348 research outputs found

    Natural Algae-Inspired Microrobots for Emerging Biomedical Applications and Beyond

    Get PDF
    Algae-inspired microrobots (AIMs) have attracted intense research over the past decade owing to the abundant desired properties of natural microalgae, such as biocompatibility, autofluorescence, and pharmaceutical activity, which make them ideal candidates for biomedical and related applications. With the deepening and widening of applied research, the functions of AIMs have been greatly enriched and enhanced to meet the needs of demanding application scenarios including targeted drug delivery, anticancer/antibacterial therapy, cell stimulation, wound healing, and biomolecule sensing. Notwithstanding, multiple challenges remain to be tackled for transformative advances and clinical translation. In this review, we aim to provide a comprehensive survey of representative advances in AIMs accompanied by the underlying biological/technological backgrounds. We also highlight existing issues that need to be overcome in AIM developments and suggest future research directions in this field.</p

    Micro/nanoscale magnetic robots for biomedical applications

    Get PDF
    Magnetic small-scale robots are devices of great potential for the biomedical field because of the several benefits of this method of actuation. Recent work on the development of these devices has seen tremendous innovation and refinement toward ​improved performance for potential clinical applications. This review briefly details recent advancements in small-scale robots used for biomedical applications, covering their design, fabrication, applications, and demonstration of ability, and identifies the gap in studies and the difficulties that have persisted in the optimization of the use of these devices. In addition, alternative biomedical applications are also suggested for some of the technologies that show potential for other functions. This study concludes that although the field of small-scale robot research is highly innovative ​there is need for more concerted efforts to improve functionality and reliability of these devices particularly in clinical applications. Finally, further suggestions are made toward ​the achievement of commercialization for these devices

    Magnetically Driven Micro and Nanorobots

    Get PDF
    Manipulation and navigation of micro and nanoswimmers in different fluid environments can be achieved by chemicals, external fields, or even motile cells. Many researchers have selected magnetic fields as the active external actuation source based on the advantageous features of this actuation strategy such as remote and spatiotemporal control, fuel-free, high degree of reconfigurability, programmability, recyclability, and versatility. This review introduces fundamental concepts and advantages of magnetic micro/nanorobots (termed here as "MagRobots") as well as basic knowledge of magnetic fields and magnetic materials, setups for magnetic manipulation, magnetic field configurations, and symmetry-breaking strategies for effective movement. These concepts are discussed to describe the interactions between micro/nanorobots and magnetic fields. Actuation mechanisms of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted motion), applications of magnetic fields in other propulsion approaches, and magnetic stimulation of micro/nanorobots beyond motion are provided followed by fabrication techniques for (quasi)spherical, helical, flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots in targeted drug/gene delivery, cell manipulation, minimally invasive surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery, pollution removal for environmental remediation, and (bio)sensing are also reviewed. Finally, current challenges and future perspectives for the development of magnetically powered miniaturized motors are discussed

    Additive Manufacturing of Bio and Synthetic Polymers

    Get PDF
    Additive manufacturing technology offers the ability to produce personalized products with lower development costs, shorter lead times, less energy consumed during manufacturing and less material waste. It can be used to manufacture complex parts and enables manufacturers to reduce their inventory, make products on-demand, create smaller and localized manufacturing environments, and even reduce supply chains. Additive manufacturing (AM), also known as fabricating three-dimensional (3D) and four-dimensional (4D) components, refers to processes that allow for the direct fabrication of physical products from computer-aided design (CAD) models through the repetitious deposition of material layers. Compared with traditional manufacturing processes, AM allows the production of customized parts from bio- and synthetic polymers without the need for molds or machining typical for conventional formative and subtractive fabrication.In this Special Issue, we aimed to capture the cutting-edge state-of-the-art research pertaining to advancing the additive manufacturing of polymeric materials. The topic themes include advanced polymeric material development, processing parameter optimization, characterization techniques, structure–property relationships, process modelling, etc., specifically for AM

    Green Touchable Nanorobotic Sensor Networks

    Get PDF

    Formulation and characterization of siRNA embedded nanoparticles for pulmonary delivery

    Get PDF
    Advancing existing or developing novel nanoparticle carrier systems is a crucial part of successful nucleic acid delivery for therapeutic purposes. The overall aim of nanoparticle formulations is to deliver their cargo to the site of action. During this procedure, nanoparticles need to show qualities to be internalized into the cell and release their cargo. Dependent on the application route and prior to cell uptake, nanoparticles can be transferred into a form of administration that improves conformation and leads to long-term storage stability. The aim of this thesis is to identify various small interfering RNA (siRNA)-nanoparticle formulations as drug delivery systems with potential to target the lungs (Chapter I + II). Nanoparticles carrier systems comprised of polymers, lipids or a hybrid combination encapsulating nucleic acids and were formed using the concept of microfluidic mixing. The thesis can be separated into two main parts. The first part addresses the common dilemma of the endosomal escape problem by improving existing polymers through chemical modification (Chapter III), synthesizing a novel amphiphilic polymer (Chapter IV) and forming hybrid lipid polyplex nanoparticles (Chapter V). The second section focuses on the development of a spray-drying approach (Chapter VI) and the long-term storage under various conditions (Chapter VI) for siRNA-lipid nanoparticles (LNPs) based on an adapted Onpattro® formulation. The endosomal release problem of polymeric nanoparticles was tackled looking at physicochemical nanoparticle characterization and in vitro performance assessment. Throughout Chapters III - V, sizes of 100 – 200 nm were reached, the zeta potential was kept neutral to positive, and the encapsulation efficiency of siRNA showed values > 90% resulting in an improved in vitro knockdown performance (> 50%) in comparison to polyethylene imine (PEI) polyplexes or triblock copolymer polyplexes cores. The establishment of a spray drying platform for LNPs (Chapter VI) and subsequent drying for storage stability (Chapter VII) resulted in spray dried powders that maintained LNP integrity and stability by loosing up to 15% of siRNA and lipid content. The aerodynamic properties showed ideal characteristics for pulmonary delivery with sizes of 3 μm. The in vitro performance reached knockdown levels of > 95% and a house keeping gene silencing of > 50% was established ex vivo in human precision cut lung slices. In conclusion, this thesis should give an overview of several non-viral siRNA nanoparticles as nucleic acid delivery systems that on the one hand improve the endosomal escape problem of polymeric nanoparticles, and on the other hand are established for pulmonary delivery through a spray drying method
    corecore