150 research outputs found

    Low-Complexity and Robust Hybrid Beamforming Design for Multi-Antenna Communication Systems

    Get PDF
    This paper proposes a low-complexity hybrid beamforming design for multi-antenna communication systems. The hybrid beamformer is comprised of a baseband digital beamformer and a constant modulus analog beamformer in the radio frequency (RF) part of the system. As in singular-value-decomposition (SVD)-based beamforming, hybrid beamforming design aims to generate parallel data streams in multi-antenna systems, however, due to the constant modulus constraint of the analog beamformer, the problem cannot be solved similarly. To address this problem, mathematical expressions of the parallel data streams are derived in this paper and desired and interfering signals are specified per stream. The analog beamformers are designed by maximizing the power of desired signal while minimizing the sum-power of interfering signals. Finally, digital beamformers are derived by defining the equivalent channel observed by the transmitter/receiver. Regardless of the number of the antennas or type of channel, the proposed approach can be applied to a wide range of MIMO systems with hybrid structure wherein the number of the antennas is more than the number of the RF chains. In particular, the proposed algorithm is verified for sparse channels that emulate mm-wave transmission as well as rich scattering environments. In order to validate the optimality, the results are compared with those of the state-of-the-art and it is demonstrated that the performance of the proposed method outperforms state-of-the-art techniques, regardless of type of the channel and/or system configuration

    Integrating millimeter wave with hybrid precoding multiuser massive MIMO for 5G communication

    Get PDF
    Nowadays, there has been growing interest in the Massive MIMO as a result of improving throughput by leveraging spatial freedom and array gain. It is equipped with millimeter wave (mm Wave) bands to resolve the high path-loss. It is known from the literature that iterated algorithms are usually used to attain the hybrid precoders to accomplish a specific optimization objective. Thus, the complexity remains high because each iteration may include singular value decomposition, the matrix inversion, and so on that motivates us to split the hybrid precoding and combining problem into sub-problems. The proposed solution is a multi-user Massive MIMO hybrid beamforming based on a convex optimization problem that is applied and solved for estimating the digital precoding to eliminate inter-user interference while using codebooks to select analog beamformers. It is apparent in the majority of cases; the proposed beamforming performance is higher than only-analog beamforming, single-user (no interference), the ZF precoding, the MMSE precoding, and the Kalman precoding where the full digital solution is a considerable as the benchmark point with different scenarios due to the reduction of user interference. Thus, there is no consideration for complicated operations such as SVD or inversion matrices as well as no need for data estimation. Our proposed solution can serve a large number of users simultaneously due to more directive gain by using numerous antennas at BS. Based on its less complexity and keeping performance, our solution can be recommended

    Novel transmission and beamforming strategies for multiuser MIMO with various CSIT types

    Get PDF
    In multiuser multi-antenna wireless systems, the transmission and beamforming strategies that achieve the sum rate capacity depend critically on the acquisition of perfect Channel State Information at the Transmitter (CSIT). Accordingly, a high-rate low-latency feedback link between the receiver and the transmitter is required to keep the latter accurately and instantaneously informed about the CSI. In realistic wireless systems, however, only imperfect CSIT is achievable due to pilot contamination, estimation error, limited feedback and delay, etc. As an intermediate solution, this thesis investigates novel transmission strategies suitable for various imperfect CSIT scenarios and the associated beamforming techniques to optimise the rate performance. First, we consider a two-user Multiple-Input-Single-Output (MISO) Broadcast Channel (BC) under statistical and delayed CSIT. We mainly focus on linear beamforming and power allocation designs for ergodic sum rate maximisation. The proposed designs enable higher sum rate than the conventional designs. Interestingly, we propose a novel transmission framework which makes better use of statistical and delayed CSIT and smoothly bridges between statistical CSIT-based strategies and delayed CSIT-based strategies. Second, we consider a multiuser massive MIMO system under partial and statistical CSIT. In order to tackle multiuser interference incurred by partial CSIT, a Rate-Splitting (RS) transmission strategy has been proposed recently. We generalise the idea of RS into the large-scale array. By further exploiting statistical CSIT, we propose a novel framework Hierarchical-Rate-Splitting that is particularly suited to massive MIMO systems. Third, we consider a multiuser Millimetre Wave (mmWave) system with hybrid analog/digital precoding under statistical and quantised CSIT. We leverage statistical CSIT to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. For very limited feedback and/or very sparse channels, the proposed precoding scheme yields higher sum rate than the conventional precoding schemes under a fixed total feedback constraint. Moreover, a RS transmission strategy is introduced to further tackle the multiuser interference, enabling remarkable saving in feedback overhead compared with conventional transmission strategies. Finally, we investigate the downlink hybrid precoding for physical layer multicasting with a limited number of RF chains. We propose a low complexity algorithm to compute the analog precoder that achieves near-optimal max-min performance. Moreover, we derive a simple condition under which the hybrid precoding driven by a limited number of RF chains incurs no loss of optimality with respect to the fully digital precoding case.Open Acces

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    On the performance of hybrid beamforming for millimeter wave wireless networks

    Get PDF
    The phenomenal growth in the demand for mobile wireless data services is pushing the boundaries of modern communication networks. Developing new technologies that can provide unprecedented data rates to support the pervasive and exponentially increasing demand is therefore of prime importance in wireless communications. In existing communication systems, physical layer techniques are commonly used to improve capacity. Nevertheless, the limited available resources in the spectrum are unable to scale up, fundamentally restricting further capacity increase. Consequently, alternative approaches which exploit both unused and underutilised spectrum bands are highly attractive. This thesis investigates the use of the millimeter wave (mmWave) spectrum as it has the potential to provide unlimited bandwidth to wireless communication systems. As a first step toward realising mmWave wireless communications, a cloud radio access network using mmWave technology in the fronthaul and access links is proposed to establish a feasible architecture for deploying mmWave systems with hybrid beamforming. Within the context of a multi-user communication system, an analytical framework of the downlink transmission is presented, providing insights on how to navigate across the challenges associated with high-frequency transmissions. The performance of each user is measured by deriving outage probability, average latency and throughput in both noise-limited and interference-limited scenarios. Further analysis of the system is carried out for two possible user association configurations. By relying on large antenna array deployment in highly dense networks, this architecture is able to achieve reduced outages with very low latencies, making it ideal to support a growing number of users. The second part of this work describes a novel two-stage optimisation algorithm for obtaining hybrid precoders and combiners that maximise the energy efficiency (EE) of a general multi-user mmWave multiple-input, multiple-output (MIMO) interference channel network involving internet of things (IoT) devices. The hybrid transceiver design problem considers both perfect and imperfect channel state information (CSI). In the first stage, the original non-convex multivariate EE maximization problem is transformed into an equivalent univariate problem and the optimal single beamformers are then obtained by exploiting the correlation between parametric and fractional programming problems and the relationship between weighted sum rate (WSR) and weighted minimum mean squared error (WMMSE) problems. The second stage involves the use of an orthogonal matching pursuit (OMP)-based algorithm to obtain the energy-efficient hybrid beamformers. This approach produces results comparable to the optimal beam-forming strategy but with much lower complexity, and further validates the use of mmWave networks in practice to support the demand from ubiquitous power-constrained smart devices. In the third part, the focus is on the more practical scenario of imperfect CSI for multi-user mmWave systems. Following the success of hybrid beamforming for mmWave wireless communication, a non-traditional transmission strategy called Rate Splitting (RS) is investigated in conjunction with hybrid beamforming to tackle the residual multi-user interference (MUI) caused by errors in the estimated channel. Using this technique, the transmitted signal is split into a common message and a private message with the transmitted power dynamically divided between the two parts to ensure that there is interference-free transmission of the common message. An alternating maximisation algorithm is proposed to obtain the optimal common precoder. Simulation results show that the RS transmission scheme is beneficial to multi-user mmWave transmissions as it enables remarkable rate gains over the traditional linear transmission methods. Finally, the fourth part analyses the spectral efficiency (SE) performance of a mmWave system with hybrid beamforming whilst accounting for real-life practice transceiver hardware impairments. An investigation is conducted into three major hardware impairments, namely, the multiplicative phase noise (PN), the amplified thermal noise (ATN) and the residual additive transceiver hardware impairments (RATHI). The hybrid precoder is designed to maximise the SE by the minimisation of the Euclidean distance between the optimal digital precoder and the noisy product of the hybrid precoders while the hybrid combiners are designed by the minimisation of the mean square error (MSE) between the transmitted and received signals. Multiplicative PN was found to be the most critical of the three impairments considered. It was observed that the additive impairments could be neglected for low signal-to-noise-ratio (SNR) while the ATNs caused a steady degradation to the SE performance

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    A new technique for improving energy efficiency in 5g mm-wave hybrid precoding systems

    Get PDF
    In this article, we present a new approach to optimizing the energy efficiency of the cost-efficiency of quantized hybrid pre-encoding (HP) design. We present effective alternating minimization algorithms (AMA) based on the zero gradient method to produce completely connected structures (CCSs) and partially connected structures (PCSs). Alternative minimization algorithms offer lower complexity by introducing orthogonal constraints on digital pre-codes to concurrently maximize computing complexity and communication power. As a result, by improving CCS through advanced phase extraction, the alternating minimization technique enhances hybrid pre-encoding. For PCS, the energy-saving ratio grew by 45.3 %, while for CCS, it increased by 18.12 %
    corecore