scope of concurrency detection extends to the end of
the program (feasible at comprle time but not at run time). The branch mrspredrctron
cost, D 2 assocrated with the basic block that is j levels deep is

n-1 p, ;
-3 Tt

n—]+l a=n—j

{>5.6‘}

where Ni is the average program tree depth-and 1/b is the expected size of a basic block.
For example, suppose the conditional branch prediction associated with the basic block
“five levels deep is in error. This implies that all the instructions scheduled from_the basic
block at depth six and below to basic blocks at depths 5, 4, 3, 2, and 1 need to be undone.
Assurmng conditional branch prediction at any depth i 1s equally lrkely to be in error, the
average cost of a misprediction is :

p=l% 5 F et

j"'l n=j+1 @=n-j

‘ 3{5.7}

Because the probabrhty of scheduhng an instruction x levels up cannot. exceed that
vof schedulmg x—1 levels up, p, must be a monotomcally decreasmg functron of .
Also s1nce Z pm—l Do must’ be a nonlmear functron of . Assume Do Can-be

=0
approxlmated by a truncated geometnc distribution with parameters K and empmcally

‘determmed q such that

Figure 55

| Pfogram tree

: 100

2
T

Hodplud o
o -

. Wide
‘instruction -
- words

A scheduled trace
“with labeled instructions

Hlustration of a program tree, a scheduled trace of execution, and
the assembly of wide instruction words with beyond-basic-block

scheduling. '

101

1

Pe=Kq®(1-q), whereK—————-———
Zq (1-q)

'Assumi_ng K =1 (as would be the case for large N), intuitively, (1-qg) fcpresen_ts the
probability of within-basic-block scheduling for an instruction. The experimentally
collected results for p, for the set of benchmarks exhibit similar distribution
characteristics. Thus, Equation (5 7) can be rewritten as '

n-1 g .01)
D=FZ Z y Ka (-qu

' o Jj=1 n=j+l o=n—-j b
In closed form
: ‘ _.N N-1, -N_
D,-=Ku q N_q(l q)_q (‘I) +NqN . {5.8}
Nb(1-9) 1-¢ g -1

Figure 5.6 illustrates D; as a function of program tree depth, N. For values of g in
the range of 0.1 to 0.6 the average misprediction ‘delay, D;, is essentially constant for
N 220. Even for q as large as 0.8, D; is nearly stable for N 250. Since the scope of
concurrency detection in Equation (5.7) is assumed to be infinite (extending up to the end
of the program), D; as computed above is an upper bound. Even in the worst case the
~ average branch misprediction delay is about the same as a typical cache miss processing
_ delay, 10 to 20 clocks.

5.3.2 Alternate Computation for p

~ Assuming fixed size basic blocks of size B = ll/b+0.5J , Do can be computed from
the P(I;:y):

i+wB-1
—EE Y P (:y)
i=l j=i+H®-1)B

For example, assume b=0.2. Consider the second to last instruction (i=2) in a basic
block. If it is scheduled at a distance of 7 to 11, it has been scheduled past two

unresolved branches. Hence, contnbutlon to p ,, by the second to last instruction, (o=2 is
2+10-1

02 Y PU;y) .
]—2+5

. The parameter p, computed as abovc would not be as accurate as that empmcally
collected, because the above calculations are based on the very simplistic assumption of
~ fixed basic block size. This can be improved by using the basic block size distribution -
instead. Assuming p 5 (and hence P (/;:y)) to be independent of the size of basic blocks,

102

20 :
8 q ranging from 0.1 to0 0.8
16
14
Average
misprediction 12~

delay per ~ 10
misprediction, 8
D; clocks

| T | T T T T .
10 20 30 40 S50 60 70 8 90 100
Program tree dcpth, N L

Figure 5.6 Average misprediction delay versus program tree depth for branch
' frequency, b = 0.2, average cost of damage undoing per
percolation, . = 1, and various percolation-distance distribution
parameter, g, values. The parameter g is a measure of beyond-

basic-block scheduling probablhty

103

P computed using basic block size distribution should be approximately same as that
empirically collected. Thus an alternate characterization of parallelism can be in terms of
ps and basic block size distribution instead of p . '

533 Dynamic Scheduling with Finite Lookahead

Since a machine can only dedicate a finite amount of chip area for keeping the
history of speculatively executed operations, there would be a limit to the amount of look
- ahead in terms of basic blocks. Let L be the scope of look ahead measured in number of
basic blocks (L =0 for within-basic-block scheduling). Then the average mlspredxctlon
delay is approximately

LLﬁu ‘ ‘»
D=y ¥, “;\ : - 59)

=t o=

where Po represents the p , distribution truncated at a distance of L basic blocks.

A finite lookahead in terms of basic blocks also implies that the size of instruction
window, W, is a variable, as it gets truncated to the size of L basic blocks whenever the
combined size of L pending basic blocks is less than W instructions. The dlsmbutxon for
Win such a case, can be computed using the basic block size dlstnbutlon

5.4 Experimental Results

There are two key input parameters in the model developed in the previous two
sections: ps and p,. The parameter pg provides a measure of how often two
instructions at positions 8 apart in the instruction stream are found to be independent. As
noted, two independent instructions at a fixed distance § may have a very different cost
for simultaneous scheduling, depending on their distance as measured in basic blocks.
The parameter p, captures this additional cost, glvmg a more realistic performance
estimate. : ;

Experiments have been conducted on a set of benchmarks (see Tablc 1) using the
‘Multiflow TRACE SCHEDULING compacting C and Fortran 77 compiler on a TRACE
computer. This compiler [Fis81] does out-of-order, beyond-basic-block scheduling. The
goal of these experiments was two-fold. First, to establish the nature of the p5 and p,
parameters and to determine their capability for characterizing program parallelism;
second, to show that this characterization can be used to predict their performance under
scope and resource constraints.

Table 5.1 Benchmarks used in this study.

Benchmark | Description
stanford Collection of various application programs
also known as Stanford Integer Suite
spice Analog Circuit Simulation Package -
fpppp Quantum chemistry benchmark that measures
» performance on a two-electron integral
derivative computation
| tair Transonic airfoil analysis program
applu Coupled partial differential equations
1 cgm: Conjugate gradient solver |
| fftpde 3-D FFT PDE
mgrid Simple multigrid solver
mdg Driver for molecular dynamic simulation
' of flexible water molecule
| ing3d Nonlinear algebraic systems solvers
and ODE solvers for signal processing
bdna - ‘ODE solvers for chemical and
’ physical models

104

105

The hardware of the TRACE 28/200 [CNO88] includes four processor boards, each
containing of two integer ALUs, one floating point adder, and one floating point
multiplier. - It can initiate 28 operations per instruction. Thus, the collected values for p 5
and p, are not resource constrained when considering less than the available number of
~ resources of the TRACE 28/200.

The Multiflow compiler provides the ability to generate detailed trace schedules,
such that the operations being grouped are also tagged to indicate their position in the
original sequential instruction stream. This information is used to' calculate the
Scheduling probability, P (I;:y), (see Section 5.2). Collected traces for the benchmarks,
are post-processed to simulate a run time scheduling environment. The target
environment assumes that on every scheduling cycle W instructions from the dynamic
stream of instructions are examined for dependency. Those found independent, say
k (<:W), are scheduled together and dispatched, and another W—k instructions are moved

into the instruction window. The post-processing consists of following phases:
| 1) remimbering instructions in a trace to represent a continuous dynamic
' sequence, ‘
2) dynamically adjusting distances between instructions as the execution
~ proceeds, and
3) weighing data from each routine in proportion to the fraction of run time spent
~ in that routine.

Figures 5.7 through 5.9 plot P (/;:y) for the chosen set of benchmarks. Note the
distinctive nature of the fpppp benchmark. Unlike the others, it has a relatively small
scheduling probability for adjacent instructions (5= 1) and has a small but non-negligible
probability of scheduling even at distances of more than 512.

The ps values can be obtained from the scheduling probabilities’ in the following
manner. Restating Equation (5.1),

PU=PUj PP Ui) o PUj H ey d2,)P o j L o Djo jo s 1) -
Assuming a stationary distribution yields

P(;y) =P(Ij—2.j—l)P(1j-3b,j—l [{jaj1) " PUoj- Hjpj-1snl1,j1) P o, Vo jolja joeeeid 1))

- =PUiay)PUojl 1j-1,j 1j2,js - - o5 11,5) -
Therefore,
P(j:y)

—_— 5.10
P(Ij_lzy) { }

P (Io,j [o1, L2 - - - , I j)=

ips , ford=j .

106

applu, cgm, fftpde, and mgrid benchmarks.

1.0 4
dashed square: stanford
dashed S?us: spice
034 TP
+ L * p p .
v 0.1 — ‘~§:~g : dashedgu et: tair
Measured i
instruction = 0.03 -
scheduling 0.01
probability, 0.003 —
Py 0.001
0.6003 .
0.0001 +
T T T T T T T T T 1
1 2 4 8 16 32 64 128 256 512 1024
Distance (number of dynamic instructions apart)
Figure 57 Measured instruction scheduling probability versus distance for the
stanford, spice, fpppp, and tair benchmarks.
1.0- dashed bullet: applu
03 H, dashed plus: cgm
' e-3I8<. dashed square: fftpde
‘ 0.1 =38 g dashed solid box: mgrid
Measured S:;%:;g:_g
instruction ~ 0.03 oo Fraln
scheduling 0.01 RN -
probability, 003 _ \}+ o
PUiy) 0001 T
0.0003
- 0.0001
i T 1 I l 1 l 1] | |
1 2 4 8 16 32 64 128 256 5121024
Distance (number of dynamic instructions apart)
Figure 5.8 Measured instruction scheduling probability versus distance for the

107

1.0+ dashed bullet: mdg3
03] g dashed square: mg3d
. IR, dashcdpus bdna
014 >-IF:ug |
~ Measured) »*";‘*Q:g, |
instruction - 0.03 - T~E: g,
scheduling 0.01 TRRIEL
probability, 003 ' \:é\ . ‘
PN oo] RN
‘ & . T
0.0003 | | N
0.0001 — o o

T r T 1 T T T T T 1
1 2 4 8 16 32 64 128 256 512 1024

Distance (number of dynamic ins'tructions apart)

Figure 59 Measured instruction scheduling probablhty versus distance for the
' mdg, mg3d, and bdna benchmarks.

108

Figures 5. 10 through 5.12 plot the p , distribution for the chosen set of benchmarks.
The p§ plot alone is insufficient justification for increased scope for a benchmark; the
- associated misprediction delay cost given by the p , distribution must also be considered.
Figures 5:.13 through 5.15 provide an estimate of this cost for the chosen set of
benchmarks using empirically computed branch probability, » and assurning cost of
damage undoing, p=1, in Equation (5.9). The worst case misprediction delay is around
20 clocks, as estimated earlier from the analytical calculations in the previous section.
Note that for fpppp more than 90 percent of time the scheduled instructions are in the
same basic block, resulting in very small misprediction cost. Therefore, this benchmark
would benefit most from a large scope. On the other hand, although one might be
tempted to increase the scope for tair, by only looking at the P (I;:y) plot, the
misprediction delay estimate (Figure 5.13) for this program would be a strong deterrent
to such a decision. Thus, p;, the conditional instruction independence probability, and
P o, @ measure of the cost of speculative execution, together provide a complete picture

in terms of the amount of available parallelism and the cost of its extraction, re-speCtively o

For programs where the Multifiow compiler generates many short traces. probablhty
calculahons for larger distances become inaccurate. For example, assume. there is one
instance when an instruction a distance of 128 was examined for dependence and it was
‘found 1ndependent If such a small sample is used to calculate the scheduling probability
at this distance, then the scheduling probability at a distance of 128 would be assigned a
probability of one, which is obviously an erroneous conclusion. A simple fix for this
problem is to ignore probabilities calculated l;aving too small number of sample data
points. - To incorporate this fix, of all the SPEC , NAS Parallel benchmark suite. [BBL91]
and Perfect benchmarks [CKP90], only the benchmarks that had at least 200 sample
data points in their growing throughput range have been selected. (This is why not all of
the SPEC benchmarks, NAS Parallel and Perfect benchmarks are members of the chosen
set of benchmarks) ~

Figures 5 16 through 5.26 plot the throughput calculated ‘with the model and the
measured static throughput (average width of instruction word) from the compiler output
. as a function of scope of concurrency detection and instruction word width. Model
throughput is calculated using the ps values input to the analytical model developed in
Section 5.2. Measured static throughput is estimated as the average width of schedules
(wide instruction words) in the traces output by the Multiflow compiler. The compiler
throughput estimate does not take into account run time. delays, such as memory delays,

SPEC is a trademark of the Systems Performance . Evaluatron Cooperative. Purdue Umvers:ty
SPEC License No. 310.
The SPEC benchmarks and NAS parallel benchmarks were compiled using version 1.6.1 of the
: TRACE C and FORTRAN 77 compilers. The Perfect club benchmarks were comprled usmg
o versron 2 2 of the TRACE FORTRAN 71 compller

Measured
beyond-basic-block
instruction
scheduling
probability,

Po

Figure 5.10

Measured
beyond-basic-block
instruction
scheduling
_ probability,
Po

Figure 5.11

109

1-

9 »

8 9 dashed square: stanford

Z 10N dashed plus: spice

S \\\ \ solid: fpppp

4 A\ X

3 dashed bullet: tair

2 -

1

O —f) ‘ pe o
1 | | ! | i |
0 1 2 4 8 16 32

Distance (number of basic blocks apart)

, Measured beyond-basic-block instruction scheduling probability
versus distance for the stanford, spice, fpppp, and tair benchmarks.

LT
9 -
8-
g - lfh\ dashed bullet: applu
.6) \\\ N
5 '\‘:\ dashed plus: cgm
S "
4 ‘\:\::\ dashed square: fftpde
;] “\‘:\'\ dashed solid box: mgrid
-1_' E\;- - =:::§\‘\
~""lgf::: --— Suals
__——-.-————-.-——-:QE---
1B [1 | | ! |
0 i 2 4 8 16 32

\ Distance (number of basic blocks apart)

Measured beyond-basic-block instruction scheduling probability
versus distance for the applu, cgm, fftpde, and mgrid benchmarks.

110

; : dashed square: mdg
Measured 8- : ‘dashed plus: mg3d
beyond-basic-block 2: solid: bdna
instruction
scheduling
probability,
Po '

| | T | [T
0 1 2 4 8 16 32

Distance (number of basic blocks apart)

Figure 5.12 Measured beyond-basic-block instruction scheduling probability
versus distance for the mdg, mg3d, and bdna benchmarks.

Predicted
. misprediction
delay,

D;

Figure 5.13

Predicted
misprediction
delay,

D;

Figure 5.14

111

12 5 - T TS e e e
g
104 Rl dotted: stanford
/ dashed plus: spice
8 - £ solid: fpppp
‘/ v dashed bullet: tair
6 — ’
B e
4
2 _ .
0-

11T 11ttt 17 1 17 1T 11
6 8 101214 16 18 20 22 24 26 28 30 32

Lookahead (number of basic blocks)

L
02 4

Predicted misprediction delay based on the empirically collected
P o distribution as a function of the amount of dynamic lookahead,
in terms of number of basic blocks for the stanford, spice, fpppp,
and tair benchmarks.

14 -
12 - P T T T e T T T
’,4 *+**++++++++++++++++++
10 - e
8 — T L
dotted : applu
6 dashed f}f)lus: cgm
solid: ffipde
4 dashed bullet: mgrid
2 _
0 -

T T T 1T 1T 1T 1T 171171
6 8 101214 16 18 20 22 24 26 28 30 32

Lookahead (number of basic blocks)

T 1
02 4

Predicted misprediction delay based on the empirically collected
D o distribution as a function of the amount of dynamic lookahead,
in terms of number of basic blocks for the applu, cgm, fftpde, and
mgrid benchmarks.

112

gEeasd
20 ZEBEEE
v = e e s
16 - -
Predicted
misprediction 12 A .
delay, dashed square: mdg
D; 8 dashed plus: mg3d
solid: bdna
4
0+ |
I L L L L U R P A
0 246 810121416 18202224 2628 3032

Lookahead (number of basic blocks)

Figure 5.15 Predicted misprediction delay based on the empmcally collected
P o distribution as a function of the amount of dynamic lookahead,
in terms of number of basw blocks for the mdg, mg3d, and bdna
benchmarks.

113

which are not part of the analytic model either. An important reason for the discrepancy
between the model prediction and the compiler output is due to the basic difference
between superscalar and VLIW machines. The model is based on a superscalar
architecture. Consequently, two instructions that are data-independent of each other are
always assumed schedulable on two available resources (pipelines). But in a VLIW
environment, such as that of Multiflow, there are additional resource restrictions, as each
functional unit is not a complete execution pipeline. For example on a VLIW machine,
two independent floating point adds may be forced to wait if only integer adders are
available. Such resource constraints are not part of the analytical model. Finally, note
that for a window size of 32, the average difference between the model and measured
compiler output is 20 percent and the worst case difference is 43 percent; whereas, for a
window size of 1024, the average and worst case differences are 47 percent and 79
percent respectively. More importantly, the throughput curves for both the model and
the measured values have very similar shape.

Experience with these benchmarks confirms that the longer the traces, the more data
points and hence more credible the probabilities and better the performance prediction.
For example, tair and fpppp benchmarks gave relatively longer traces and had better
performance prediction. Almost all the benchmarks (an important exception being fpppp)
attain almost all of the speedup with a scope of about 64 instructions and an instruction
word width of 6.

Figures 5.7 through 5.26 have been plotted with distance up to 1024 instructions
and for 32 basic blocks of lookahead. Current microprocessors such as, 80x86 or
RS6000, however, are just beginning to explore the tradeoffs associated with beyond-
basic-block (speculative) execution. Hence, the scope used by near-future generations of
such machines is likely to be limited to a few basic blocks and an instruction window
size of at most 16 to 32 instructions. With this in mind, , Appendix B contains
performance plots for several other benchmarks (Table B.1) to a reduced range of
lookahead. Although the benchmarks in Appendix B did not have more that 200 sample
data points in their entire speedup range (the previous selection criterion), they all have
more than 200 sample data points for a distance of 32 instructions or less. The graphs for
these benchmarks are limited in scope to 32 instructions and eight basic blocks (Figures
B.1to B.22).

5.5 Potential Improvements to the Mcdel

There are three predominant sources of inaccuracy in the performancc predictions
of the analytic model.

114

234612 &, ins Program: stanford
ool pon lé‘gﬂcmuu% bt B ;
- Static 27
- throughput:
(instructions -
per schedule)

1 2 4 8 16 32 64 128 256 512 1024
Scope (number of instructions) = -

Frgure 5.16 Throughput under resource and scope constraints for the stanford
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

£ model predicted throughput

234612 . « instruction word width Programspzce '
ﬂmeasuredoompﬂeromput LR

~ Static
throughput
~ (instructions . -
per schedule)

1 2 4 8 16 32 64 128 256 512 1024
Scope (number of Liustructions)

Flgure 5. 17 Throughput under resource and scope constraints for the spice
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was 1nﬂuenced by resource

~ constraints that are not part of the model.

© 115

234612 « instruction word width ' Program:- fpppp
3 model predicted throughput
#3 measured compiler output

Static
throughput
(instructions
per schedule)

1 2. 4 8 16 32 64 128 256 512 1024
Scope (number of mstructlons) :

Figure 5.18 Throughput under resource and scope constraints for the fpppp
’ benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource

constraints that are not part of the model.

234612 ¢ instruction Program: tair
=ty ?2:353&"33&3

Staic 2]

throughput
~ (instructions
“per schedule) ;|

1 2 4 8§ 16 32 64 128 256 512 1024
Scope (number of instructions)

Figure 5.19 Throughput under resource and scope constraints for the rair
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

116

234612 ¢ instruction word width
€2 model predicted throughput
- measuled compiler output

54 Program: applu

~Static
‘throughput
(instructions
per schedule)

o

2 4 8 16 32 64 128 256 512 1024
Scope (number of instructions)

Flgure 520 Throughput under resource and scope constraints for the applu
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

4 .
234612 « instruction word width Program::cgm- -
n = model predicted throughput y N
¥ 8B measured compiler output
- Static
throughput
(instructions
per schedule)

1 2 4 8§ 16 32 64 128 256 512 1024
Scope (number of instructions)

Figure 5.21 Throughput under resource and scope constraints for the cgm

- : benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model :

Y

234612 « instruction word width

3 model predicted throughput
BB measured compiler outpat -
S 3+ ’
- Suatic
- throughput
~(instructions

' per schedule)
S 2

1 2 4 8 16 32 64 128 256512 10 4
' Scope (number of instructions) .~ -

"Figure 522 Throughput under resource and scope constraints' for the ffipde
R : benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource

. constraints that are not part of the model. '

234612 « iﬁstmction word width
2 model predicted throu,

thut
gy @@ measured compiler output

- 4
- Swtic
~‘throughput 3 -
~ (instructions

: ':f“pev_:r schedule) 2

1 2 4 8 16 32 64 128 256 512 1024 |
Scope (number of instructions) ‘

~ Figure 5.23 Throughput under resource and scope constraints for the mgrid
L benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource

constraints that are not part of the model. ’

118

234612 « instruction word width Program: mdg
4 [2 model predicted throughput :
B measured compiler output

Static
throughput
. (ihstructions ’
- per schedule)

1 2 4 8 16 32 64 128 256 512 1024
Scope (number of instructions)

Fxgure 5.24 Throughput under resource and scope constraints- for the mdg
_ benchmark; resources varied with instruction word width equal to

2,3,4,6, and 12. The compiler output was 1nfiuenced by resource

constraints that are not part of the model. . '

5 Program mg 3d
234612 ¢ ins cuonw |
4 i E measured oompﬂglrrgg%hpm
Static .
throughput 3
~ (instructions |
per schedule) 2
1

1 2 4 8 16> 32 64 128 256 512 1024
Scope (number of instructions)

Figure 5.25 Throughput under resource and scope constraints for the mg3d
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

119

5 : ~,
234612 « instruction word width Program: bdna
©2 model predicted throughput i
4 =% measured cempiler cutput O
“throughput ;
(instructions

 per schedule)

i 2 4 8 16 32 64 128 256 512 1024
Scope (number of instructions)

Figure 526 Throughput under resource and scope constraints for the bdna
benchmark; resources varied with instruction word width equal to
2,3,4,6, and 12. The compiler output was influenced by resource
constraints that are not part of the model.

120

Fll'St a trace schcdulmg compiler must schedule subject to the available hardwarc
resources in the target computer. The analytic model depends on expenmcntally gathered
data for its ps probabilities. Because the target of the Multiflow compiler.is a finite
resource machine the ps probabilities inferred from the scheduled VLIW instruction
streafn omit some cases of instructions schedulable with instruction / o. Thus, the
measured pg values are a lower bound on the actual ps. We do not know of a
. parallelizing compiler that assumes an infinite resource environment and provides a
~ detailed schedule, with mapping between the original sequenual stream and the new

compacted schedule. '

Second, the collected set of pg statistics is a subset of the total statistics due to
missing dépcndeliéy information from the compiler. For example, when any compiler
schedules /g with I 0, it can be concluded that independent instruction pairs were detected
at a distance of 8, 7, 6, ..., and 1, because Ig can be scheduled with I only if I3 is
independent of not only /¢ but also of I, Ig, ..., and I'y. However, if I'g is not scheduled

~with /g, it is not possible to determine the responsible dependent instruction’ pair(s).
Therefore, the collected statistics for scheduled instructions as a function of distance is a
subset of the statistics corresponding to all possible schedulable mstructlon pa1rs as a
function of their distance. v , Rl

, Finally, the analytic performance prediction model assumes a contmuous instruction
stream- (the dynamic instruction stream) with the given p§ characteristics, whereas the
Multiflow compiler output produces several, potentially many, disjoint traces. It is quite
reasonable for the compiler to do this. The analysis combines the p g values for all the
traces, . welghted by the estimated time spent executing each trace. This is an
approx1mat10n of the dynamic p § values.

Fixes for the first and second issues w1ll require dependency analysm tools spemally
designed for collecting ps values. A remedy for the third problem requires generating
combined traces or collecting ps using dependency analysis on dynamic instruction |
streams. Analyzmg dynamic instruction streams would also fix the problem of short
traces mentloned in the previous sectlon, S

5.6 Summary

~ An 'anélytic model for optimizing instruction window size has been presented. The
valué'of this model is its ability to establish whether a performance bottleneck is (1) not
having enough resources (number of pipelines), or (2) not having enough paralleiism in
the instruction stream, or (3) not examiningbenough instructions to extract the inherent -
parallelism. The proposed model has been validated by demonstrating that the predicted

121

throughput for the chosen set of benchmarks is close to the measured throughput from
the compiler output. The cost of speculative execution, in terms of the delay required to
undo the damage due to wrongfully executed instructions, has been quantlﬁed for the set.
: of benchmarks. ~ S

The parameters ps and pg prov1de a means for characterizing 1nherent parallehsm
in an apphcatlon instruction stream Intuitively, ps corresponds to the inherent
“parallelism i in the application program, and p, corresponds to the cost of extractlng that
~ parallelism.. Although the performance potential of machine arch1tectures can be
compared in: terms of parameters such as number of pipelines or processors, branch -
delay, cache. rmss delay, and so forth, the only common way for comparing two programs
such as spzce and fpppp has been in terms of their run time on a certain ‘machine. The
parameters ps.and p, are a way of comparing the performance potential of programs in
terms of a quantitative measure of their inherent parallelism. The combination of p 5 and '
P« provides quantitative insights (such as the cited difference between fpppp and tair in
Section 5.4) into cost-performance tradeoffs associated with exploiting: ,ﬁne, grain

program parallelism. In the absence of this insight such tradeoffs have to be postponed

to a much later stage during the design process and cost expensive simulation- cycles

‘One needs to be cautious in comparing the throughput plots of dlfferent
benchmarks. A better comparison for performance potential of two benchmarks should
be in terms of the speedup, i.e, the throughput ratio with respect to single-pipeline
sequential' execution, rather than in terms of individual. throughputs. The baseline
throughput might vary considerably with the benchmarks. For example, consider the
stanford and foppp benchmarks. The former consists of all integer arithmetic; the latter
_is a floating-point intensive benchmark and, hence, is very likely to have a baseline
throughput of much less than one. Therefore, although stanford and fpppp may both
have a throughput of around 1.6fora wmdow-s1ze of 16, the latter 1mp11es a much hlgher
‘ speedup than the former.

Finally, the performance prediction approach presented in thlS chapter is ‘meant
primarily for actual applications (including ““‘dusty decks’’) as opposed to kernels or
small benchmarks. Full applications yield longer traces. The longer the traces, the more
credible and meaningful the probability calculations, and hence the better the
performance prediction. Predictions about the speed of real apphcatrons rather than
those of kernels is an advantage of this approach.

122

CHAPTER 6
SPECTRUM OF CHOICES:
SUPERPIPELINED SUPERSCALAR OR MULTIPROCESSOR"

6.1 Introduction

This final chapter extends the model developed in Chapter 4 to include
multiprocessors. The utilization of all three system types, as affected by the inherent
parallehsm in an instruction stream, is examined.

Recent simulation-based studies suggest that while superpipelines and superscalars
are equally capable of exploiting fine-grain concurrency, multiprocessors are better at
exploiting coarse-grain parallelism. Lilja and Yew [LiY90] used trace-driven
simulations and concluded that the best performance is obtained using a coarse-grain
multiprocessor configuration where each individual processor has a parallelism of two to
- four. " o

6.2 Delays Associated with Multiprocessors

Assume a system of N processors, each processor having k pipelines, where the
pipelines are s stages deep (see Figure 6.1). Consider performing 7 iterations of a
program loop, each consisting of n/y identical operations, each operation taking g gate
levels of delay. These operations are being pipelined in response to the instructions being
scheduled on each pipelined, which in turn is a consequence of source code level
iterations being assigned to each processor.

For n a multiple of s * k and Y a multiple of N, the first set of k results in each
iteration completes after s clocks and then the remaining n —k results finish in (n—k)/k
clocks in groups of k. Thus a total of,

n
——k
Y Y clocks

+
s 3 N

= 123

Shared Memory Interconnection Network

N procéss_d_r's :

On-chip Shared Memory
Interconnection Network

k pipelines

§-stage pipeline

Flgure 6.1 Combined system architecture assumed by the models.

124

are needed. Assuming the clock period is determined by the pipeline hardware, the
above expression in terms of clocks can be re-written in terms of gate delays as, '

+-
St | N

%

gate-delays el

g+2(s—1)
S

The modelling details of dependency delay and operand fetch delay are discussed
next. These models are similar to the one used by Cytron [Cyt86] to explain Doacross
and to that used by Lilja and Yew [LiY90].

6.2.1 Dependency Delay

‘Suppose iterations are statically scheduled such that processor 1 executes loop
iterations 1, 1+, 142N, ...; processor 2 executes iteration 2, 2+N, 242N, ...; and so on.
Further assume that the parallel iterations have a lexically backwards dependence of
distance one, i.e., a certain statement S; in iteration ® must be executed after a statement
S; (<)) of the previous iteration, w—1. Let j —i=1n/y, where [represents the fraction of
loop code exhibiting the dependence. Ignoring any delay (due to, for example, branching
“or cache misses) this fraction of code (from statement S; to § j) can be executed in
I n I(k) clocks on k pipelines. As shown in Figure 6.2, this implies that a new iteration
on a processor is delayed by (N — 1)1 n /(yk) clocks. However, this waiting time is also
overlapped with the execution of remaining code of the current iteration. The average
length of this remaining code is given by (1-1!)n/(2y), which can be executed in
(1=1)n /(2¥k) clocks. Therefore, '

ln (-Dn

dependency delay = max {0, (V-) —— 37K] clocks.

For an inter-iteration dependency distance of 8 iterations, the above equation becomes

In (-Dn

r—

vk 2vk

N-38
3

dependency delay = max |0, clocks. (6.2}

Processor 1

DOi=1N
S1:

- 82:

S$3: B(d) = AG) + C@{-2)
S4.

S$5: C() = D(@) * E@@)
S6:

S7:

S8:

S9:

S10:

ENDDO

1=3/10=0.3, §=2

Processor 2 Processor 3

S3(2)
S5(2) delay
S3(3)
S$10(2) '
delay S5(3)
$3(6)
. S$10(3)

Processor 4

delay
S3(4)

S5(4)

S10(4)

- Note: Si(j) denotes j * jteration of the instruction Si

Figure 6.2

Inter-iteration dependency

125

126
6.2.2 Operand Fetch Delay

Assume a multistage interconnection network between the multl-ported on-chip
cache. and the pipelines, and another such network between the processor and the off-
chip, shared, global memory. Then operand fetch delay can be modelled as

operand fetch"‘déla'y = bo+b, logk +f (logk, utilization), for N=1 P (6.3}
opeiﬁndfétéh delay = (1-y) [bo +bylogrk+f (logqk, utilization)] +

y [c¢+c11og2N+f'(Iog2N,_utilization)] , forN>1. - {64)

" Here, y is the probability of accessing the shared global memory. For more than
one proccssor,.assume that all the references to shared variables go to the off-chip shared
memory. Further, b is the delay encountered for accessing the on-chip cache, cg is the
delay required for accessing the off-chip shared global memory, and b; logzk and
c1logyk are network access delay for the cache and the global memory, respccnvcly
Functions fand f represent delays due to interconnection network contention.

Unlike the superpipeline/superscalar model, the simplifications of i 1gnor1ng on-chip
data cache misses and assuming that total cache access time is not constant are made.
Let on-chip cache access time, bo=g d, and off-chip access time, co=g d,,. Based on
the reported experience with the Cedar syster [LiY90], contention delays are assumed to
be 50 pcrcént of the network delays, i.e., (b1/2)logak and (c1/2) logzN reSpectchly for
the cache and the shared memory. Let the network delay factor for on- chlp
1mp1emcntat10n by=g dc and that for the off-chip memory be, ¢ =g dy;.

" Branch delays and operand fetch delays are further reduced by overlap factors of my
and 7, (both less than one), respectively. These factors are determined by how often
compiler is able to hide these dclays ‘behind execution delays for machmes with multl-
cycle operatxons

6.3 Utilization Constraints

The preceding discussion assumes. that there are k instructions available to be
scheduled on the k pipelines and N iterations available to be assigned onto the N
processors. . This is not always true due to data dependency constraints. Similarly,
pipeline interlocks can cause freezes of pipeline segments. Each of these effects result in’
a drop in the utilization of the resources. This decrease can be modelled as a scalar
factor reducing utilization or as a modification of the utilization distribution, via a vector

C 127

product.

6.3.1 Characteristics of Utilization Curves

The performance decrease due to utilization constraints is simply a manifestation of
the scheduling delay of Section 4.2. Sometimes this delay is best modelled using an
additional delay term, such as when modelling fetch delay due to branches or when
modelhng the dependency delay for scheduling different iterations on a multlprocessor
At times when the available information is less precise or less regular, the delay is best .
modelled as a utilization factor, u. This is distinct from the overall resource utilization
introduced in Section 4.2. Let u be the utilization factor, then

k N,
u=sav* av , Vav

s k N _
‘where s, refers to the average number of active pipeline segments, kg, to the average
number of active pipelines for superscalar processors, and N, to the average number of
active processors for multiprocessor computers. '

3

The utilization factor, u, should have the following charactenstws

a) Let o be the dynamic fraction of code that must be executed in strie_t ofder on a
B single pipeline, and similarly, let B be the dynamic fraction of code that must be
executed serially on a singie processor. Two code sequences with the same o (or B)
can have different amounts of inherent parallelism. Although o and P place an
upper limit on the utilization, they are not a measure of the actual amount of
parallelism. For example, the two code sequences shown in Figure 6.3 have the
same o of 0.1, but while code sequence (b) would be at its peak performance with
10 processors, code sequence (a) would require 28 processors for peak performance.
Lilja and Yew [LiY90] report different speedups for programs in different
oc-categories and the same range of speedup for programs in the same o-category.
 We believe that for the chosen set of programs, different a-categories appear to
' correspond to different utilization categories and the reported correlation of actual

- speedups with o-categories is coincidental. '

- For N processors, u can be expressed as:

B

u=ﬁ+(1—B)u@

Next look at the characteristics of Uns, Which refers to the utlhzatlon in the
» parallehzable or non-scalar portion of the code. '

: Flgurc 6.3

Sk ok bk ok
Si

S2

53

S4

fori=11028

S1

S2:

etk ok sk sk ok ok K okok ok Kok o

fori=1to 10

S2:

fori=1to10
St

fori=11to 10
SI:
S2:

e e e s e sk sk sk 3k Sk ok Sk sk s e e e e sk

i28

Sample code seﬁuéhcés with safme a (= 0.1) but different amounts
of parallelism

129

b) For a small number of processors (or pipelines or pipeline segments), Ng, -%N (or
kg, =k, or s, =), that is, the utilization decrease with an additional processor (or
pipeline or pipeline segmént) is very small. But as the number of processor grows,
utilization decreases more significantly with additional processors. For a large

number of processors, additional processors do little to increase the average number
of active processors. The above holds true analogously for large numbers of
pipelines and pipeline segments. Hence as N increases, utlhzatmn tends to the
curve given by the function 1/N. ' - :

c) Another important characteristic of any utilization curve can be stated as:
If u,s (for N=x) =y then u,; (for N=z >x) 2(y x)/N.
Stated simply, the number of active processors cannot decrease with the addmon of
a new processor. Such a restriction makes intuitive sense in case of superscalars and
multiprocessors. The utilization equation for pipelines in Chapter 2 ddes not impose
this restriction, because, additional segmentation. is not as straightforward as the

addition of another pipeline or processor, and conceivably, the average number of o

active segments can decrease with increasing segmentation of a plpelme Thxs
dlstmctlon is ignored in this chapter, - ,

d) Flnally, in case of superpipelines and multiprocessors, kg, <& max- and Nav._N mais
respectively, which are determined by the maximum degree “of - ﬁne-gram
(operation-level) parallelism and coarse-grain (1terat10n-level) parallehsm
respectlvely ‘

6.3.2° Alternate Characterization of Prograr_n’Parallelism

In Chapter 5, inherent parallelism in program was characterized using the ps and
P o statistics. The parameters introduced above can provide an alternate characterization
of the inherent parallelism in application programs. While o and B determine the portion
of code that lacks any parallelism, & max and N, limit the maximum parallelism that
can be extracted in any instance. These parameters together put an upper limit on the
utilization °* of superscalars and multlprocessors For - example, in the case of
multiprocessors, the upper limit is ' TEE

umax—N+(1 ﬁ) min [1,—N——J | 7: {6.‘5}

Let w}h, urs andunf = {low, average, high} depending on whether the parallelism
available for the superpipeline, superscalar, or the multiprocessor respectively is low,
average, or high. This implies the corresponding utilization curve from Figure 6.4. The

bounding curves of Figure 6.4 are the lower and upper bounds of utilization as given by =

- 1/N (in case of multiprocessors) and 1, respectively. Moving from applications with a

130

“upper bound

Utilization
factor
(Uns)

| T T T U 1 |
0 5 10 15 20 25 30 35 40 45 30
Number of processors

Figure 6.4 Assumed utilization curves.

131

14
94
.8 -
T4

6

- Utilization S

o 44
3
2
14
04

solid: fpppp
~ dotted: nasa7 -
 dashed: daxpy -

T T T
0 5 10 15 20 25 30 35 40 45 50
' Instruction word width -

(@ -

1

_ 9

S 8-

7

6

Utilization .5
 4-

34

24

14

— . :
2 4 8 16 32 64128256512 1K 2K 4K .

Number of processors
()

. Figure 6.5 (a) Utilization versus instruction word width measﬁred on the
Multifiow TRACE 28/200 computer, and (b) utilization curves
‘derived from tables on pp. 214-217 of [P0186] o

132

Iérge amount of inherent parallelism to those with little or no parallelism, parameters uy%
u,.s, and u"‘*" decrease. The level at which the parallelism is available is 1mportant Loop
level parallelism is reflected by the value of uj¥. The parameter uj; indicates
1nstructlon level parallelism. A program that is strictly serial would force u""’ and Uns 10
their lower bounds, but &%, may still be very high. Inter-lteratlon depcndcncxes that limit
the utilization of multiprocessors are characterized by /, the fraction of: code ina loop
body that exhlblts dependence and , the 1teranon distance of the dependence. '

- In order to get a realistic idea of the nature of the utxllzanon curves, data was.

collected from machines relying on both fine-grain parallelism and iteration-level,
coarse-grain parallelism. Figure 6.5 (a) represents the utilization data for the Multiflow -
TRACE 28/200 machine. Figure 6.5 (b) represents utilization inferred from the speedup
results published by Polychronopoulos nSing guided self-scheduling techniques on
certain loops [Pol86]. The nature of these empmcal curves conforms with characteristics
(b) and (¢) above. Based on this combination of experimental and analytical insights, a
family of uul1zatgon curves have been used that are considered representative of low,
average, and high amounts of parallelism-in the non-scalar portion of the code, as
‘dcpictéd in Figure 6.4. Let wh, up,anduyf = {low, average, high} depending on
whether thé parallelism available for the superpipeline; superscalar, or the multiprocessor
re‘spccﬁ‘vely is low, average, or high. For the discussion to follow the sole purpose of
these curves is to assess the performance 1mpact of a change in the avallable amount of
parallehsm as the program transformation 'moves from coarse-grain to fine- -grain, or as
different applxcatlons are executed. ‘

6.4 Results

A nominal set of values (see Table 6 1) are assumed to describe the hardware
performance characteristics and program characteristics for a hypotheucal but realistic
environment. The nominal value of 0.4 for d,, implies a main memory access time of
about two to three clocks for a five to six stages deep pipeline, which is typical of current
microprocessors. The on-chip cache is assumed to be four times times faster its offfchip
counterpart, On-chip network delay factor, d, is chosen such that the network delay is at
most twice the access time to the cache. The off-chip network is assumed about two
times slower than its on-chip counterpart.'”Also, 20 percent of memory accesses are
assumed to be to shared variables. This fraction may be much higher on some systems
due to the main memory traffic to maintain 'ca'che consistency, in which case this fraction
would be a function of the number of processors and the particular consistency algorithm
~in use. Fmally, 30 percent of the branch: and operand fetch delays are assumed to be

133

'Table 6.1 Nominal values of model parameters descnbmg hardware and

program charactenstlcs
| Hardware Charactensucs , . PRREIEIE
" Fraction of operation gate delay requxred for branch resolution, dp n 015 .
- Fractmn of operatlon gate delay required for on-chip cache access, d, - o 0.1 e
Fraction of operation gate delay required for off-chlp memory access, dy, 04 |
On-chip network access delay factor, d7, . : SRS VL
Off-ehxp network access delay factor, @y ' : 125
| Program Charactensucs . C
Fraction of code that must be serially executed on one plpelme, (o 01
“Fraction of code that must be serially executed on one processor, B o '0,1 e
Branch instruction probability, b : SERRN (% SR
Probability of memory-reference per operation, W S N 02 '
- Fraction of data accesses to shared variables,y C 02 -
‘ Maxir'num degree of operation (pipeline)\ level paralielism, k max | v 50 o
»_ Maxlmum degree of iteration (processor) level parallelism, Nipax 50T
" Across iteration dependency distance, & ‘ o - o 1
' Dlstance between dependent mstructrons as a fraction of the - o - L
_ sweofloopbody,l < S S 00
Uﬁlizaﬁon factor for the parallelizable code for pipeline stages, uf{’, B . ‘.fdllows '
Utilization factor for the parallelizable code for complete pipelines, Usy the average |
* Utilization factor for the parallelizable code for processors, Up? utilization
. ' ' . curve of
- Fxgure 6 4.
a Fracuon of branch delays overlapped with executlon delays, Tty o - 03 :
Fractnon of operand-fetch delays overlapped with execution delays, o .03

134

overlapped with execution delays. This 1s consistent with the reported figures from
comprlers for typical RISC machines.

Flgure 6.6 demonstrates the impact of utilization on the throughput of
superplpehned systems. Recall that because delay is measured in units of gate delays,
operand fetch delay is a constant overhead in the absence of any growing network delay.
The only. growing overhead is that due to the inter-segment buffers. In the analysis
range, this is noticeable only for poorly utilized pipelines, which show a very small drop
inthroughput with an increasing number of segments. For better utilized prpellnes the
throughput keeps growing, although at a slower rate as observed in the analys1s of
superprpelmes in Chapter 4.

Turning attention to superscalars, there are two major differences with respect to the
superplpelmed systems. First, the addmon of the interconnection network for shared
memory access results in a growrng operand fetch overhead. Second, utlhzatlon for
superscalars has an additional factor, o, the fraction of code that must be executed on a
single pipeline. Figures 6.7 (a) and (b) plot the maximum throughput attained and the
correspondlng number of pipelines for various combinations of o and the unllzanon
factor in terms of uj;. The effect of o becomes noticeable only for larger values, say
0.>0.1. Also, for the same value of o, different levels of throughput can be achieved
depending on the utilization factor. The optimum number of pipelines shows even more
iinsensitivi’tytowards o, except that for a>0.1, there may be slight increase in the
number- of - pipelines required to achieve the optimum throughput. The optimum
throughput, as expected, grows with better utilization factor; so does the number of
plpehnes requlred to achieve this optimum. -This is in accord with the findings of Lilja
‘and Yew: [L1Y9()] as visible in their category-2 performance plots, where better utilized
mulnprocessors require a higher degree of parallelism (number of plpehnes or
processors) than the lesser utilized superscalars to achieve a higher level of speedup

The impact of memory delay is shown in Figures 6.8 (a) and (b). The two major
components are the memory access time d, and the network access delay factor d. The
number of pipelines where maximum throughput is attained becomes increasingly more
dependent on the ratio, d./dy, as d, increases. Since dj controls the rate of growth of
operand fetch delay, its impact on how long it takes before the operand fetch delay
overruns the advantage of an additional pipeline is to be expected. The stepwise nature of
the curves in Figure 6.8 (b) (which results from the log terms in Equation 6.3) is difficult
to follow. Hence, the corresponding data is also presented in a tabular form in Table 6.2.

Ignormg dependency overhead, Figures 6.7 and 6.8 also represent muluprocessor
performance, except that the optimum throughputs would be somewhat less due to the
slower off-chip memory interface. Such graphs can be useful in deciding the incremental
benefit of adding a processor (or pipeline). Suppose the curves in Figures 6.7 and 6.8
were used for estimating multiprocessor performance (read u7¥ in place of ujy, and |
.pro'cess_o;rfsfin place of pipelines). If a program environment offers a higher level of

135

20

_ 15 4 uh =high
Throughput L

(per op-delay) 10 -

ub = average

“uh =low

] I l_lkl‘l 1 I"II
0 5 10 15 20 25 30 35 40 45 50
Number of pipeline stages

Figure 6.6 Impact of utilization on throughput for superpipelines:.'

136

124

104

Maximum g
Throu ghput T
(per op-dclay)

Ul = 'hi,vgh‘ N

- us = average

ad o \Mu,"&-j——lbv&
2
0

0. 001 0 01 1 1
Fraction of code that is single-function- umt sequentxal (o)

@)

s e
40 -
| 35
- Optimum. 30 -
number of 25

pipelines 20— W3 = average]

15 - | o - o
10 o T um=low T ‘

5
0

0.001 0.01 1 1
Fraction of code that is single-function-unit sequential (o)

®)

. Figure 6.7 Maximum throughput (a) and optimum number of plpclmes (b) as
N -a function of the fraction of code that must be executed on a smgle
function unit (plpclmc)

137

Maxi;rium
- throughput
(per op-delay)
04 - |
T 1 T RN N | IR R B
2 4 6 8 10 12 14 16 -18 20 -
o d./dj |
@
i s
Optimum
number of
- pipelines
10

1

E S [§ T T T
14 16 18 20

2 4 6 8 10 1

()

Figmje 6.8 Méximu‘m ih'rough'put (a) and ,optimuni number of pipelines“(b)
‘ ' versus ratio of memory access delay (d.) to network access delay
factor (dy); d, values shown are 0.05 to 0.65 in increments of 0.1.

Table 6.2

Optimum niimber of pipelines versus ratio of memory access
delay, d_, to network access delay factor, dj.

| d;=0.05

d,=0.15

Optiniim Ruriber of pipelines

42055

4,065 |

o o\ 00T~ Ot KDY !_

.
s

21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21

19
20
20
20
21
21
21
21
21
21
21
21
21
21
21
21
21
21

21

18 it
o 18 | 17
w 1 19 | 13
0 | 1 |
0 | » |
20 | 20) 2
0 | 2 | 0
20 % | 5
2 | 20 2
2 | 2 .
21 | 20 %
a | 2 |
21} 2 | 20
2 | ou |
21 5 %
2 | 2 0
n 1 = 2
21 ol e

21 . 21 . 21”‘ |

14

fgggg&&%ggggga@a;;

13
is
17
18
18
19
19
19
20
20
20
20
20
20
20
20
20
20

| 20

139

coarse-grain parallelism such that u,? increases from average to high, this implies an
approximate increase of about 45 percent in optimum throughput but an increase of about
125 percent in the number of processors required to attain that throughput.

Dependency overhead has two important variables: 8, the distance in number of
iterations between dependent instructions, and [, the distance between the dependent
instructions in the same iteration as a fraction of the loop body length. Before new
iteration on a processor executes, all the previous iterations on which it is depehdent
must have completed up to the point of dependency (Figure 6.2). An increase in d has an
effect in two ways. First, the number of prior iterations that must complete to the point
- of the dependency is reduced. For example, on a 10 processor system if 8=1, a new
iteration has to wait for the nine previous iterations; whereas, if 8 =2, there are only four
iterations to wait for. Second, an increase in 8 retards the onset of dependency delay, as
there is no dependency delay for less than & processors. The distance between dependent
instructions, I, also has a two-fold impact. As [grows, the larger dependency region
yields a longer wait for initiation of a new iteration. A larger [also implies there is on
average a lesser remaining portion of loop body to hide the dependency delay. Figures
6.9 (a) and (b) plot the optimum performance and the corresponding number of
processors for varying combination of / and 8. As a function of §, notice the nonlinear
nature of optimum throughput curves in Figure 6.9 (a), whereas, the optimum number of -
processors changes almost linearly (Figure 6.9 (b)). o

6.5 Combined Systems

Finally, consider the performance issues of combined systems, such as
superpipelined multiprocessors and superscalar multiprocessors, which are‘obtained by
using clusters of superpipelined and superscalar processors, respectively Assume a
single processor system with a pipeline that is 32 stages deep. (ThlS implies an issuing
capacity of 32 instructions during the length of the pipeline.) Assume that the
application stream has a significant amount of coarse-grain parallehsm Therefore,
trading off some pipeline stages for additional processors is expected to- 1rriprove the
performance. :

Consider Figure 6.10 and assume ulf=low and u™ =high. . This means
sigmﬁcantly more coarse-grain parallelism (resulting in a better utilized multiprocessor
configuration) than the amount of fine-grain parallelism (causing a poorly utilized
pipeline configuration). Keeping a constant issuing capacity of 32, add more processors.
Initally, performance improves significantly. As more processors yet are added,
multiprocessor performance starts to level off and begins to approach the lower limits of

140

10 -
g
Maxiiumm 6—

thréugﬁﬁiit
(per op-delay) 4

2
0 :
T T T T T T
0 2 4 6 8 10
Inter-iteration dependency distance ()
(a)
25 1
20 -

nuiber of
processors 10|

T] T T T —T
0 2 4 6 8 10
Inter-iteration dependéncy distance ()

Figure 69 Maximum throughput (a) and optimum number of processors (b)
versus intér-iteration dependency distance; ! ranges from 0 to 0.30
in increments of 0.05.

- Throughput,
(per
operation
delay)
4

12

Combined Systems
Superpipelined Multiprocessor (dotted)
. Superscalar Multiprocessor (dashed)
Combined Issuing capacities: 16, 32 and 48
- (B =ul=low, u¥f =high)

24
22 4

204

18 —
16 -
14

10 —
g

4
2|

oo
......
ass .
. .
s ‘e
.s .
ot

...
e . .
) Lol S
et ‘9 : e S .'o.
ot - ~ I P
...‘.-. ’/ S, \‘\-..
5 ‘
S AL \\". 48 \\\
- -
N ..Q '/\ ~ “b
&tze N 32 < .
, \ <
> &
R SN
34

Multiprocessor -
(single stage, single pipeline)

1 o | L | ! I

T T
5 10 15 20 25 30 35 40 45 50

Number of processors, N

Figure 6.10 Throughput plot of combined system performance.

142

- superpipeline performance curves, where the performance loss due to reduced number of
stages becomes increasingly significant. This results in an optimum at 2-stage plpehnes
and 16 processors. Performance plots for issuing capacmes of 16 and 48 are also shown.
This is repeated with superscalar multlprocessor systems. It is intersting that in all these
cases the ~optimum performance is obtamed when the combined - system is a
multtprocessor with processors using 2- or 3-stage pipelines. This observation agrees
well with the trace-driven simulation-based ﬁndmgs of Lrlja and Yew [L1Y90] Also, as
the dlfference between the utilization factors (4, and uss or up¥) shrinks, the optimum
shrfts more m favor of pipelines as observed by Lilja and Yew [LIY90]

6.6 Summary |

- The analytical models developed in previous chapters and extended here allow easy,
comparative eslalu,ation of superpipelines; superscalars, and multiprocessors. ’

The extended model although simplistic in nature is showri capable of deriving
some useful results. It is shown that maximum throughput is not sensitive to the ratio of
rhe"mory‘ access time to network access delay. However, the number of pipelines (or
processors) at which the maximum throughput is obtained is increasingly sensitive to this
ratio as the memory access time increases. As a function of inter-iteration dependency
drstance, optimum throughput varies nonlinearly, whereas the correspondmg optlmum
number of processors does vary linearly. Finally, for programs with more coarse-grain
parallelism, optimum performance is obtained in the multiprocessor configuration where
each processor has hardware supporting fine-grain parallelism of degree two to four.

143

CHAPTER 7
CONCLUSIONS

This research has presented analytical approaches to optimal processor design. The
model developed during this research is primarily targeted to, although not limited to,
superscalar processors with dynamic scheduling. Starting with smgle plpellnc
optimization, the model was gradually refined to gain insights into various performance
tradeoffs associated with multiple-pipeline systems. Special attention was paid to the
understanding of delays associated with different branch strategies, misprediction delay
during beyond-basic-block execution, and the loss of throughput due to inherent
dependenc1es in the source code.

Throughout the dissertation, the model development and/or enhancement consists of
three generic steps. First, a model is proposed based on known and/or expected
performance characteristics of the system. Second, the proposed model is validated by
correlating its predictions with published - results and/or experimentally gathered
performance measurements. Third, the validated model is used to gain new insights into
performance limiting factors. '

7.1 Summary

First, a survey of the existing machines and literature was presented with a
proposed classification of various approaches for exploiting fine-grain concurrency.
Optimization of a single pipeline is discussed based on an analytical model. The
predicted nature of performance curves is found to be in close proximity with published
results using simulation techniques. A model is also developed for comparing different
branch strategies for single-pipeline processors, in terms of their effectiveness in
reducing the branch delay. Additional instruction traffic generated by the different
branch strategies is also studied and is shown to be a useful criterion for choosing
between equally well performing strategies.

Such analytical techniques are extended to processors with multiple pipelines to

study the tradeoffs associated with deeper versus multiple pipelines. An analytical model
is developed for optimizing the size of an instruction window for machines with dynamic

144

scheduling. The cost associated with beyond-basic-block execution is examined via
probability distributions that characterize the inherent parallelism in the instruction
stream. The throughput prediction of the analytic model under resource and scope
constraints is shown to be close to the measured static throughput of the compiler output
for 24 benchmarks chosen from the SPEC, NAS, and Perfect benchmark suites. Further
experiments provide misprediction delay estimates for these benchmarks under scope
constraints, assuming beyond-basic-block, out-of-order execution --and run-time
scheduling. These results were derived using traces from the Multifiow TRACE
SCHEDULING™ compacting C and FORTRAN 77 compilers.

A simplified extension to the model to include multiprocessors is also proposed.
The extended model is used to analyze combined systems, such as superpipelined
multiprocessors and superscalar multiprocessors. It is shown that the number of
pipelines (or processors) at which the maximum throughput is obtained is increasingl-y
sensitive to the ratio of memory access time to network access delay, as memory access
time increases. Further, as a function of inter-iteration dependency distance, optimum
throughput is shown to vary nonlmearly, whereas the corresponding optimum number of :
processors varies linearly. The predictions from the analytical model agree with. similar
results published using simulation-based techniques. ’

7.2 Cont_ributions

The contributions of this research can be summarized as follows:

a) Srmulatlon based performance predictions for single-pipeline opurmzauons and

~ those for combined system optimizations, have been analytically correlated.

Relative to the previous simulation-based studies, this analytlcal approach 1s less

time consuming, more flexible, and offers additional 1nsrghts into the. performance

issues. :

b) A COmparative analysis of different branch strategies has been presented on a

- common analytical platform. Also, the additional instruction traffic associated with

: , the branch strategies has been analyzed on a comparative basis.: This aspect of
T branch strategies has not been reported in published literature to this date.

- ©) A vahdated model has been presented for optimizing the size of an instruction
window for superscalar processors with beyond-basic-block, dynamic scheduhng.
Window sizes as large as 1024 instructions or more can be analyzed quickly. The
published material on this tradeoff [AKT86, STH89, and Joh91] has been solely
based on simulation-derived findings. The model developed can also offer insights
/into Whe’re a performance bottleneck might be: insufficient resources to exploit -

d)

145

dlscovered parallelism, insufficient mstructmn stream parallehsm, or msufﬁcrent
scope of concurrency detection.

Although the performance potential of machine architecturos_ can be compared in
terms of parameters such as number of pipelines or processors, branch delay, cache
miss delay, and so forth, the only common way for comparing programs | has been in

~terms of their run time-on a certain machine. This research proposes certain

parameters, ps and py, as a way of comparing the performance potential of

- .programs in terms of a quantitative measure of their inherent parallehsm The
= combmanon of ps and p, provides quantitative insights into cost-performance
vtradeoffs associated with cxplomng fine grain program parallelism.

Throughput estimates for a variety of benchmarks have been provided under under
resource and scope constraints, assuming out-of-sequence, beyond-basic-block
execution. For some of the benchmarks, data has been provrded for a scope as large
as 1024 1nstruct10ns -Previous studies have either been limited to within basic
blocks [AKT86] or limited to simulations up to a window size of 32 instructions
[SJH89 Joh91]. Assummg dynamic = scheduling, the research also prov1des

. misprediction delay estimates for the analyzed benchmarks up to a 1ookahead of 32

basic blocks.

Most of . the published work on processor performance has been based on

simulations, which are a valuable tool for providing accurate performance estimates for
the simulated program traces. The research presented in this dissertation seeks to
complement previous work by providing an approach based on relatively simple,

validated analytical models. We hope the contributions of this research will be appealing
enough for some processor archltect to try out some of the models for some future
processor design.

146

CHAPTER 8
FUTURE. RESEARCH

Thrs chapter offers extensrons of some of the ideas presented in prevrous chapters
for future rese arch work in this area.

| 4» 81 - Out-of-sequence Execution Versus Locality of Operand References

A sequence of successive memiory requests that are from logically related dependent
operations exhibit locality of reference, both spatial and temporal. This locality is
obscured - when independent, logically unrelated operations are grouped together for
srmultaneous execution. This was ignored in Chapter 4, since the cache miss rate, 1-h,
was assumed unchanged as more and more operatrons from dlfferent plpehnes were
grouped “togeth_er gre hkely to be of the _same workmg set [Den70] For example,, durmg ’
loop unrolling, if A[i] is in cache then A [i +1] is likely to be in cache also. Conversely, if
the sCope 1 étrge enough to group independent operations belonging to different workmg
sets, it is unreasonable to expect a simultaneous cache hit for all of these references.

Consider for example, the two execution scenarios listed in Figure 8.1. The
sequential case corresponds to purely sequential execution, whereas the parallel case
allows out-of-sequence execution. For the sake of simplicity, the latter differs from the
former in only that it permits simultaneous fetch of two unrelated operands A and D. In
the parallel case, Fetch D can result in a cache miss and displace the line containing C.
Subsequently, a miss on Store C may displace the line containing D, causing another
miss during Store D. Both Store C and Store D could have been cache hits in the
sequentlal case. :

Let, Ns be the number of misses in the sequent1a1 code and N, be the number of
misses in the parallel code. The discussion below is divided into three steps.
a) - First, the impact of moving Fetch D on its own cache hit/miss probability, i.e., the
hit/miss probability of operand D, is explained. Call it Impact-A.

+ Fetch A

Fetch B
compute C := f(A,B)
Store C
Fetch D

compute D :=f(C,D)

Store D

Sequential

Fetch A / Fetch D

~ Fetch A

compute C := f(A,B)

Store C

~ compute D := f(C,d)

Store D

Parallel

- Figure 8.1 Two execution scenarios

147

148

b) Second, the impact of removing Fetch D on the operand fetches in the vicinity
following Y is analyzed; where Y is the program location associated with Fetch D
-in the sequential code. This impact is referred to as the Impact-B in the followmg

. disciission.

¢). Finally, the impact of introducing Fetch D on the cache miss probability of operand
: fetches in the vicinity following X is discussed; where X refers to thé program
-location where Fetch D is moved to in the parallel code This effect is referred to as
the Impact-B in the following discussion.
To keep thin'gs simple, it is also assumed that the references moved up during
parallehzatlon do not influence the cache ‘hit/miss probability of each other. In other
words, they are independent of each other. ‘There may be some references to an opetrand
that were scattered in the sequential code but get grouped. togethet in the parallel code.
And hence after parallelization, these may change from cache miss to cache hit due to
mutual influence. This effect is ignored. R |

Impact-A The following possibilities exist regardmg Fetch D, that is moved up in thc
parallel code:

a) cache miss in sequential, cache miss in parallel,

b) cache hit in sequential, cache hit in parallel,

¢) cache hit in sequential, cache miss in parallel, and

d) cache miss in sequential, cache hit in parallel.

Cases (a) and (b) do not change the number of misses, N, with respect to Ns. Therefore
only the remaining two cases need to be examined. Considering impact-A alone,

N, =N;+R * [Prob (hit in sequeniial but miss in parallel code)
— Prob (hit in parallel but miss in sequential code)]} (8.1}

wher'e, R = average number of operand references that are scheduled out-of-sequence.
Before proceeding further, following observation may be useful. :

An Observatlon Consxder the following more generalized version of the code sequences
glven above

\.‘)"’1"149 |

X;: | | Xz opD
- Xin: : : ' T Xin: ‘ :

Xisnt opD » in+)::

Sequential ’ | Parallel

Let op = Fetch. In the parallelized code, since the read reference to operand D can
be is moved up from from X;,, to X;, it implies that program locations Xisn-1 ’“5 X;4 do
not contain any write reference to the operand D. Otherwise, it would mean violation of
essential data dependency. These intermediate locations are not likely to-contain any
read references to operand D either for the following reasons: S

~a) If there is a preceding Fetch D, the compiler is expected to move that reference
‘instead of the one at Xitn - :

b) If there are some intermediate read references to the operand D, it would not be a

" smart register allocation scheme. Since the register being used in the parallelized

code to hold the operand from X; to X,, could also have been used i m the sequentlal
code to get rid of the 1ntermed1ate read references. :

Let op = Store. Again, program locations X; ., through X,+,,_1 can not contam any read

‘or write references to operand D, because that would imply that the move in the
parallelized code is in violation to order and output dependency respectlvely Note that
_renammg techmques for bypassing these dependencws are being ignored here.

Therefore, it can be concluded that when a particular operand reference gets moved
: up durmg parallelization, there are no additional references in the sequentlal code to that
 operand during the scheduling distance. Also note that if one were solely limited by data
: dependencres, an operand reference being moved up can only be stopped by another
reference to the same operand and therefore would always be a cache hit. In other words, '
- if scheduling were to be only restricted by data dependencies and not by resource or
control dependencres all the relocated references should be cache hits due to their
N 'groupmg with their prevrous references. This can be used to calculate a,low_er bound for
*,Npt : g : | RSt
Assume that a partxcular memory location i 1s ‘bound to a specrﬁc operand all through
the program. Refer to Fig. 82. A quiet-period is defined as the time period between

- - ‘'successive references to the same location. Typically, minimum quiet period would be

determined by compiler’s inability: to hold on to a temporary (intermediat’e) result, which
in turn is a function of the number of available registers etc. Hence it is hkely to show
: 1dent1ca1 distribution on a given system (at least for the same type of . vanables, like

global, local .}etc) On the other hand, maximum or actual quiet-period would be a

150

function of the specific program context and hence may not have a distribution invariant
across different programs.

Now consider a main memory location’s ‘multiple entries and exits to the cache as
depicted in Fig. 8.3. An operand reference is considered a virgin-hit if tg >0. In other
words, first hit to a prefetched variable is called a virgin-hit. Note that, 19 =0 for a
variable fetched on a cache miss. Assume that an average distribution exists for the
parameters shown in Figs. 8.2 and 8.3.

Usmg the terminology developed so far, the probability terms’ assoc1ated with Equation
(8.1) can be calculated. :

Prob(hit in seq. but miss in para.)=
Prob(miss in para.) * Prob(hit in seq. | miss in para.) | {8.2)

Prob(miss in para.) = Prob(scheduling distance > E[tg])—¢€ (8.3}

where,

The conditional probability is given by the v1rg1n-h1t probablhty,

e=n * E[cache —period [cache —cycle) yuiet—period> and,

n= expected number of cache-cycles in a time period = (scheduling distance —t)

The quite—period subscript above implies that the ratio statistics for cache-period to
cachc-'cycl'c should preferably be collected during the quiet period of the variable.

Prob (miss in seqential but hit in parallel) =

" Prob(hit in parallel) * Prob (mlss in seqential l hitin parallel) . {8.4)

Unlike the previous case, hit in the parallel code does not qualify the ‘sequcn‘tial miss in
any particular way, so the conditional probability in Equation (8.4) above can be
considered same as the normal cache miss probability. Whereas,

Prob(hit in parallel) =¢ with £5=0 . :) (8.5}

Impact-B and Impacit-C. Assume an LRU (least recently used) replacement policy for
the cache. Cache hits can be classified into those to the most recently used line (MRU)
and those to a not most recently used line (NMRU). If the hit in the sequential case (the
parallel case) is a MRU hit, the original (reference that is scheduled out-of-sequeénce)
’dpcfand reference has no impact on the immediate surrounding. On the other hand, both
the NMRU hit and a miss can have an impact on the following surrounding. Every

151

Last

First S
Reference ' ,Refe"rence.
] Life-Span L
Read ' of the '
Or | = Operand .
‘ Write l '
References Quiet
R|wlrud felr Wl R beeeeeaaad] R
Time (instrucn'ons)
Figure 8.2 Reference pattern for a memory locatlon bound to certam log1ca1
operand. :
: Cache v
‘First Entry Cycle ! ‘Last Entry
In/Out | 5 data cache | Cache v to data cache
o . T " Period : 1‘
-Data : \ T '
Cache : :
| !
..... ! : I
Dok Ak
e N S .
Time (instructions)

* refers to the time of first reference to the location since the cache-line entry
refers to the time of last reference to the location before the cache-line exit

Figure 8.3

Entries and exits out of data cache fora memory locatlon bound to

certain logical operand

152

reference that is scheduled out-of-sequence adds following number of misses:
¥i= Prob (hit in para.) * o +
Prob (miss in para.) * og —
Prob (hit in seq.) * oy —
- Prob (miss in seq.) * oy , - {8.6)
where |
oy = Prob (NMRUhit) *
fraction of dead lines in NMRU lines *
average number of misses per dead line
‘a = fraction of misses that fetch dead lines *
average number of misses per dead line

Note that, hit/miss probabilities for the sequential and the parallel casé are same as
those calculated during impact-A calculations. A cache line is considered dead 1f it is
going to be flushed out before its next reference, else it is called a Jive line. Also note
that the probablhty of a dead line in the sequential case becommg a live line after the
relocated réference hit in the parallel case has been ignored.

" To calculate the additional number of hits, note that an NMRU hit to a live lme does
not add any hits, since the line would have become most recently used anyway on its
subsequent hit. ‘On the other hand, a cache miss that results in fetching a live line does
add hits. Therefore, additional number of hits per relocated reference is given by:

¥, =Prob (miss in para.‘) * i3 — Prob (miss in seq.) * o3 (8.7}
where |

o3 =fraction of misses that fetch live lines * average number of hits per live line

As a."'reéu'lt,-con“s_ideﬁng‘. impacts B and C only, -
o Np=N;+R* (1 —%) 6

: where, Y1 and Y, are as given by Equatlons (8.6) and (8.7). Fmally, Equatlons 8.1) and
(8.8) can be combined to yield the complete picture. Note that the scheduling distance
'probablhty in Equation (8.3) can be computed using the approach described in Chaptér 5.
The remaining probability terms in Equations.(8.3) through (8. 7) can be computed using
a cache simulator, modified to compute the virgin hit probability also.

153

8.2 Cost/Performance Tradeoffs for Concurrency Detection
in Different Execution Phases

As explained in Chapter 1 before execution, any end user task goes through stages
of transformation from the level of algorithm formulation to high level language
specification, followed by assembly and possibly microcode translations. The available
amount of parallelism increases as the transformation proceeds from the algorithm level
to the microcode level. But detection of the addmonal amount of available parallelism at
the later stages of transformation has additional cost associated with it. This implies a
cost-perfonnance design tradeoff aimed at extracting large amount of parallehsm without
incurring prohibitive cost. *

Machines have been built with parallehsm detection and scheduling at all of the
stages of transformations (refer to Chapter 1). The ability to quantify the amount of
parallelism and the cost of its extraction, as discussed in Chapter 5 (using ps and p,
distributions) can be a useful tool in analyzing the cost-performance tradeoff for the
proper level of concurrency detection. Chapter 5 provides the plots for these statistics for
a VLIW machine (Multiflow) and efforts are underway to collect the same data at the
level of high level language specification.

, There are two other factors that influence the available amount of parallehsm and
the assoc_lated cost. First, the language used for specification at the high level or at the
assembly level. There may be built-in dependencies in the specification syntax. For
example if there are separate instructions used for setting the condition code and
branching, then almost invariably the condition code setting would be followed b’y a
branch that is dependent on the preceding instruction that set the condition code. Such
built-in dependencies would limit the available amount of parallelism for a given scope.
By collecting the p§ and p , distributions for a variety of languages on a common set of
application tasks, a quantitative comparison can be made on the basis of the amount of
parallelism' exposed and the associated cost. Future research is being. targeted at
comparing different high level languages (such as FORTRAN and C) as well as some
assembly. level instruction sets (such as the Intel x86, the ‘Motorola: 68x the. IBM
RS6000, and the Sun Sparc). ;

Second, whether the concurrency detection is done at compile time or run time, has

~an impact on the amount of available parallelism and the cost of itS‘e)';trac,tibri.f For

example, at compile time, even a scope as large as several hundreds of instructions is

feasible without a very high cost in terms of space and compilation time. ‘But at run time,

- there is a significant cost associated with a large scope, in terms of thé number of

instructions that simultaneously need to be examined and the number of pendmg
branches. ' :

15

8.3 Other Measures for Distance Between Instruction Pairs

Thls dlssertatlon is primarily aimed at analyzrng the instruction wmdow srze
' tradeoffs for a machine with dynamic (run time) scheduling and speculatlve executron
The typrcal input for such run time schedulers is the dynamic 1nstructlon sequence.
Consequently the density of available parallehsm and the cost of its extractlon (as
measured using ps and P o, Tespectively) have been estlmated as a functlon of the
number of such instructions being examined - (W) and the number of pendrng branches
(L) There is another reason for describing ps and p in terms of the number of
: mtervenmg instructions. As indicated in Chapter 5, intuitively one would. assume that '
,the output of an instruction is more likely to-be consumed in the immediate vrcrmty than
much farther At the assembly or mrcrocode level, this immediate vicinity can be
: quantlﬁ{ in terms of the number of following : 1nstruct10ns But at the level of hrgh level
languages, thrs may not be a good measure of lmmedlate vrcrmty For example, consider
a machme capable of directly executing instructions specified i in a high level language,
such as the two preces of code in Figure 8. 4. Intuitively one would assume B[i,j] to be
equally hkely to be dependent on A[i-1,j] and A[i,j-1]. But in terms of number of run
~ time intervening instructions, the dependent instructions in Example (i) are separated by
6 instructions, whereas, those in Example (ii) are separated by 51 instructions., Although
different iteration instances of an instruction may be at varying distances, the probabrhty
' v of dependence for any pair should be expected to be close if they are equidistant along
any one of the dimensions. Thus at the level of high level language specification, when
' mult1-d1mens10nal references are involved, the immediate vicinity may be better
_' charactenzed using some measure that treats equally every dimension. Such measures of
parallellsm can also be used as heuristics in choosing the dimensions that would be most
proﬁtable to unroll in loop. quantization techniques discussed in [Nic88]. Flnally, for
machrnes dorng static scheduling, a better distance measure between two’ mstructlons
may be the number of arcs in the uncompacted program flow graph.

8.4 Recursive Performance Modelling "

As, mentxoned earlrer in Chapter 1, given a certain end-user task, the most obvrous,
performance measure is the amount of real time spent in performing the task as.
measured (or perceived) by the end-user. Assume a synchronous computer system with a
global clock. The frequency of this clock is determined by the peak rate at which the
~system is designed to deliver the results. Imagine the user monitoring the system output '

every. cloc,lg cycle for computing the actual throughput. During every cycle, either a

for i=1 to 10
for j=1 to 10
1: |
2:
3: Ali,j] := C[i,j]
4: Bli,j] := A[i,j-1]
5:
end;
-end;

for i=1 to 10
for j=1to 10
1: .

2: '

3: Ali,j] = Cli,j]
4: B[i,j] := A[i-1,j]
5 .
end;

- end;

Figure 8.4

Example - i

Example - ii

Dependence across iterations

155

156

result is available or just a bubble (implying: no resulf). The frequency of these bubbles
at the systern output is enough to compute the actual sys'tem‘ throughput. The
performance modelling approach described ahead offers some suggestions for recursively
computlng the probability of receiving bubbles at the system output.

The probability of bubble-transmission, p; from a system stage to its successor can
be computed using the probability of bubble-generation, Pg and that of bubble- receptzon,
p,. A stage is said to receive a bubble if the precedmg stage does not provide any
mtermcd1ate result during a cycle. A stage is said to generate a bubble if the duration of
its computatlon on some input from preceding stage exceeds the clock cycle A stage
transmlts bubbles either if it generates one or if it receives a bubble when 1ts not
' generatlng one. Mathematically,

p:=pg+(1=pg)p,
One can compute p, using a detailed model for that stage and p, is same as p, from the
preceding stage. Thus recursively the probability of bubbles being transmitted to the user
(which deterxnines the user-perceived system throughput) can be computed. For
example, the model developed in Chapter 2 can be used as the basis for cornputmg pg for
1nd1v1dua] pxpehnes, or, ps information from Chapter 5 can be used for computmg the
bubbles generated by the scheduler. :

One advantage of such an approach lies in the fact that while a low-lével detaxled
- model can be used for computing the p, for a given stage, the low-level model can then
be abstracted using p; information to the next stage. As a result, an analytical model for
the enure system (i.e., processor, memory and I/O combined) may also be feasible. The '
alternative approach would be a simulation-based low-level model for the entire system,
which would be many times slower (most likely, proh1b1t1vely slow) than this p.ro,pos_ed
analytic approach

LIST OF REFERENCES

[AKT86] R’.D Acosta, J. Kjelstrup, and H. C. Tomg, “‘An instruction issuing app
‘ cnhancmg performance in multiple funcmonal -unit proce SOTS
Trans. _,’;n Computers, vol. C~35 Sep. 1986, pp. 815-828.

. Agerwala and J. Cocke, “ngh performance reduced mstructlon set
ors”’, Technical Report RC12434 (#55845), IBM Thomas J Watson
h Center, Yorktown Heights, NY Jan, 1987..

[AgC87l

[AST67]

J. Barton, T. Lasinski, and H. Simon, “The NAS: paIalleL

[BBLO1] D. Bailey,
T b 57, Report RNR 91-002, NASA Ames Research Center, Jan 19

U. Banerjee, Speedup of Ordinary Programs, Ph]D]Dlssertauon, Dept. of
Computer Science, Univ. of INlinois, Oct. 1979,

91 R. Cohn, T. Gross, M. Lam, and P S. Tseng, ‘‘Architecture and: compiler
 wadeoffs for a long instruction word microprocessor’, Proc. of ASPLOS I,
& 2 ,8 3. Pp 2'14

158

[CN088] R. P. Colwell, R. P. Nix, J. J. o’ Donnell, D. B. Papworth, and P.K. Rodman,

. [Cot65]

: [Cyt86]
[DeL87]

[Den70]

[DeM74]

[DiM87]

[DuF89]
[DnF90]
[DuF91]
[Faw75]
[Fis81]

[Fis83] |

‘A VLIW architecture for a trace scheduhng compiler’’, IEEE Trans. on
Computers, vol. C-37, Aug. 1988, pp. 967-979.

L. W. Cotten, ‘“Circuit implementations of high-speed p1pelme systems ,
AFIPS Fall Joint Computer Conference, 1965, pp. 489-504.

R. Cytron, ‘‘Doacross: Beyond vectorization for multlprocessors'(Extended
Abstract)” 1986 Internatzonal Conference on Parallel Processmg, pp 836-
844

J. A. DeRosa and H. M. Levy, ‘‘An evaluation of branch architectures’’,
Proc. 14th Annual Symposium on Computer Architecture, June 1987, pp 10-
16.

P. J. Denning, “Virtual memory’’, Computing Surveys, vol. 2,'Sep. 1970, pp.
153-188. - [

J. B. Dennis and D. P. Misunas, ‘‘A preliminary architecture for a basic data-
flow processor’’, Proc. 2nd Annual Symposium on Computer Architecture,
1974, pp. 126-132. '

D. R. Ditzel and H. R. McLellan, ‘‘Branch folding in CRISP
microprocessor’’, Proc. 14th. Annual Symposium on Computer Archztecture,
June 1987, pp. 2- 9,

P. Dubey and M. J. Flynn “Branch strategies: Modelling and optlmlzatlon
Technical Report No. CSL TR 90-411, Computer Systems Laboratory,
Stanford Unrversuy, Feb. 1990.

P K. Dubey and M. J. Flynn “‘Optimal plpehmng” Journal of Parallel and
Dlstrzbuted Computing, Jan. 1990, pp. 10-19. ; ,

P. K. Dubey and M. J. Flynn, “Branch strategies: modelling and

optlmrzatlon , IEEFE Trans. on Computers, to appear.

B. K. Fawcett, Maximal Clocking Rates for Pipelined Digital Systénrs, M.S.
Thesis, Dept. of Elec. Eng., University of Ilhn01s at Urbana-Champalgn
1975

I A. Fisher, ““Trace Scheduling: A tcchnique for global rnicrocode
compaction’’, IEEE Trans. on Computers, vol. C-30, July 1981, pp. 478-490.

J. Fisher, *““VLIW architectures and the ELI-512"°, Proc. 10th Annual
Symposium on Computer Architecture, June 1983, pp. 140-150. s

159

[Fly72] M 1 Flynn, ““‘Some computer orgamzauons and their effectiveness’’, JEEE
. - ,Trans on Computers vol. C-21, rio. 9 Sep 1972, pp. 948-960.

[FIH79] M J. Flynn and W L. Hoevel, “A theory of mterprenve architectures: ideal
: , language machines’’, Technical Report 170, Computer Systcms Laboratory,
: Stanford Umvcrsxty, Feb. 1979.

[FoR72] C. C. Foster and E. M. Riseman ““Percolation of code to enhance parallel
~ dispatching and execution”’, IEEE ‘Trans. on Computers, vol C—21 Dec.
1972, pp. 1411-1415. |

[GaH80] L C Garcia and T. Huynh, “Storage fetch contention reductlon using
" instruction branch predlcuon” IBM Techmcal Dzsclosure Bulletm, vol 23,
no. 6, 1980. .

[GaJ79] M. R. Garey and D. S. Johnson, Computers and Intractabzltty A Gutde to the
R Theory of NP- Completeness Freeman Pubhshmg Co., 1979. . -

[GrH86] T. R. Gross and J. Hennessey, “Op'tinxi’zing delayed branches’, Proc. 15th
' WOrkshop on Microprogramming, 1986.

[GKT90) G F. Grohosk1 J. A. Kahle, L. E. Thatcher, and C. R. Moore, “Branch and
' fixed-Point instruction execution units”’, IBM RISC System/6000

' Technology, Publication No. SA23-2619, IBM Corporatlon 1990

[Gr083] | :T ‘Gross, ‘ ‘Code optimizations of plpelme constramts Techmcal Report No.
. CSL TR 83-255, - Computer Systcms Laboratory, Stanford Umversny, Dec.
: 1983

[HaF72] T. G. Hallin and M. J. Flynn, ‘‘Pipelining of anthmetlc functlons” IEEE
' Trans on Computers, Vol. C-21, No 8, Aug. 1972, pp. 880-886

- [HwP87] W-M. Hwu and Y. N. Patt, “Checkpomt repair for high performance out-of-
. order exeécution machines”, Proc. I4th Annual Symposium on Computer
Archttecture June 1987, pp. 18- 26 " .

[HsD86] P. Y. T. Hsu and E. S. Davidson, ‘‘Highly concurrent scalar processmg ,
- "Proc. 13th Annual Symposzum on Computer Architecture, June 1986 PP-
: _.386 395

[Jthl] " W M. -Johnson,-Supersca'lar M ioroprocessor-Design Prentice HaIl 1991.

[JoW89] N. P Jouppi and D. W. Wall, “Avatlable mstrucnon-levcl parallehsm for
' - superscalar and superpipelined machmes”, Proc. of ASPLOS I, Apnl 1989

Pp. 272-

[KaMé66]

160

R. M. Karp and R. E. Miller, ‘‘Properties of 2 model for rparallel
- computations: Determinacy, termination, queuemg , SIAM J. of Applted

Math Nov. 1966, pp. 1390-1411

[KMC72]

| [Kun82]
[KuS86]

[Lams88]

[LeS84] |

D Kuck, - Y. Muraoka, and S. Chen, “On the number of operatlons
simultaneously executable in Fortran-like programs and 'their resulting
speedup” IEEE Trans. on Computers, vol. C-21 Dec 1972, pp. 1293 1310.

H. T. Kung, ‘““Why systolic archltectures 7, IEEE Computer Jan. 1982 PP-
37-46.

S. R. Kunkel and J. E. Smith, “‘Optimal pipelining in supercomputei's”; Proc.

1 3th Annual Symposium on Compute'r Architecture, 1986, pp.’ 404-411.

M. Lam, “Software pipelining: An effective scheduling techmque for VLIW
machines’’, Proc. SIGPLAN ’'88 Conf. Prog. Lang. Design and
Implementation, June 1988, pp. 318-328. v

J. K. Lee and A. J. Smith, ‘“‘Branch prediction strategies and branch 'tafgct ’

- buffer design’’, IEEE Computer, vol. 17, Jan. 1984, pp. 6-22.

(LiY90]

[McHS6]

[Mil73]

»D J. Lilja and P. C. Yew, ‘‘Comparing parallelism extractlon technlqucs

Superscalar processors, pipelined processors, and multiprocessors”’,

International Conference on Parallel Processing, 1990, pp. I-563 - 1-564, and
“The pcrformance potential of fine-Grain and coarse-grain - parallel
architectures’’, Report No. 954, Center for Supercomputing Research and

' Development, University of llinois at Urbana-Champaign, June 1990.

S. McFarling and J. Hennessey, ‘‘Reducing the cost of brancﬁeé”g Proc. 13th
Annual Symposium on Computer Architecture, June 1986, pp. 396-403. :

R. E. Miller, ‘“A comparison of some theoretical models’ df parallel

- computation’’, IEEE Trans. on Computers, Aug. 1973, pp. 710-717.

[NiF84]

[Nic85]

[Nic88]

A. Nicolau and J. Fisher, ‘‘Measuring the parallelism available for very long
instruction word architectures’’, IEEE Trans. on. Computers, vol. C- 33 Nov.
1984, pp. 968-976.

A. Nlcolau, ‘‘Uniform parallelism exploitation in ordinary programs , *, Proc.
International Conference on Parallel Processing, Aug. 1985, pp. 614—618

A. Nicolau ‘‘Loop Quantization: A generalized loop unwmdmg technlque
Journal of Parallel and Distributed Computmg, vol. 5, Oct: 1988 .Pp. 568-

- 586.

[N1c89] A Nicolau, “Run—tlmc dlsamblguatxon copmg with statlcalIy
dependencies’’, IEEE Trans. on Computeérs; vol. C-38; May 1989 pp 663-
678.

[N1180] 11\19810 N11sson Fundamentals of Artzﬁczal Intellzgence, Tloga Pubhshmg Cé;

ftlies77] _B L Peuto and L. J. Shustek, ‘‘Cuirrerit 1ssues in the architectiiré of
: rmcroprocessors ', IEEE Computer Feb. 1977, pp. 20-25.

,Y N. Patt W-M Hwu, dnd M. Shcbanow, “HPS A new mlcmarchltccture
ale and = introduction’’; Proc. . 18th Annual Workshop on
Microprogramming, Dec. 1985, pp 1103-108. _ ,

[PHSS5]

| _Patcl and E. S. Dav1dson “Improvmg the throughput of a plpelmc by
ttion of delays Proc. 3rd Annual Symposiuimn on Computer Architectiire,
: Junc 1976, pp. 159- 164.

" [Pol86] C. Polychronopoulos On Program Restructuring; Schedulzng and
Commaunication for Parallel Processor Systems, PA.D. d1sscrtat10n Dcpt of
Computer Science; Univ. of Illinois, Aug. 1986.

B, R, Ra an: C D. Glaeser, *‘Sotne schedulmg techmqucs and an easily
> horizontal architecture for high performarice _scientifie
>y , Proc. 14th Annual Workshop on Microprogramming, Oct 1981,

[RaG81]

[RYY89] B Rau, D ch w. ch and R. A. Towlc, “The Cydra 5 dcpartmental
: stipercompliiter’’, Computer, vol. 22, Jan. 1989, pp. 12-35.

[R1F72] sman and C. C. Foster, “Thc inhibition of potential parallehsm

,IEEE Trans. on Computers, vol. C-21, Déc. 1972, pp. 1405- 1411.

[Sha77] H D. Shaplro “A companson of various methods for detecting and ut111zmg
parallehsm in a single instruction Stream’’, Proc. International Conference
on Parallel Processing, Aug. 1977, pp. 67- 76.

[Sti81] ’J E. Smith, “‘A study of branch prediction strategies’’, Proc. 8th Annual
- Symposzum on Computer Architecture, May 1981, pp 135- 148

» pf>
* Architecture, June 1985 PpP. 36-47.

[SJH89]
- [SoV8T)
[Soy89]
tTjF701

[Tja72]
[TjF73]
" [Tho70]

" [Tom67]

[Uht86]

[Weds2]
| »[Wc’S 84]

[WeS87]

162

‘M. D. Smith, M Johnson, and M. A. Horowitz, ““Limits on multiple
instruction issue”’, Proc. of ASPLOS IIl, Boston, MA, Apnl 1989, pp 290—
302. -

G. S. Sohi and S. Vajapeyam, “Instructlon issue logic in hlgh—perfonnance

interruptible pipelined processors’’, Proc. 14th Annual Sympostum on
Computer Architecture, June 1987, pp 27-34.

G. S. Sohi and S. Vajapeyam ‘‘Tradeoffs in instruction format des1gn for
horizontal architectures’’, Proc. of ASPLOS III, Boston, MA, Apnl 1989, pp.
15-25.

G. S. Tjaden and M. IJ. Flynn, ‘‘Detection - and parallel execution of
independent 1nstruct10ns”,IEEE Trans. Computers, Vol. C-19, Oct. 1970, pp
889-895.

G S. Tjaden, Representatzon and Detection of Concurrency Uszng Ordering
Matrzces Ph.D. dlssertatlon Johns Hopkins Univ., Baltxmore, MD 1972

G. S. Tjaden and M. Flynn, ‘‘Representation of concurrency wnh ordermg
matrices”, IEEE Trans. on Computers, Aug. 1973, PpP- 752’-761.

J. E. Thornton, Design of a Computer The Control Data 6600, Glenvxew IL,
Scott, Foresman and Co., 1970

R. M. Tomasulo,, “An efﬁcient algorithm for exploiting mulﬁple ériﬂimetic ,
units’’, IBM Journal of Research and Development vol. 11, Jan. 1967, pp.
25-33. » o

A. K. Uht, “‘An efficient hardware algorithm to extract cohcurrency from
general-purpose code’’, Proc. of the Nineteenth Annual Hawaii Internatwnal

‘Conference on System Saences, 1986 pp. 41-50.

R G Wedlg, Detection of Concurrency in Dzrectly Executed Language
Instruction Streams, Ph.D. dissertation, Stanford Umvers1ty, Stanford CA,
June 1982. . . :

S. Weiss and J. E. Smith, “Instruction issue loglc in. pxpehned
supercomputers’’, Proc. 11th Annual Symposzum on Computer Archztecture,

~June 1984 pp- 110—118

S. Welss and J E. Smith, “A study of scalar eompllanoh techniqheé for
pipelined supercomputcrs”, Proc of ASPLOS 1, Palo Alto, CA Oct. 1987 '
pp 105-109. .

Appendix A

A.1 Computation of Probabilitiés in Table 3.2

The four probablhues in Table 32, Dia» Pibs Db and pp,p can beé com
terms of probablhty of branch-to-be-taken prediction, p; and prebablhty of corfect
predlctmh p,_., usmg the followmg equations:

Pan=(1=p)*p,
 Pas=(1=p)* (1=p)
L PeaEp*(=po)

a Pbb—Pt Pe

en and where 2 out of every 10 predlcuons are incorrect. T
”08 whlch leads to p,,,,—O 32 p,,.b 008 pb,,—() 12 and pbb 048

~ ‘execution and can be expressed as

psp=(1-p)* (- pc)+p: Pe -

i diction slrategy (such as BTB) with a certain correct predlctlon
pro, ability; pc, thie probablhty of to-be-taken predictions ‘can be written usmg the above
. ‘equatlon as, : »

P~ (1-pc)
TR

A2 Additional Instruction Traffic Calculation Under Freeze Conditions

Let, |
- Dg= average number of clocks spent durmg a target-address-calculatlon freeze

Dy=average number of clocks spent in case of a page-fault during target fetch
- Pa= probablhty ofa target-address-calculamn freeze

pf—probablhty ofa target fetch freeze

‘N= maximum possible instruction fetches assuming no freeze
pos(l) I for l >O

.==O fo_r 1<0 ‘
The additional i‘n'str_'uctionv traffic

IT=mytma+mytmy
 where

mj =wasted instruction fetches, assuming address calculation i

freeze as well as target fetch ﬁeeie
- =pos (N =Da=Dyp)* pa * ps
N _""2'= wasted instruction fetches, assuming address calculation |
- .‘ freeze but no tatrget fetch freeze |
. =pos (N—Dg)* pa* (1—py)
ma3= Wasted fnstruction fetches, assuming no address calcul‘atioii "
o freeze hut target fetch freeze
 =pos(V-Dp* (1-p)* by |
m‘t =wasted instruction fetches, assumihg no address calculatiolnll |
freeze and no target fetch freeze
=N*(1-pa)* (1-py)

For the sake of brevity, in the following sections the abcve calculation will be written

164

165

]*-N ~Dg *D, .epf*Bf , |
where ~ refers to the probabrhty-based reduction in N as explained above.

The above calculatlon assumes that no addmonal instruction tafﬁc is generated

durmg, the freeze condlttons Excess instruction trafﬁc would be generated if the freeze

; ons require any mstrucuon fetches (for example durmg page-fault h ndling).

;'ctions not only result in wasted mstructlon fetches but may also resull

; - operand fetches For this analysrs, the increase in data trafﬁc or any
mterference of operand fetches with the instruction fetches is 1gnored '

Incorrect Pr

A.3 Calculation of Branch Delay and Wasted Instruction: Fraffic

Table A.1 contains the symbols to be frequently used in: the calculations to: follow.
: and; are. reproduced;

Loop buffers (LB);

: ﬁ. (6= 1)+pa %D, +pf* Dp)* (1=py) + (55 =2 *Pa * Da)* i

]n.b=(sb— B*-puw)

Table Al Cornmonly used symbols.

VAverage branch frequency
. Overall fraction of successful branches
(condmonal and uncondmonal combmed)

Number of pipeline stages until branch resolution

| Number of buffer substages in ;he instruction fetch stage

Probability of freeze during target address formation
Duration of target address calculation freeze .

Probability of freeze during target fetch
Duration of target-fetch freeze

Probability of loop buffer hit

Probability of BTB hit

' Probability of correct target address prediction from BTB
Probability of BTB hit for a non-branch instruction

 Correct prediction probability _
 Branch-to-be-taken prediction probability

‘Number of pipeline stages until unconditional branch resolutron o
Number of pipeline stages until conditional branch resolution =

' Ayerage nunlber of delay slots filled in delayed branch approach

Psb

.Sy

sbc
sy

2
D
" Pet

. Pw

pe |
P

167

Kis=

(=pa)* A=pp+i=pa*py

Gi % pa* By 00 * p* (L-pp)+ s * (1-pa) * Byt * (1-pa) R

Ba=55-2

168

Kpp=Sr+pa* Dy +ps* Dy
It.n=(sb’— 1 "sf) ~Pa * Dy "'pf* Df

It p=5¢

Predict branch valways taken with target copy (PTTC):
p=1
Kpn=5p—1

' Kb5=Pa*pos(Da— (s~ 1-5)+py* Dy
'1‘5,,, =s55—1

I =0

Fetch both the paths (FBP):
pc=1 |
" Knn=0
Ky p=Sr+Dpa* Dy+ps* Dy |
Iin=(5y=1=5) ~pa* Dy ~ps* Dy

IJb’,b=sb—1

Delayea branch (DB):
pe=0
Knb époS(sb - 1 fu)+pa * Da +ps* Dy
Kn,‘n=0i' |
I,y =pos(sp—1—u)

| .I‘rt’,n:O

169

T'7["7211'_,'('efr"i/I\T'o':t‘'-ta.ken switch in the decode stage (TNTD):
Kpp=sp=1-5

Kbb :sf‘-i'-pg * D;+ps* Df

Kib=5~ 1+p,,*D +ps* Dy
| kmn-o |

4,'-—(Sb 1- ~5) ~pa*Da ~Pf*Df

1+b sf

Iip=sp=1

Ta=0

Under the Branch target buffer (BTB) scheme, instruction fetch addresses are
assocxauvely matched with the buffer contents and in case of a hit BTB predicts the most
likely branch ‘outcome as well as the most recent target address (see Fig. 35). Asa
result, target fetch does not need to wait for the branch decode and target address
calculauon. If the branch is likely to be taken, the first target instruction fetch
immediately follows thé branch instruction fetch. Following branch decode, at the
complétion of actual target address calculation, a comparison is made with the predicted
~‘target ‘address. A mismatch here flushes any fetches made from the incorrect target,
dborts any freeze in the incorrect target path and restarts target fetch at the calculated
address. It is also assurned that this comparison output is available along with the actual
target without any ‘additional clock overhead. Correct target predlcuon probablhty, Det
depends on the frequency of branch target changes.

A h1t m the branch target buffer (BTB) means that the fetch address contains a
branch instruction. In the case of writable code segments, there is a small likelihood, p,,,
that a non-branch instruction gets predicted as a branch instruction. To make things
worse, if such an instruction is predicted as a branch likely to be taken then it has an
impact ‘on the system throughput even in the absence ‘of any branch instruction as it
blocks the sequential address fetch during the following cycle until the actual instruction
decode. This throughput deterioration is modelled using the following modified version
~of the throughput equation in Table 3.2: '

G=1/1+K*b+sr*p, *p,) .
Similarly, this probability of a BTB hit with branch-to-be-taken prediction for a non-
branch instruction also modifies the computation for wasted instruction traffic in Table
3.2, which so far included additional instruction traffic only due to branch instructions.

170

The following equation reflects an additional wasted instruction fetch in case a non-
branch instruction is predicted as a to-be-taken-branch and there is no target fetch freeze .

I* =14 * (1) + g ~D*P)* Pi* P
‘where I} refers to the excess instruction traffic due to branch instructions given by the

equation in Table 3,2 and ~ refers to the probabrhty-based reductron explamed in
Section A.2, _ . '

In case of a miss in BTB, branch instructions are handled in a manner smular to the
PBNT strategy. In other words, branch is assumed as not likely to be taken by default, in
. case of a BTB miss. The overhead involved in BTB-updates is ignored. Therefore,
equivalently, this strategy can be considered as a combination of two strategies, one as
described above with BTB hit probability p,, and the other the same as in the case of the
PBNT scheme with BTB miss probability. S

Calculation for different excess instruction traffic parameters is involved in- thrs case
and, hence, their derivation is described below in qualitative terms before giving the
mathematical details. ' o '

i) If a branch is predicted as likely to be taken, target fetch begins immediately frcmr)
the predicted address and target address calculation starts soon after the decode. If
the calculated target address does not match with the predicted address; the
instructions fetched so far from the incorrect address are wasted and instruction

" fetches begin from the calculated (actual) target address.

“ii) In the previous case, if the branch is not taken then in addition to the fetches made
“ from the predicted target, mstructrons fetched from the actual target address are also
wasted.
iii) If the branch is predicted as not likely to be taken, it is assumed that 'ﬁo attemp_t is
" made to calculate the target address and instruction fetch continues from the
sequential path. If this prediction turns out to be false, sequential instructions -
fetched are discarded, target fetch immediately begins at the predicted address and
- the actual target calculation starts simultaneously. If the calculated target does not
match with the predicted target, this fetched sequence is also wasted

-3

Fmally, the above set of parameters are used to calculate the average branch delay,
K, and excess instruction traffic, I}, where the subscript refers to the BTB hit case. In
the case of BTB miss, the corresponding parameters K, and I}, are calculated from the
components given for the PBNT case. Combining these cases gives ;

K=Kh P+ K * (1-pp)
and

=I5 *pw+Ip* (1-py) .

171
The computation of different parameters fo]-‘idws.,
Kb nng -1 ‘
Kb b=@f*Dp)* per + (Sf+Pa *D, +pf* Dp)* (1 =Dct)
Knp= ((sb D+ps* Dy) *pc:+((sb D+pg* D, +pf* Dp* —pa)
Kn,n —T—-_O

The addmonal instruction trafﬁc, when branch is predJCted as to-be- taken and is actually
taken is -

I} p=(01 +0, +03+04) * (1-per)
Assume) |
min(a,b)=a ifa<b
=h ifb<a
- y=min(pos(sy+Da =Dy, (55— 1) * ps* py
Gy =min ((Sf+Dg), (sp—1))*pa * (1-pp).
G3=pos(sy=Dp) * (1=pa) * py
“Ga=57% (1=pa) * (1-py)
Cmsi.dér the additional instruction traffic, 'Whe,n. branch is predicted as to-be-taken but
turns out to be an incorrect prediction : Let pﬁ, and Dy, refer to the freeze potential and
freeze duration rcspectlvely at the predicted targct and, let pr and Dy, refer to the same
at the actual calculated target. This dlstmcnon is made only for better understandmg of
the’ followmg details. Numerically, pg, =py=py and Dg =Dy =Dy The discarded
instruction fetches in this case would be
| Itn=(s5=1) ~pr* D) * pet +8* (l—pc,),
where ’

6—81 +3, +83 +84 +35 +86 +&7 +83
8 =(POS($f—Dfp)+Sb -1-sp*pp *(1=pp)* (1-pa)

8 =(pos(sy—Dyp) +pos(sy~1-5r=Dp)) * ppp * e * (1-Pa)

172

& =(sp—1)* (1=pp)* (1=pe)* (1-py)

84 =(sy+pos(sy—1=57~D) * (1=pp) * pge * (1-pa)

5= (min (pos (s;+Da ~Dyp), (55— 1) +Ppos(ss — 1—s7~Dal)* o * (1~Pfe) * Pa

85 = min (pos(sy+ Dy~ Dpy), (5= 1) +pos sy~ 1=y~ Da~Dp))* B * P * Pa

87=(s5=1)* (1-pp)* (1-pp) * pa |
and

8 = (min ((s7+Da), (s — 1)) +pos(sp—1-57—D, -ch)) *(A=pp)* P *Pa

The additional instruction traffic when the branch is predicted as not-to-be-taken but is
actually taken is

L p=(p—D+y* 1=pa) ,
where ,
Y= *Pa * e+ * pa* A=p+1* (1=pa) *pr+va * 1—pa) * (1-pp)
and

Y1 =min (pos(Dg —Dy), sp— 1)

Y2 =min (D, sp—1)
and ‘

- B=N=0

Finally, calculations for the four hybrid cases follows.
Predict branch always taken with target-copy and delayed branch (TTCDB):
=l : _ ~
Kp,n = pos(sy—1-u)
Ky.» =P_a”',‘ pos(Da—(sp—1-sp))+ps* Dy
13w =pos(sy—1-u)

It =0

Predict branch always taken with target-copy, delayed br;a'nch' and loop bpffer (I'iDLB): ‘

173

pi=1
Kbn =pos(55 = 1~u) * (1~pyy) +pos(s, —2~it) * pyy
Kvps * pos(Da— (55 =1~ 35) * pus + (s * pos(Da=(55 = 1=3p) +ps* D * (1= pus)
I} =pos(sy—1-u)* (1-py)

Takeri/Not-taken switch in thc decode stage with loop biitfer (TNTLB):
Kpn=s5~1-3
Kbb= (5= 1)+pa* D) * pup+ (Sp+Pa * Dy +pp* D) * (1—pip) |
Kb = (5= 1 +pa* D +ps* bf) * (1—p)+ ((s6=2)+Pa *Da)* b
Kin=0 |
It = '((‘$$ —1-8p) ~Pa* Dy ~ps* Dp)* (1-pp)

Ity =5p* (=)

Iy =Gs—1)* (A=)

| pararieters for the case of taken/not-taken switch in the decode stage with
branch target buffer (TNBTB) are the same as those in the case of BTB, except that the
average branch delay and excess instruction traffic parameéters K, and I3, in the case of a
BTB miss are calculated using the TNTD case. '

174

A.4 Some Additional Performance Plots

Average
branch
delay,

0 |] T T T T |
1 2 3 4 5 6 7 8§ 9 10

Number of substages in the instruction fetch stage, sy

Figure A.1 Average branch delay versus number of substages in the
instruction fetch stage for PBNT, LB, PTTC, FBP, TNTD, and BTB
. strategies.

Average
number of
wasted
instruction
fetches
per branch,
I+

i I p— | — 7T
1 2 3 4 5 6 7 8 9 10
Number of substages in the instruction fetch stage, s¢

Figure A.2 Average number of wasted instruction fetches per branch versus
number of substages in the instruction fetch stage for PBNT, LB,
PTTC, FBP, TNTD, and BTB strategies. - . _

1 2 3 4 5 6 1 8 9 10
Number of SUbstages in ‘the instruction fetch fsiage, U

Flgure A3 Ment ratlo versus number of substages in the instriction fetch
stage for PBNT, LB, PTTC, FBP, TNTD, and BTB strategles

C 36 v :
S TS B .11 g - < Y T

— K 1.6_ v‘ g N ’< ‘,_(v:-_a'——‘:",'.,‘g,

o -

' '1;2‘iﬁfvrzb=':l:,;,§§?::_;.ﬁ--;;af"___f,‘#=,a=-:

2 3 4 5 6 7 8
k Number of stages for conditional branch resolution, sj;

: Flgure A 4 Average branch delay versus number of stages for condltlonal
~ branch reésolution for PBNT, LB, PTTC, FBP, TNTD, and BTB
strategles

176

5—— - :,'”
sl 1 | RN T}

Average
number of
wasted
instruction

- fetches
per branch,
It

| ' » , ;
2 3 4 5 6 7 8
Number of stages for conditional branch resolution, s,
Figure A.5 Average number of wasted instruction fetches per branch versus

number of stages for conditional branch resolution for PBNT, LB,
PTTC, FBP,TNTD, and. BTB strategles

--m-- FBP

Merit
ratio,
MR

2 -3 4 5 6 7
Number of stages for conditional branch resolution, sz,

Figure A.6 Ment ratio versus number of stages for conditional branch
resolution for PBNT, LB, PTTC, FBP, TNT D, and BTB strategles

177

1 2 3 4 5 6 71 8 9 10
Number of substagcs in the instruction fe’tch st_age, 85

Figuie A7 Average branch delay versus number of substages in the
o instruction fetch stage for PBNT, TTCDB, TTDLB, TNTLB, and
TNBTRB stratégies.

1 2 3 4 5 6 1 8 9 10
Number of substages in the instruction fetch stage, s¢

Figure A.8 Average number of wasted mstrucnon fetches per branch versus
number of substages in the instruction fetch stage for PBNT,
TTCDB, TTDLB, TNTLB, and TNBTB strategies.

. 178

.8 =
7-&:§\ --x-- TIDLB
\2:! --u-- TNTLB
, .6 - 1\\\ --0-- TNBTB
. . ~\\ g.k
Ment 5 4 \\\ !::~
ratio,
MR

1 2 3 4 5 6 71 8 9 10
Number of substages in the instruction fetch stage, s¢

Figure A:9 Merit ratio versus number of substages in the instruction fetch
stage for PBNT, TTCDB, TTDLB, TNTLB, and TNBTB strategies.

2.8 - ‘
Average - 244 | » L
number of 9 : -
wasted ‘ e
instruction - 1.6+ ~ PBNT -~ /’/
fetches 12 4 | ’//_
per t;rfmch, . 8 i “TTCDB, - - , o B N L :;
. . R - L ::-— -‘B -----
S o NIRRT I Ty
s=’:,:‘,:ﬁ5:':=,' _____ TNTLB
0 —pz=--""TTDL |
! T T 1 . '
: ; N 6 7. 8

Number of stages for conditional branch "reso:h'itidh, She

Figure A.10 Average number of wasted instruction fetches per branch versus
number of stages for conditional branch resolution for PBNT,
TTCDB, TTDLB, TNTLB, and TNBTB strategies.

179

Merit

e S
2 3 4 5 6 17 8
Number of stages for conditional branch rcsolution, She

Flgurc Al Ment ratio versus number of stages for conditional branch'
A resolution for PBNT, TTCDB, TIDLB, TNTLB, and TNBTB

strategies.
164 °
Avgtagg 14 = =
' wasted £ ~-JTDLB L
. ‘x\ \\\\
8 - .=G::~g__~g~\\ N
AN .) ’ .~ -~a “7-§.~‘ ~ -
perbranch, 6‘ ‘l~$\ ~§::_S’Q~ ~.
s J].+ s TNTLﬁ‘v‘\. ~w. ~~~E‘~~a__‘€]
g T~8. 7% \\TINBTB
.2—. . 'Ls‘:”‘\
: | ‘ ' ~.:i§§
0 T T T T T T T T 1

o 1 2 3.4 S5 6 7 8 9 1
LOOp/T arget-buffer hit probability, pin, Pin

Flgure A.12 Average number of wasted instruction fetches per branch versus
Loop/Target buffer hit probability for LB, BTB, TTDLB, TNT LB
and TNBTB strategles ,

180

- Merit
ratio,
MR

0 1 2 3 4 5 6 1 8 9 1
Loop/Target buffer hit probability, Din) Dtk

Figure A.13 Merit ratio versus Loop/Target buffer hit probability for LB BTB
TI'DLB TNTLB, and TNBTB strategies.

1.3

12—J&---x----x—-—-x-—---x--—--x----x--—--x----x-----x----x
TTCDB '
Average 1.1
number of 1
wasted = 9
instruction .8 LB
fetches =
per branch, P 1-3-'I—'B- ---------------------- —
It 5.4 . , TTDLB :
Il St il BEE LUET EEST EER BEry B et duls
44 :rmmla—g--g--—g---EQ-_g_m B _g-.
3 L] ! | | | | il |

0 0.02 004 006 008 .1 .12 .14 .16 .18 "2~
Target fetch freeze probability, py

Figure A.14 Average number of wasted instruction fetches per branch versus
target fetch freeze probability for LB, BTB, TTCDB TTDLB,
TNTLB, and TNBTB strategies.

181

' v) Sl
. - - ~. -
66~ W R

Ment 62 BB ea.. TNBTE ... 'I'I'DLB~
fatlo, ' [P ‘ '\i;;"sg~“ ‘ﬂ'*'-~#
MR S8+ - ’ o T
- ¥an, LB -

: RN I L I 1 T 1
0 002 004 006 008 .1 .12 14 16 .18 2
Target fetch freeze probability, ps '

Figute A.15 Merit ratio versus target fetch frecze probability for LB, BTB,
TTCDB; TTDLB, TNTLB, and TNBTB strategies.

Appendix B

Table B.1 Additional_benchmarks used in this study.

Description -

Benchmark
whetstone | Synthetic mlx of ﬂo’ating-pbini
and integer arithmetic ‘
tomcatv Vectorizable ﬁoating-point Fortran
benchmark that does little I/O
appbt Couplcd part1a1 diffc:rehtial equaltions’
éppsp | ; Coupled fartial diffcrcﬁtial equations
| | buk Bucket sorf |
‘adm‘ FFTs
dyfesm ODE solvers, nonlinear algcbraick
systems and sparse linear systems solver
1 flo52 Multigrid schemes, ODE solvers .
| ocean FFTs |
qed Monte Cario sch¢mes
spec77 FFTs, rapid elliptic pfbblem solvgrs |
track Convolution |
ﬁ‘fd Iritegral,'transforms

182

Measured
instru¢tion
scheduling
probability,
| P)’)

3
dotted: whetstone
25 - . dashed: tomcatv
) Qi}'s ‘dashed square: appbt
24 _ &:»3\1,251) dashed plus:»appsp
15| \-E}; ~ " dashed bullet: buk
. - '-\:._\~*\ .
1 \:‘\ig~“\‘
: RGO T
. ~Jhn - Bagso
0.05 Tt TBIzzzzg,
\ ’ 'i-.,..._ v P ‘---tm
0 ‘"ﬁmnr.f.:.':.-::
| ERE— 1 T N
1 2 4 8 16 32

Distance (number of dyriamic instructions apart)

183

Flgure B.1 Measured instruction scheduling probability versus distance for '

Measured
instruction
scheduling
probability,
P(iy)

Figure B.2

whetstone, tomcatv, appbt, appsp, and buk benchmarks:

.4— * s .)
s . dotted: adm
354 % : : dashed: qcd
3 N o : dashed square: track
I RN dashed plus: ocean
. S \\\
'25— 0 "'- *‘_’\\\\
.2— \\‘\ ‘.."o \\\:i\k\
15 \E\\."f,-.... \\::\
. \s\ °'...‘ \§\
- CEl e
B = ML TN
0.05 - , “S8rnzzgg
0. ;
[| L 1 T l
1 - 2 4 : 8 16 32

Distance (number of dynamic instructions apart)

Measured instruction scheduling probability versus distance for

adm, qcd, track, and ocean benchmarks.

184

B~
SN dotted: dyfesm
| A5 N dashed: flos2
I T N\ dashed square: trfd
Measured 35 . g : dashed plus: spec77
~ instruction 3 TYEs. TN : :
scheduling 25 | s S, O
probability, 2- RS 2a-
O
BT S \..B.:".';oz.z,‘ -
0.05 | ~BTrreg
0 -
T T T T T 1
1 2 4 8 16 . 32
Distance (number of dynamic instructions apart)
Figure B.3 Measured instruction scheduling probabilityv versus distanCe for
© - dyfesm, flo52, trfd, and spec77 benchmarks.
.8 5,
W BN dotted: whetstone
. : AN \
 Measured 6 N dashed: tomcatv
. . kN A\ .
beyond-basic-block 5| .\ dashed square: appbt
~ instruction ‘ 4 i ‘:.“\ : @h dolus:
. o B C us: S;
-scheduling . AN oC P AP
probability, 34 ‘c,\;* dashed bullet: buk
Po 2 ﬁ ' m; §'Z~. |
1 Ik RS —nmEII IO
O_ \\EEE;;;==ISEIH.-,,f.-AE_
T | T T !
0 1 2 ' 4 -8
~ Distance (number of basic blocks apart) - '
Measured beyond-basic-block instruction scheduling probability

Figure B.4

versus distance for whetstone, tomcatv, appbt, appsp,
benchmarks.

and buk

Measiired
beyotid-basic-block
- instruction

 scheduling
-+ piobability,
o Pe.

Measured
beyond-basic-block
in ion -
scheduling
probability,
Po

185

64

54
ad

3-
2-
01 -

o :

N o dotted: adm -

RN ~ dashed: qod

&Y dashed square: track -

v, dashed plus: ocean

- Distance (number of basic blocks apart) ‘

Measured beyond-basic-block instruction scheduling probability
versus distance for adm, qed, track, and ocean benchmarks.

X . dotted: dyfesm
. ~ dashed: flo52
" dashed square: trid
dashed plus: spec77

-

Distance (number of basic »blof:ks apart)

‘Measured béy"ond-basic-block instruction schéddling‘ ‘probability

- versus distance for dyfesm, flo52, trfd, and spec77 'benchmg'rks.

Predrcted
- ‘rmspredrctren
- delay,

b e

1 2 3 4 5 6 .1 8

Figure B7

Predicted
mrspredlctron
- delay,

- D;

 Figue BS

6 dashedsquare track - s *c

dotted: whetstone
dashed: tomcatv bt S T O

uareappt T - B
dashed;s)(ilus appsp B L CERR T
dashedbullet bk

Lookahead (number of basic blocks)

Predicted misprediction delay based on the empirically collected
P o distribution-as a function of the amount of dynamic lookahead, -
in terms of number of basic blocks for whetstone, tomcatv appbt, o
appsp, and buk benchmarks o : _

dotted: adm e R o X
dashed: qed - - s LBt '

'-dashedplus ocean - . T

. T -
R - - .
/ - -
- -

12 3 4 s 6 1 8
: Lookahead (number of basrc blocks) ;-

Predicted misprediction delay bascd on the empmcally collccted
- Po distribution as a function of the amount of dynamic lookahead,
in terms of number: of basrc blocks for adm ch track and ocean

‘ benchmarks : : _ R

187

12
A , , s
104 dotted: dyfesm - . - el
: dashed: flos2 A
- 8~ dashed square: tfd -7
dashed plus: spec77 il g
6. . //, ‘—*‘.,.'—__r.- Sl qj
rf’ __—*—_T rE—"—
g -~ geestt - S
of i
2277 e -8
. ,"P' __—'E"
2 —-: .::—::;.g"_.: --8- .
N e
1 2 3 4 - 5 6 7 8

Lookahead (number of basic blocks)

Figure B.9 Predicted misprediction delay based on the empmcally collected
P o distribution as a function of the amount of dynamic lookahead,
in terms of number of basic blocks for dyfesm, ﬂ052 trfd, and
spec77 benchmarks.

. -._.l:..rv piler culput
_ Program: whetstone
Satic 27
throughput
(instruetions
per schedule) 4 _

1 2 4. 8 16 3
’ - Scope (number of instructions)

* Figure B.10 Throughput under resource and scope constraints for the whetstone
SRR ~benchmark; resources varied with instruction word width = 2,3,4,6,
~and 12. The compiler output was influenced by resource

constraints that are not part of the model. ‘

Static
- throughput |
(instructions
per schedule)
0
Figure B.11
3
~ Static
throughput
- (instructions

per schedule) 1. |

’ ,Figu're B.12

188

234612

< instrus

mwug}glct:d‘thmu

piler ou

Program: tomcatv

4 8§ 16
Scope (number of instructions)

Throughput under resource and scope constraints for the tomcaty
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by rcsourcc
constraints that are not part of the model ‘ L

4

1 2 4 8 16
Scope (number of instructions) - .-

2346 12 — mstmgélT glcle (f rou

m measu er ou

Program: appbt

32

Throughput under resource and scope constramts for the appbt
benchmark; resources varied with instruction word width =2,3,4,6,
and 12. . The compiler output was 1nﬂuenced by rcsource
constramts that are not part of the model. :

per schedule) i

Figite B.13

(1nstruc: ons -

per sch ule) 1‘

Figire B.14

189

' st“-‘oé“i“ ﬁlaec@-ml!ﬁ’ put

measu compl

Program: appsp

1 2 4 8 16
' Scope (number of instructions) -

Throughput under resource and scope constraints for the appsp
benchmark; resources varied with instruction word width= 2,3.4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model.

234612 (—- slru oél(lﬂ (fcg;ﬁ: g g‘ggg%hpm

." measure:

‘i Program: buk

1 2 4 8 16 32
Scope (number of instructions)

Throughput under resource and scope constraints for the buk
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model.

190

3 234612 ¢ mslmoél 1cleg#hmu§pl§’m

[] mcasu

- Static - 2
, vthroughputv

’ (iristructions
_per schedule).

12 4 8 16 32
’ Scope (number of instructions)

Figure B 15 Throughput under resource and scope constraints for the adm
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model. : :

234612

= ms"uot? 316[;? rou

- measu compl er oul

Static 24
throughput
(instructions

per schedule)

1 2 4 8 16 32
o Scope (number of instructions)

Figure B.16 Throughput under resource and scope constramts for the gcd
: benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was 1nﬂuenced by resource

“constraints that are not part of the model. : .

191

2346 12 T mslrucuon-wordw

(:j I%?dlcled throughput
measu compuler oulput -

Prdgram.: track
2
throughput
(mstrucu: ns
per schedule) 1

1 2 4 8 16 32
Scope (number of instructions) - -

Figure B.17 Throughput under resource and scope constraints. for the track
' benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compﬂer output was influenced by resource

constraints that are not part of the model.

2346 12 <—- instruction-w
' = mgﬁxn g%ﬁ%fg

Program: ocean

?.ell;?' ﬁ%)lul

* throughput
(instructions
per schedule) .

1 2 4 8 16 32
Scope (number of instructions)

"Figure B.18 Throughput under resource and scope constraints for the ocean
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource
constraints that are not part of the model.

192

2346 12 « instruction-word width
. T3 model predicted throughput
S8 measured compiler output

3 Program: dyfesm

- Static
throughput
(instructions
" per schedule)

1 2 4 8 16 = 32
- Scope (number of instructions) '

Figure B.19 Throughput under resource and scope constraints for the dyfesm
: benchmark; resources varied with instruction word width = 2,3,4,6,

and 12. The compiler output was influenced by resource '

constraints that are not part of the model. :

2346 12 « instruction-word width
- - . model predicted throughput
) ®oE measured compiler output
34

Program: flo 52
Static B
throughput
(instructions
per schedule)

1 2 4 8 16 2
Scope (number of instructions) o

Figure B.20 Throughput under resource and scope constraints for the flo52
: benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was mﬂuenced by resource

constraints that are not part of the model.

~ Static

"Tt“rmi’g’li‘pu’t
- (mstructlons
per schedule)

Figuré B.21

i f;pcr» :chedule)

. Flgure B.22

193

234612 « -inistiiction-word width
— = model predicted throughput
. measured compiler output

4 8 16
: _Scope;.(numb'e'r of instructions)

Throughput under tesource and scope constraints for the nfd
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influericed by - resource
constraints that are not part of the model.

234612 - instruction-word width
= model predicted throughput
P measured compiler output

1 2 4 8 . 16 32
Scbp_e‘-‘(number of instructions)

Throughput under resource and scope constraints for the spec77
benchmark; resources varied with instruction word width = 2,3,4,6,
and 12. The compiler output was influenced by resource.
constraints that are not part of the model.

[

	Exploiting Fine-Grain Concurrency Analytical Insights in Superscalar Processor Design
	

	tmp.1542052450.pdf.73vtY

