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Abstract
The phenomenal growth in the demand for mobile wireless data services is push-
ing the boundaries of modern communication networks. Developing new tech-
nologies that can provide unprecedented data rates to support the pervasive and
exponentially increasing demand is therefore of prime importance in wireless com-
munications. In existing communication systems, physical layer techniques are
commonly used to improve capacity. Nevertheless, the limited available resources
in the spectrum are unable to scale up, fundamentally restricting further capac-
ity increase. Consequently, alternative approaches which exploit both unused and
underutilised spectrum bands are highly attractive. This thesis investigates the
use of the millimeter wave (mmWave) spectrum as it has the potential to provide
unlimited bandwidth to wireless communication systems.

As a first step toward realising mmWave wireless communications, a cloud ra-
dio access network using mmWave technology in the fronthaul and access links
is proposed to establish a feasible architecture for deploying mmWave systems
with hybrid beamforming. Within the context of a multi-user communication
system, an analytical framework of the downlink transmission is presented, pro-
viding insights on how to navigate across the challenges associated with high-
frequency transmissions. The performance of each user is measured by deriving
outage probability, average latency and throughput in both noise-limited and
interference-limited scenarios. Further analysis of the system is carried out for
two possible user association configurations. By relying on large antenna array
deployment in highly dense networks, this architecture is able to achieve reduced
outages with very low latencies, making it ideal to support a growing number of
users.

The second part of this work describes a novel two-stage optimisation algorithm
for obtaining hybrid precoders and combiners that maximise the energy efficiency
(EE) of a general multi-user mmWave multiple-input, multiple-output (MIMO)
interference channel network involving internet of things (IoT) devices. The hy-
brid transceiver design problem considers both perfect and imperfect channel
state information (CSI). In the first stage, the original non-convex multivariate
EE maximization problem is transformed into an equivalent univariate problem
and the optimal single beamformers are then obtained by exploiting the correla-
tion between parametric and fractional programming problems and the relation-
ship between weighted sum rate (WSR) and weighted minimum mean squared
error (WMMSE) problems. The second stage involves the use of an orthogonal
matching pursuit (OMP)-based algorithm to obtain the energy-efficient hybrid
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beamformers. This approach produces results comparable to the optimal beam-
forming strategy but with much lower complexity, and further validates the use
of mmWave networks in practice to support the demand from ubiquitous power-
constrained smart devices.

In the third part, the focus is on the more practical scenario of imperfect CSI for
multi-user mmWave systems. Following the success of hybrid beamforming for
mmWave wireless communication, a non-traditional transmission strategy called
Rate Splitting (RS) is investigated in conjunction with hybrid beamforming to
tackle the residual multi-user interference (MUI) caused by errors in the estimated
channel. Using this technique, the transmitted signal is split into a common
message and a private message with the transmitted power dynamically divided
between the two parts to ensure that there is interference-free transmission of the
common message. An alternating maximisation algorithm is proposed to obtain
the optimal common precoder. Simulation results show that the RS transmission
scheme is beneficial to multi-user mmWave transmissions as it enables remarkable
rate gains over the traditional linear transmission methods.

Finally, the fourth part analyses the spectral efficiency (SE) performance of a
mmWave system with hybrid beamforming whilst accounting for real-life prac-
tice transceiver hardware impairments. An investigation is conducted into three
major hardware impairments, namely, the multiplicative phase noise (PN), the
amplified thermal noise (ATN) and the residual additive transceiver hardware im-
pairments (RATHI). The hybrid precoder is designed to maximise the SE by the
minimisation of the Euclidean distance between the optimal digital precoder and
the noisy product of the hybrid precoders while the hybrid combiners are designed
by the minimisation of the mean square error (MSE) between the transmitted
and received signals. Multiplicative PN was found to be the most critical of the
three impairments considered. It was observed that the additive impairments
could be neglected for low signal-to-noise-ratio (SNR) while the ATNs caused a
steady degradation to the SE performance.
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Lay Summary
Mobile communications have transformed the world. Over the last decade, with

the growing wave of wireless data services (such as social media, multimedia

streaming and virtual reality), it has become an expectation that vast amounts

of data be available in all places at all times with increasing speeds. This pervasive

demand for mobile data is stretching the limits of existing communication systems

whilst driving the need for the development of new communication systems with

the ability to respond to vast data traffic and a growing number of connected

devices. Against this backdrop, the primary goals of the fifth-generation (5G)

mobile communications relative to the existing fourth-generation (4G) communi-

cation networks are to provide connections for a minimum of 100 billion devices,

a 1000-fold increase capacity and very high data rates for individual users (10

gigabits per second). To achieve these enormous goals, new technologies are

required.

This thesis addresses this issue by examining millimeter wave (mmWave) commu-

nications, a paradigm-shifting technology, which operate on the high-frequency

spectrum bands not yet used for cellular communications. In the first part of the

thesis, a network architecture establishing the feasibility of multi-user mmWave

mobile communications is proposed. Stochastic geometric methods are used for

characterising the performance of the system with considerations of the pecu-

liar characteristics associated with high-frequency communication. In the sec-

ond part, low-complexity algorithms are designed that result in energy-efficient

mmWave systems critical for supporting an exploding number of device connec-

tions. However, real-life practice constraints, such as inaccurate knowledge of

the channel over which signals are transmitted, and limitations of the hardware

used to create a mmWave system, must be accounted for. Therefore, the third

part investigates a new transmission method that compensates for some of the

losses incurred by inaccurate channel knowledge while the fourth part examines

the impact of specific hardware impairments on the performance of the mmWave

systems, providing valuable design insights.
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Chapter 1

Introduction

This chapter begins by highlighting the real-world demands for improved wireless

communication technology to provide unprecedented amounts of bandwidth. The

unique contributions of this thesis are then provided, followed by an overview of

the chapters included.

1.1 Background

The evolution of mobile communications over the past decade has played a sig-

nificant role in transforming our modern societies. From the first-generation

(1G) networks of voice-centric, analogue mobile phone systems to the latest data-

centric fourth-generation long-term evolution networks (4G-LTE) deployed widely

across the globe, mobile communications have radically changed the way infor-

mation in contemporary society is accessed, shared and exchanged. Currently,

with the rapid proliferation of social media, video streaming, mobile applications,

and internet usage on smart devices (e.g. phones, tablets, watches, etc.), we are

in an era of unprecedented demand for mobile data traffic, as illustrated by a 71%

increase in global mobile data traffic between 2016 and 2017 [1]. Additionally,

as depicted in Fig. 1.1, mobile data traffic is expected to grow at a compound

annual growth rate of 46% between 2017 and 2022, with projections estimating

an astonishing sevenfold increase in mobile data traffic of 77 exabytes (EB) per

month in 2022 from 12 EB per month in 2017.

The rapid evolution of smart wireless devices has driven this exponential

global increase in mobile connections from 8.6 billion connections in 2017 to an

estimated 12.3 billion by 2022 [1]. This combination of increasing devices and the
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1.1. Background

Figure 1.1: A projection of the global mobile data traffic, 2017–2022 [1].

Figure 1.2: Content type distribution of global mobile data traffic [1].
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increasing average data volume requested per device are the major contributors

to the growth in mobile data traffic [2]. Fig. 1.2 shows the distribution of mobile

data traffic in EB per month over four main mobile-content categories. It can

be considered that about 79% of the world’s mobile data traffic will be video

by 2022. This calls for next-generation mobile communication systems to tackle

the challenges brought by the consumer-led exponential growth in wireless data

traffic.

Consequently, the development of fifth-generation (5G) networks is receiving

significant interest from academia, industry and governments. The International

Telecommunications Union (ITU) has stipulated 2020 as the year for standard-

ising 5G mobile networks with the primary objectives of supporting billions of

connected devices, providing data rates in gigabits per second for individual users,

lowering end-to-end latencies for all connected devices and improving capacities

and reliabilities relative to the existing 4G-LTE networks [3]. To this end, this

thesis aims to contribute to the current research efforts of achieving these 5G

goals with a focus on millimeter wave (mmWave) communications.

1.2 Contributions

The radio frequency (RF) spectrum, i.e., the part of the electromagnetic spectrum

that can be used for wireless communication, has been globally controlled by the

ITU1 and divided into frequency bands dedicated to different radio technologies

and applications such as satellite communication systems, TV broadcasting, mar-

itime communications and military radar. Cellular communication systems today

use specific frequencies on the RF spectrum typically under 6 GHz [4]. This part

of the spectrum has become congested due to the ever-increasing growth in wire-

less devices. Thus, utilising an alternative spectrum for cellular communication

has become an essential step to meet the objectives of 5G communication net-

works. In this thesis, we consider the mmWave spectrum range between 30–300

GHz, with an unparalleled amount of available spectrum for cellular communica-

tion. The specific contributions of the thesis can be summarized as follows

• We propose and study the performance of a multi-user system that cou-

1Different regions have governing bodies that control the allocation of frequency bands in
their region; for example, the Office of Communications (Ofcom) in the UK and the Federal
Communications Commission (FCC) in the USA. Notwithstanding, they allocate frequencies
according to the ITU radio regulations.
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ples the cloud radio access network (CRAN) architecture with mmWave.

By modelling the remote radio heads (RRHs) and mobile user equipment

(UEs) as independent poisson point processes (PPPs), we characterise the

outage probability, average latency and throughput of this system under

key factors, such as blockages, RRH density and path loss. The analysis is

carried out for different user association configurations, namely, best chan-

nel participation (BCP) and nearest neighbour participation (NNP). Ad-

ditionally, for both user configurations, we derive novel outage probability

outer bounds in the interference-limited case, and closed-form expressions

in the noise-limited case. Results show that (i) with high RRH deployment,

larger antenna arrays can compensate for communication degradation (in

terms of outage performance and latency), indicating a trade-off between

inter-cluster interference (ICI) and RRH density, (ii) blockages and path

loss tend to have a positive effect of decreasing outage probability in highly

dense urban deployments and (iii) for user association configurations, BCP

is the most viable for multi-user mmWave CRAN systems.

• We design hybrid precoders and combiners for the energy-efficient maximi-

sation in a multi-user mmWave multiple-input, multiple-output (MIMO)

scenario involving internet of things (IoT) devices. Since the original hy-

brid transceiver design problem is intractable, we propose a low-complexity

two-stage algorithm, both stages of which are proven to converge. In the

first stage, we transform the multivariate transceiver problem into its uni-

variate equivalent, and then we exploit the well-known relationship between

the weighted sum rate (WSR) and the weighted minimum mean squared

error (WMMSE) to solve the univariate problem. In the second stage, we

separate the joint transceiver optimization problems into hybrid precoder

and combiner sub-problems and, using results obtained from stage one, we

apply an orthogonal matching pursuit algorithm to derive the optimal solu-

tion for each sub-problem. We also take into consideration the transceiver

hardware distortions that occur in practical systems and expand the analy-

sis to cater for imperfect channel state information (CSI). Results show that

the proposed hybrid algorithms achieve near-optimal energy efficiency (EE)

performance to support power-constrained IoT devices with lower complex-

ity than the univariate designs, and are resilient to errors obtained from

imperfect channel estimation.
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• We consider the use of a rate-splitting (RS) transmission scheme to mitigate

the detrimental effects of interference in a multi-user mmWave network with

hybrid beamforming under imperfect CSI. Within this context, the trans-

mitted signal for each user is divided into a common message and a private

message. We dynamically split the power between the common and private

messages such that there is interference-free transmission for the common

message. Additionally, we analyse the sum rate of RS and optimize the

precoders of the common messages. Simulation results show that RS can

tackle the residual multi-user interference (MUI) caused by CSI mismatch

in the mmWave system, achieving a sum-rate gain over linear transmission

strategies. Moreover, RS is advantageous for the practical implementa-

tion of mmWave systems with constrained hardware since it mitigates the

detrimental effects of the transceiver impairments on the performance of the

system. Furthermore, greater efficiency of RS can be obtained by increasing

the resolution parameters for channel estimation.

• We consider the spectral efficiency (SE) performance of a mmWave MIMO

system that generalises the state of the art by considering the inevitable

residual transceiver hardware impairments (RTHIs). We shed light on the

impact of three major hardware impairments, namely, the multiplicative

phase noise (PN), the amplified thermal noise (ATN) and the residual ad-

ditive transceiver hardware impairments (RATHIs). In particular, we de-

sign the hybrid beamformers that maximise the SE of the system taking

into consideration the effects of the RTHIs. Additionally, we quantify the

degradation caused to the spectral efficiency of the system by each separate

impairment. Results show that the multiplicative PN is the most critical

of the three impairments. Furthermore, we verify the merits of using mas-

sive MIMO in mmWave communications to provide gains that reduce the

dependence of the received signal power on the signal wavelength whilst

allowing for a cost-efficient deployment of the system.

1.3 Thesis Outline

The rest of this thesis is organised as follows.

• Chapter 2 provides an overview of relevant concepts in mmWave wireless

communications to prepare the reader for the technical subjects covered in
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the thesis, which include mmWave channel and blockage modelling, differ-

ent MIMO architectures applicable for mmWave transmission and channel

estimation strategies for the practical implementation of mmWave systems.

• In Chapter 3, we design a multi-user mmWave cloud CRAN system and

analyse its performance using the metrics of outage probability, average la-

tency and throughput. We consider two transmission schemes based on how

the user is associated with the transmitter and derive closed-form expres-

sions of the outage probability under the noise-limited scenario. Addition-

ally, bounds of the outage probability are derived for the interference-limited

scenario.

• Chapter 4 focuses on the design of EE hybrid beamformers in a multi-user

mmWave system involving IoT devices under perfect and imperfect CSI sce-

narios. The EE maximisation problem is solved by using the relationship

between WSR and WMMSE and an alternating maximisation algorithm

after the separation of the joint transceiver problem into separate hybrid

precoder and combiner sub-problems. Numerical results validate the hy-

brid beamforming design and demonstrate its effectiveness in addressing

the energy-efficiency concerns in the implementation of practical mmWave

systems.

• Chapter 5 studies the performance of a multi-user mmWave system under

the imperfect CSI. We analyse the sum rate by proposing an RS trans-

mission strategy, which separates the message for each user in the system

into a common part and a private part. We also take into consideration

the limited dynamic range of practical transmitters and receivers and use

optimization techniques to demonstrate that RS achieves significant gains

over the conventional linear transmission strategies.

• In light of the practical limitations in assuming ideal hardware for mmWave

MIMO systems, Chapter 6 addresses the problem of assessing the SE per-

formance of the mmWave system under three major residual hardware im-

pairments: (a) multiplicative PN, (b) RATHIs and (c) ATN. We develop

a framework for the modelling of RTHIs and within this context measure

their impact on the mmWave system.

• Chapter 7 concludes the thesis by summarising the main findings of this re-

search, discussing its limitations and providing suggestions for future work.
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Chapter 2

Background

This chapter provides background material on the fundamentals of mmWave wire-

less communication that supports the technical chapters presented in the thesis.

First, we present the mmWave spectrum, outlining its distinctive features, ad-

vantages and applications. Next, we present a brief overview of mmWave propa-

gation, characterising its channel and blockages with statistical models. This is

relevant to Chapters 3, 4, 5 and 6. Then, we focus on MIMO architectures at

mmWave, introducing a variety of beamforming strategies; this will play an im-

portant role in Chapters 3–6. Finally, we consider channel estimation strategies

which will support the work presented in Chapters 4 and 5.

2.1 Millimeter Wave Spectrum

Mobile communication has become an essential part of the modern world. With

the explosive proliferation of mobile wireless services in every sector of society, and

the rapid worldwide development of wireless devices in various forms that require

high data rates, mobile data traffic and connections will show unprecedented

growth in the future.

The radio spectrum is one of the most important resources for mobile com-

munications. Until recently, the spectrum assigned for wireless systems has been

under 6 GHz,1 which has been centrally controlled (by Ofcom in the UK and

the FCC in USA) using a policy that divided the assigned spectrum into fre-

quency bands dedicated to a particular service and guaranteeing a specific level

1Throughout this thesis, wireless systems operating at frequencies under 6 GHz will be
referred to as “standard wireless systems”.
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of service to the licensed users. More recently, an adaptive approach of spec-

trum usage was adopted, which allows cognitive radios to dynamically sense the

spectrum and make use of idle frequency bands [5]. Despite this efficient use of

the existing spectrum, the available bandwidth is not commensurate with the in-

crease in demand. To this end, there has been increased interest in standardising

the spectrum above 6 GHz for mobile communications.

The mmWave spectrum (30–300 GHz), currently used for radar, military and

backhaul communication, has a much lower utilisation level. Fig. 2.1 illustrates

the available spectrum for use between 30–100 GHz. Notably, the unlicensed

band at 60 GHz surpasses all other bands in the spectrum that have been used

for cellular, satellite, WiFi, AM/FM radio and TV communication in the world!

[4]. The staggering amount of bandwidth available makes mmWave a frontier for

wireless communication systems.

Figure 2.1: An illustration of the potential bandwidth available in the mmWave
spectrum [71].

2.1.1 Distinctive mmWave characteristics

The distinct characteristics of high-frequency propagation imply that the key

technologies used at lower frequencies cannot directly be applied in mmWave com-

munications. The main distinctive features which are imperative for modelling

mmWave systems and understanding signal propagation at these frequencies are

discussed as follows.
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• Isotropic Path Loss : The transmitted signal in all wireless communication

systems undergoes distance-based attenuation. According to Friis Law,

the isotropic path loss increases in direct proportion to the inverse of the

squared wavelength i.e, PTX

PRX
∝ λ−2 [6]. This implies that mmWave propa-

gation will experience higher path loss when compared to standard systems

transmitting at lower frequencies. However, directional transmissions can

compensate for this high path loss through directional antenna gains [7].

Thus, large arrays are required to provide these gains. Fortunately, realis-

ing large antenna arrays at both the transmitter and receiver of mmWave

systems is possible due to the small wavelengths at these high frequen-

cies. Accordingly, MIMO antenna arrays are integral to providing quality

mmWave communications.

• Received signal power : In a standard wireless system, the aperture of the

receive antenna is dependent on the carrier frequency and the received signal

power is given by

PRX =
PTX

4πR2

λ2

4π
, (2.1)

where PRX and PTX are the receive and transmit power, R is the separation

between the transmitter and receiver and λ is the wavelength. However,

given that high frequencies translate to small wavelengths, this would re-

sult in very small received power for a mmWave system, as illustrated in

Fig. 2.2. Hence, to achieve quality communication, there is a necessity to re-

duce the dependence of the received signal power on the wavelengths of the

carrier frequencies in mmWave systems. Fortunately, this can be achieved

by keeping the aperture constant with the use of large antenna arrays for

transmit and receive beamforming as illustrated in Fig. 2.3. Within this

context, the received power is expressed as

PRX =
PTX

4πR2︸ ︷︷ ︸
Receive
Spectral
Density

λ2GRX

4π︸ ︷︷ ︸
Effective
Receive
Aperture

GTX︸︷︷︸
Transmit
Antenna
Gain

. (2.2)

Accordingly, equation (2.2) further motivates the use of large antenna arrays

in mmWave communication. For example, the array sizes of 64 elements [8]

and 256 elements [9] have been used in experiments to show the feasibility

of mmWave communications.

9



2.1. Millimeter Wave Spectrum

Figure 2.2: An illustration of a typical receiver dependent on carrier frequency.

Figure 2.3: An illustration of a basic mmWave system with large antenna array.

• Signal absorption and blockages : Compared to standard wireless systems,

mmWave signals are more susceptible to blockages since most objects in

a propagation environment(e.g., walls, lampposts, birds, people, etc.) are

larger than the signal wavelength. Nevertheless, reflection and scattering

allow for transmission between a transmitter and a receiver when steerable

antennas are used to locate objects that reflect or scatter energy [4]. Thus,

antenna arrays capable of directional and adaptive beamforming become
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Figure 2.4: An illustration of the excess attenuation achievable across 0–400 GHz
frequency bands [4].

essential for successful communication in mmWave systems [10]. Further-

more, mmWave signals are affected by atmospheric conditions such as tem-

perature and humidity, as they impact the molecular components of air and

water which can cause atmospheric absorption of small wavelength signals.

Fig. 2.4 illustrates the attenuation in addition to free space loss across the

mmWave spectrum. It can be observed that there is severe attenuation

at certain spectrum bands i.e., 60 and 180 GHz. Consequently, these fre-

quencies will be suitable for short-range wireless technologies. Moreover,

there is little attenuation (below 1 dB/km) in the 30–50, 70–90, 120–160

and 200–300 GHz bands, making them well-fitted to longer distances and

suitable candidates for future mobile and cellular communications. Addi-

tionally, adaptive antenna arrays can be used to compensate for specific

atmospheric losses as they can be adapted to adjust to particular levels of

interference in the low-attenuation bands [4].

• Sparse channels : When compared to standard wireless systems, mmWave

channels tend to be sparse in the number of significant scatterers that con-

tribute to the multi-path components of a transmitted signal [11]. This

has been verified by measurements of the 28- and 73-GHz channels in [12].

The results show that the mmWave channel have 2 clusters on average con-
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tributing a propagation path, with the location of the angles of arrivals

close to the boresight direction. The sparsity in mmWave channels asserts

the necessity of alternate channel models that are different from existing

standard wireless channel models.

2.1.2 Advantages of mmWave Communication

The advantages of mmWave can be quantified by the solutions it proffers for fu-

ture 5G cellular networks. Compared to the existing 4G-LTE networks, mmWave

offers a number of remarkable advantages, as follows [13].

• Bandwidth allocations : Evidently, mmWave carrier frequencies (in the or-

der of GHz) allow for larger channel bandwidth allocations which directly

result in higher data rates and indirectly to reduced latencies as insuffi-

cient bandwidths reduce the latency of the network. Accordingly, service

providers will be able to support user-data-hungry applications with mini-

mal latency.

• Capacity gain: In addition to expanding the channel bandwidth, mmWaves

can be used to reduce coverage areas, i.e., establish more densely packed

communication links and exploit spatial reuse to provide increased capacity

gains.

• Homogeneity : Unlike the disjointed spectrum (i.e., a high variance between

the frequencies in MHz and GHz (over three octaves of frequency)) uti-

lized by operators of standard wireless systems, the spectral allocation in

the mmWave spectrum is likely to be relatively close together, implying

comparable propagation characteristics between different mmWave bands

[13].

Additionally, the performance gains of utilising MIMO over single-input single-

output (SISO) in standard wireless systems are also applicable to mmWave com-

munications since mmWave frequencies may exploit massive MIMO techniques.

These gains include the following.

1. Interference suppression: In multi-user systems, the use of multiple an-

tennas at the transmitter and receiver increase the potential to alleviate

12



2.1. Millimeter Wave Spectrum

intra-channel interference. This is achieved via precoding at the transmit-

ter or combining at the receiver, or a combination of both. However, the

precoding technique utilised in mmWave systems differs from that employed

in standard transmissions; this will be discussed in detail in section 2.3.

2. Diversity gain: Spatial diversity can be exploited in mmWave systems with

multiple antennas at both ends to mitigate the impact of fluctuations in

the channel and loss of signals.

3. Multiplexing gain: With multiple antennas at the transmitter, parallel

streams can be transmitted to the user without using additional bandwidth

or power. This increases the number of spatial dimensions for communica-

tion.

2.1.3 Challenges of mmWave Communication

Despite the great potential associated with mmWave communications as outlined

in section 2.1.2, a number of challenges need to be addressed to exploit these

benefits. These will be discussed as follows

• Power consumption: mmWave systems require large antenna arrays to re-

duce the dependence of received power on the small signal wavelengths and

for implementing directional beamforming. A direct consequence of this is

an increase in processing power consumption. This is a significant chal-

lenge as the power consumed by devices essential for signal processing such

as data converters, mixers, and power amplifiers scale up with the increas-

ing number of antennas. For example, 12-bit ADCs in a mmWave system

with 16 antennas would consume more than 250mW [14]. This implies

that alternate signal processing techniques are required for mmWave sys-

tems and motivates the hybrid architecture explained in section 2.3.2 and

implemented in all the technical chapters of the thesis.

• Integrated circuit (IC) design: Additional factors that need to be considered

when designing ICs for mmWave systems with high carrier frequencies and

wide bandwidth include non-linear distortions in the power amplifiers, phase

noise and IQ imbalance because the severity of these errors scale up with

high frequency transmissions [15].
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• User Mobility : A major challenge that comes with user mobility in mmWave

transmissions is the significant fluctuations of the channel state since chan-

nel coherence time in the mmWave range is very small resulting in a large

doppler spread [14]. Thus, the modulation and coding schemes used in mo-

bile mmWave communication must take into account the varying channel

states and motivates the need for channel estimation in mmWave cellular

networks. Additionally, in indoor environments, user mobility cause rapid

load fluctuations requiring optimized load balancing schemes between ac-

cess points [16].

2.1.4 Applications of mmWave Communication

As mentioned earlier in section 2.1, the mmWave spectrum is already in use for

military, radar and wireless backhaul applications. The first standardised com-

mercial applications of mmWave technology were provided by wireless personal

area networks (WPAN) and wireless local area networks (WLAN) using the short-

ranged 60-GHz unlicensed bands. WirelessHD, being the most popular standard

of WPAN, provided a high-bandwidth interface as a replacement for cables carry-

ing uncompressed high-definition multi-media content [17]. IEEE 802.11ad is the

standard for WLAN incorporated in laptops, tablets and smartphones to connect

these devices to the internet via a wireless access point [7]. Notwithstanding,

mmWave technology is promising for many potential applications, discussed as

follows.

• 5G communication systems : Although mmWave has been established for

providing gigabit data in the wireless backhaul links of communication sys-

tems, the traditional design required expensive components to provide re-

liable long-ranged communication links, reducing the cost advantages over

wired backhaul solutions. However, with the increase in density of cellular

systems, especially in urban environments, low-cost mmWave technologies

are actively being researched and developed to offer high-capacity back-

haul links for densely distributed cellular networks [18, 19]. Furthermore,

the development of mmWave is not limited to low-cost, backhaul links;

it also has great potential to handle fronthaul and access links. This ap-

plication for 5G cellular systems is receiving tremendous research interest

[11, 12, 13, 20, 21, 22, 23] because of the potential gains (outlined earlier in

section 2.1.2) possible with mmWave transmissions. To this end, Chapters
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3, 5 and 6 of this thesis will address the performance of mmWave commu-

nications for cellular networks.

• Vehicular networks : Recently, there has been a growing interest in vehicular

applications to unlock many social benefits. For example, autonomous vehi-

cles, vehicle-to-vehicle (V2V) communication, and vehicle-to-infrastructure

(V2I) links may be used for the exchange of traffic information, avoidance

of collision and pollution management[24]. Given that mmWave is already

established in automotive radar applications [25], one can naturally expect

mmWave to play a significant role in supporting vehicular networks.

• Wearable networks : Technology advancement is enabling the rapid evolu-

tion of wireless devices. This is driving an increasing interest in wearable

networks which will provide connections for smart devices such as cell-

phones, tablets, watches, activity-tracking devices, virtual-reality headsets

and glasses. These high-end devices require high data rate and very low

latencies to communicate with one another [26]. Consequently, mmWave is

of interest to these networks for its potential to meet their requirements.

• IoT networks : IoT is an emerging paradigm that provides connectivity of

physical things in a network, impacting all sectors of the society. Take

the educational sector, for example; IoT will enable transfer of information

(e.g entire libraries) from lampposts to students in building hallways or

entrances, thus eliminating the need to carry physical textbooks between

classes [27]. This will create a huge network comprising billions of connec-

tions, and the massive mmWave spectrum has the capacity to support such

connections at high data rates. This makes it foreseeable that mmWave will

be fundamental in enabling IoT for the future. Accordingly, Chapter 4 of

this thesis will investigate mmWave communication involving IoT devices.

2.2 Millimeter Wave Propagation

The basic form of mmWave communications includes a point-to-point link where

a single transmitter equipped with a large array of antennas communicates with

one multi-antenna receiver. The transmitted signal is affected by its surround-

ing environment (highlighted earlier in section 2.1.1), and experiences multiple

paths due to scatterers and reflectors, resulting in multiple distorted versions of
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Figure 2.5: An illustration of a basic NR ×NT mmWave system.

the transmitted signal arriving at the receiver, (These propagation effects are

commonly referred to as “small-scale fading”). In addition to the small-scale

channel effects, each multi-path version of the signal experiences distance-based

attenuation and a shadowing loss from obstacles (known as large scale fading).

These propagation effects as well as blockages form the fundamental aspects of

mmWave communications. Fortunately, MIMO antenna arrays are integrated

into mmWave communication, and these large arrays can be exploited to achieve

directional transmissions through directional beamforming which both compen-

sates for the distance-based path loss and can manage interference through ad-

vanced techniques of beam shaping [28]. Fig. 2.5 illustrates a mmWave system

with NT transmit antennas and NR receive antennas. The received signal of the

system is given by

y = Hs+ z, (2.3)

where y = [y1, y2, . . . , yNR
]T is the signal vector received by NR antennas, s =

[s1, s2, . . . , sNT
]T is the signal vector transmitted by NT antennas, H is the NR×

NT mmWave channel matrix and z = [z1, z2, . . . , zNR
]T is the additive white

Gaussian noise vector.

2.2.1 Channel models

2.2.1.1 Narrowband channel model

In the case of mmWave propagation, the channel presents a number of charac-

teristics (outlined in section 2.1.1) that differentiate it from the standard MIMO
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2.2. Millimeter Wave Propagation

channel. Hence, the statistical fading distributions employed in latter cannot

be directly applied for mmWave communications. With these characteristics,

the Saleh–Valenzuela model extended to mmWave channels [29, 30] enables us

to describe the structure of a mmWave channel mathematically by means of a

narrowband clustered channel model. From a physical point of view, it repre-

sents a geometric model with Np scatterers, where each scatterer is assumed to

contribute a signal propagation path given as

H = γ

Np∑
l=1

αl aR

(
ϕlR, θ

l
R

)
aT

(
ϕlT, θ

l
T

)H
, (2.4)

where γ =
√

NTNR

Np
denotes the normalization factor. Each path l is described by

its complex gain αl, the azimuth and elevation angles of departure (ϕlT, θ
l
T), and

the corresponding angles of arrival (ϕlR, θ
l
R), aR(ϕ

l
R, θ

l
R) and aT(ϕ

l
T, θ

l
T)

H , denote

the steering vectors of the transmitter and receiver respectively.

For an N -element uniform planar array (UPA), the antenna array response

vector is given as

a(ϕ, θ) =
1√
N

[
1, ej2

π
λ
d(a sin(ϕ) sin(θ)+b cos(θ)) . . . , ej2

π
λ
d((A−1) sin(ϕ) sin(θ)+(B−1) cos(θ))

]
,

(2.5)

where 0 ≤ a ≤ A and 0 ≤ b ≤ B are the indices of antenna elements with

N = AB, λ is the wavelength and d is the distance between the antenna elements.

In 2D channels, the array geometry is linear. In such cases, the array steering

vectors are described by uniform linear arrays (ULA). Hence, an N -element ULA

is given as

a(ϕ) =
1√
N

[
1, ej2

π
λ
d sin(ϕ) . . . , ej2

π
λ
d(N−1) sin(ϕ)

]
. (2.6)

Furthermore, the combination of the high dimensionality and the highly di-

rectional nature of mmWave propagation means that the narrowband channel

can alternatively be represented by its beamspace [7]. In other words, the array

steering vectors can be used to define the communication space of the channel.

Accordingly, equation (2.4) can be rewritten as

H = ARHαA
H
T , (2.7)

where AR ∈ CNR×Np , and AT ∈ CNT×Np are the array response vectors of the
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2.2. Millimeter Wave Propagation

receiver and transmitter, respectively, and Hα = diag(α) contains the complex

gains of all paths with α =
[
α1, α2, . . . , αNp

]
. The channel in equation (2.7) is

commonly referred to as the virtual channel representation [31] and is useful for

channel estimation. Since the beamspace and antenna space are related by a

spatial Fourier transform, the virtual channel can also be expressed as [32]

H = URHαU
H
T , (2.8)

where UR ∈ CNR×NR and UT ∈ CNT×NT are unitary discrete Fourier transform

(DFT) matrices. The beamspace of an N -dimensional ULA is represented by spa-

tial angles, ϕi, i = 0 . . . , N −1 with uniform spacing and the corresponding array

response vectors results in an orthonormal basis for the signal space. Specifically,

the unitary DFT matrix is expressed as [31]

U =
1√
N

[a(ϕ0), . . . , a(ϕN−1)] . (2.9)

2.2.1.2 Wideband channel model

For wideband operations in non-line-of-sight environments, the impact of the

multi-path delay spread is more significant. Hence, each path is characterised

by a time delay in addition to the complex gain and angles of departure and

arrival [33]. Accordingly, the wideband channel model is used to incorporate the

multi-path delays and is given as [34]

Hδ =

Np∑
l=1

αl prc (δTs − τl) aR

(
ϕlR, θ

l
R

)
aT

(
ϕlT, θ

l
T

)H
, (2.10)

whereHδ denotes the channel response at delay δ, prc(τ) is the raised cosine pulse-

shaping filter generating pulses of the signal at Ts intervals evaluated at τ seconds,

and τl is the time delay of the lth path. Note that the channel characteristics are

assumed to be constant within the coherence time of t = δTs seconds.

2.2.2 Blockage models

Blockage models are integral for an accurate depiction of mmWave propagation

since most objects can either attenuate or scatter mmWave signals. In cellular

systems, a three-state model is used to measure the effects of blockages in the
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2.2. Millimeter Wave Propagation

channel. The best state is the line-of-sight (LOS), which occurs when there is a

direct link between the transmitter and receiver with no obstacles between them,

while the non-line-of-sight (NLOS) state occurs when the materials of the objects

are reflective, causing an indirect path between the source and destination. The

worst case is the signal outage state, when the obstacle significantly attenuates

the transmitted signal so that it does not arrive at the receiver. Recent mmWave

propagation measurements show that LOS and NLOS channels demonstrate dif-

ferent small-scale and large-scale fading characteristics [12, 13]. Two methods of

modelling the impact of blockages in mmWave networks are (a) using the the-

ory of ray tracing based on geographical information of the size, location and

orientation of the blockages in the mmWave multi-path channel [11] and (b) us-

ing statistical models which describe the blockages according to a distribution

[35]. The statistical approach of modelling blockages is utilised in this thesis

because it can accommodate varying blockage parameters including density and

size. The most common statistical models to measure the impact of blockages

such as buildings are summarized as follows.

• The random shape theory model, commonly referred to as the “exponential

blockage model” [35]: this model is applicable in both indoor and outdoor

scenarios and models blockages as a randomly distributed process, as illus-

trated in Fig. 2.6. Using the Boolean scheme where building centres form

a PPP, the probability that a link of length r is LOS is given by

PL(R) = e−βr, (2.11)

where β is the blockage parameter, given as

β =
−P ln (1− λ)

πA
, (2.12)

with A, λ and P denoting the average building area, the percentage coverage

area of the building and the average building perimeter, respectively.

• The LOS ball model (also called the “fixed blockage model”): this is a

simplified probabilistic blockage model verified by measurements in [18]

and [14]. Here, the LOS probability is modelled as a step function; in other

words, the link is assumed to be LOS on the probability that its length falls

within a fixed radius, otherwise, the link is NLOS, as depicted in Fig. 2.7.

Specifically, for a link of length r and a fixed radius R, the LOS probability
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2.2. Millimeter Wave Propagation

Figure 2.6: An illustration of building blockages modelled as a Boolean scheme
of rectangles [10].

is given as [18]

PL(r) =

C, if r < R

0, otherwise,
, (2.13)

where 0 ≤ C ≤ 1, and R > 0.

• 3GPP model [36]: this model is dependent on the propagation environment

and maps a specific distance to the probability of the link being LOS as 0

or 1. Specifically, for a typical outdoor urban setting, the LOS probability

of a link of length r is given by

PL(r) = min

(
18

r
, 1

)(
1− exp

(
− r

36

))
+ exp

(
− r

36

)
, (2.14)

whereas in a typical suburban area, it is given by

PL(r) = exp

(
− d

200

)
. (2.15)
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Figure 2.7: An illustration of building blockages modelled as a fixed ball model
[10].

2.3 MIMO Architectures at mmWave

The MIMO architecture for standard wireless communications, where all the

signal processing happens at baseband level, is illustrated in Fig. 2.8. From the

figure, the received signal for a narrowband channel model is given by

y = WHHVx+WHz, (2.16)

whereV denotes the NT×Ns precoding matrix used to transmit the Ns×1 symbol

vector x, and W represents the NR × Ns combining matrix. A key characteris-

tic in the existing commercial MIMO standards is that the technology required

supports a small number of antennas (typically 2–8 [7]), as baseband processing

requires a separate RF chain including data converters and signal mixers for ev-

ery antenna. However, given that mmWave systems facilitate the use of tightly

packed antenna arrays (typically 32–256 array elements [9]), the prohibitive costs

in terms of complexity and power consumption make baseband processing in-

feasible for communications at mmWave frequencies. To quantify the impact of
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Figure 2.8: MIMO architecture in standard wireless systems.

power consumption in mmWave systems, Table 2.1 provides a comparison of the

power consumption range of components in the receiver architecture between a

mmWave system and a standard system where NRF
R represents the number of RF

chains at the receiver, Comp. refers to Components, Req. to Required, Amp.

to Amplifier, Conv. to Converter, LNA to Low-Noise-Amplifier, and VCO to

Voltage-Controlled-Oscillator.2. Note that the exact power consumption depends

on the technology and specification used to implement the device. Taking into ac-

count these hardware constraints, the following architectures have been proposed

for application in mmWave systems.

2.3.1 Analog beamforming

The analog solution, proposed to replace baseband processing, is the simplest

method for applying MIMO techniques in mmWave systems and requires only

one RF chain for the entire antenna array. Analog beamforming is implemented

in the RF domain using a network of phase shifters with quantised phases, as

illustrated in Fig. 2.9. Here, different weights are dynamically assigned to the

phase shifters which can steer the transmitted beam in different directions. Thus,

efficient beam steering strategies are required to achieve maximum received power

for the user. For example, in [19], the RF beamforming vectors are designed using

an efficient beam alignment technique which uses adaptive subspace sampling and

multi-resolution beam codebooks while in [31] the concept of beamspace MIMO

was exploited to direct the transmitted signals to subspaces that maximise the

2The data of Table 2.1 was taken from recent studies showcasing prototype devices for
mmWave systems[4, 7] and standard sytems[37, 38, 39, 40].

22



2.3. MIMO Architectures at mmWave

Component mmWave System Standard System

Comp.
Req.

Power
(mW)

Comp.
Req.

Power
(mW)

Phase
Shifters

NR ×
NRF

R

15–
110 N/A N/A

Power
Amp. NR

40–
250 NR

20–
246

Data
Conv. NRF

R

15–
795 NR

40–
389

LNA NR 4–86 NR

5.9–
20

VCO NRF
R 4–25 NR

0.15–
67.5

Table 2.1: Power consumption range for different components of a receiver archi-
tecture.

Figure 2.9: Analog beamforming using a network of phase shifters.

received signal power. Furthermore, analog beamforming has been adopted as a

solution for commercial indoor mmWave communication standards such as IEEE

802.11ad [41].

Nevertheless, analog beamforming in mmWave systems is subject to several

constraints. For example, the power consumed by the phase shifters is dependent

on the phase angle resolution, and the performance is limited by non-linearities

in the phase shifters and use of quantised phase shifts. These constraints limit

the application of analog beamforming to single-stream and single-user trans-

missions, reducing the multi-stream and multi-user advantages associated with

MIMO transmissions [7, 42].
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2.3.2 Hybrid beamforming

Figure 2.10: Hybrid analog–digital beamforming transceiver architecture.

Hybrid beamforming was proposed to enable increased benefits of MIMO

communication at mmWave frequencies; for example, spatial multiplexing of nu-

merous data streams and interference suppression in multi-user transmissions.

This architecture splits the processing between RF and baseband domains, as

illustrated in Fig. 2.10. This solution accounts for the hardware constraints of

mmWave systems and requires a reduced number of RF chains. Herein, the

received signal is given by

y = WH
BBW

H
RFHVRFVBBx+WH

BBW
H
RFz, (2.17)

where VRF denotes the NT × NRF
T RF precoding matrix corresponding to the

analog beamforming which uses Ns ≤ NRF
T ≤ NT RF chains and analog phase

shifters, while VBB is the NRF
T ×Ns digital precoder used for baseband processing.

Similarly, the receiver utilises theNR×NRF
R RF combiner (WRF) and theNRF

R ×Ns

baseband combiner (WBB) to process the transmitted signal, where NRF
R denotes

the number of RF chains used by the receiver such that Ns ≤ NRF
R ≤ NR.

Hybrid beamforming architectures are categorised into two main structures

according to the mapping from RF chains to antennas, namely

• fully-connected structure: in this configuration, each RF chain is connected

to all antenna elements via phase shifters; and

• partially-connected structure: here, the entire antenna array is divided into

sub-arrays, each of which is connected to one RF chain through the phase

shifters.
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Figure 2.11: Hybrid analog–digital beamforming transceiver architecture with
switches.

A detailed comparison of the performance and complexity of both structures

is provided in [43], showing that the fully-connected configuration yields higher

spectral-efficiency gain since it enables full array flexibility, whereas the partially-

connected structure provides higher energy-efficiency since it uses a reduced num-

ber of RF chains and reduces the power consumption. Nonetheless, whichever

structure is utilised, hybrid beamforming provides a good trade-off between hard-

ware costs, complexity and spectral efficiency. [28, 44, 42].

The RF processing in the hybrid architecture can be implemented with other

analog strategies apart from phase shifters, such as switches and lenses. The

hybrid solution making use of a switching network has been proposed as pro-

viding a further reduction in power consumption and complexity costs over the

hybrid architecture using phase shifters [45, 46]. This configuration, illustrated in

Fig. 2.11, relies on the sparse nature of mmWave channels to utilise compressed

spatial sampling so that the analog combining vectors are designed using only

a subset of the antennas rather than overall quantised phases, as in the phase-

shifter operation. However, a limitation of the switching network is that as the

number of antennas increase, there is a corresponding increase in insertion losses

and cross-talk distortion which result in a degradation of the quality of the output

signal [47].

The hybrid architecture realised with the lens operation utilises continuous

aperture antennas and phased arrays to provide orthogonal beams and enables

direct access to the beamspace channel. The continuous aperture phase (CAP)

MIMO architecture [48, 49] is one of such architectures which exploits the fact

that lenses can compute a spatial Fourier transform which enables the precise

control of spatial beams and can be used for link optimization with dramatically

lower transceiver costs and complexity. To quantify this, it requires only Ns
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RF chains, where Ns denotes the number of streams, as opposed to NT/NR RF

chains required for baseband processing in standard MIMO architectures. Other

configurations include the passive and digital multi-beam antenna systems have

been shown to improve the spectral and energy efficiencies of 5G networks in

[50]. However, there are some anomalies in lenses which impact the their focusing

ability. An overview of different lens-types with their corresponding performance

quality is presented in [51].

2.3.3 Low-resolution receivers

Typically, in a digital communication system, the receivers are implemented with

high-precision analog-to-digital converters (ADCs) to convert the analog base-

band signal to digital form. The sampling rate of the ADC is connected to

the bandwidth of the system. This implies that high-speed and high-precision

ADCs will be required for accurate signal conversion in mmWave systems with

large bandwidths. Unfortunately, these high-precision ADCs are power-hungry

and expensive for portable devices [52], resulting in a major power bottleneck

for implementing mmWave systems. An alternative approach to deal with these

prohibitive costs of baseband processing in mmWave systems and address the

hardware constraints in mmWave transmissions is to utilise low-precision ADCs

in each RF chain at the receiver [52, 53, 54, 55]. In other words, the quantisation

resolution of the ADCs is reduced to a few bits (typically 1–5 bits [53]), leading

to a reduction of the power consumption of the ADCs.

Fig. 2.12 illustrates the use of 1-bit ADCs in a mmWave receiver to quantise

the demodulated signals at the output of each RF chain. These receivers can be

implemented at negligible costs and low power consumption since 1-bit ADCs do

not need linear amplifiers or automatic gain control [54]. The use of 1-bit ADCs

impacts the system design differently from their higher-resolution counterparts.

For instance, the capacity-maximising transmit signals are discrete and not con-

tinuous. In addition, although the use of 1-bit quantisers generally incurs some

capacity loss, it was shown in [55] that, at low signal-to-noise ratios, the MIMO

capacity is not severely degraded. In particular, the performance gap between

infinite-resolution and 1-bit ADCs is only 1.96 dB while [56] shows that ADCs

of 4 − 5 bits yield the optimal performance in the presence of hardware impair-

ments. These highlight low-resolution receivers as a promising method to utilise

baseband processing at mmWave frequencies.
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Figure 2.12: An illustration of a 1-bit mmWave receiver.

2.4 Channel Estimation

Channel estimation is important for the practical implementation of any wireless

communication system, as the assumption of perfect channel knowledge is highly

idealistic. In fact, the available CSI is usually obtained from channel estimates.

In mmWave systems, channel estimation is particularly useful for constructing

the analog and digital beamformers. The channel estimation strategies utilised in

mmWave systems is different from the traditional methods employed to estimate

standard wireless channels in a number of respects [57].

• mmWave channel matrices are very large due to the massive antenna ar-

rays characteristic of the propagations. Following traditional techniques

would require training a huge number of channel coefficients resulting in a

problematic amount of training overhead.

• The entries of a mmWave channel cannot be directly accessed as the mea-

surements of the channel in the baseband is interwoven with the RF pre-

coders and combiners.

• Direct application of traditional estimation techniques will require long

training sequences due to the large channel bandwidths available at mmWave,

which gives rise to increasing noise power and results in low SNR before

constructing the beamformers.

In view of this, we present a brief overview of channel estimation strategies

suitable for mmWave communication.
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2.4.1 Channel estimation in the analog architecture

Beam training is the main strategy used to configure the analog beamformers

in mmWave systems. This method does not require a definite knowledge of the

channel state; it utilises a codebook which contains varying beam patterns at

different resolutions and relies on an iterative transfer of information between the

transmitter and receiver. Specifically, the iterative process involves reducing the

beamwidth at each step of information exchange until the best angular directions

are obtained, i.e., the combination of angles of departure and arrival that provide

the strongest signal between the transmitter and receiver.

Several codebook beam-training protocols have been developed [19, 58, 59]. In

[58], the codebooks contain beam patterns classified according to their resolution.

The lowest is the quasi-omni antenna pattern which describes a broad region of

interest around the devices. The second-level resolution patterns are the sectors

which indicate the direction of array patterns covering a relatively broad area of

beams (consecutive and non-consecutive), while the highest-resolution patterns of

the codebook are the beam patterns. The beamforming training protocol, which

aims to configure the beamformers in the minimum time possible, is divided

into three stages: (a) device-to-device (D2D) linking, the selection of the best

quasi-omni pattern for directional transmission between the devices; (b)sector-

level searching, which finds the optimal sector pair in the quasi-omni pattern;

and (c) beam-level searching, which obtains the best beam pair in the optimal

sectors. In [59], after the optimum beam angle pair has been selected, unique

signature codes are assigned to each beam so they can be easily distinguished by

the receivers. This results in a minimisation of the training overhead. In [19], the

beamforming technique uses a distance-based hierarchical codebook adaptively

to sample the channel subspace and search for the beam pair that maximizes the

received SNR.

These codebook beam-training strategies are desirable as they eliminate the

need for explicit channel estimation. In fact, they have been adopted for imple-

mentation in the recent standards for mmWave systems such as IEEE 802.11ad

and 1EEE 802.15.3c. However, the information provided by beam training is not

sufficient for sophisticated processing applications such as interference cancella-

tion and multi-user MIMO and, as such, these standards assume single-stream

transmission [7, 60]. Moreover, the training time involved in beam-training can

be prohibitive [59] and the strategies are not robust to identifying NLOS paths
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[61].

2.4.2 Channel estimation based on the hybrid architec-

ture

In the hybrid architecture, which combines analog and digital beamforming, the

channel estimates are obtained by using compressed sensing (CS) techniques to

exploit the inherent sparsity of the mmWave channels. Given that the mmWave

channel can be completely described by a small number of parameters, i.e., the

angle of arrival (AoA)/angle of departure (AoD) and the complex gain of each

path, the estimation of the channel is then equivalent to estimating these key

parameters [57].

The basic concept of CS is to recover a compressible (sparse) signal from a

limited number of measurements. Specifically, for the hybrid architecture, the

hybrid precoders and combiners form the measurement matrices. Following from

Fig. 2.10, suppose the transmitter uses GT beamforming vectors to transmit the

training symbols and the receiver uses GR measurement vectors to detect the

signal transmitted. Then, the GR ×GT received signal can be written as

Y = WH
t HVtX+Q, (2.18)

where Wt = WRFWBB is the hybrid NR × GR training combining matrix and

Vt = VRFVBB is the corresponding hybrid NT × GT training precoding matrix.

Q ∈ CGR×GT represents the noise matrix and X is the diagonal matrix containing

GT transmitted training symbols.

To exploit the sparsity of the mmWave channel, the received signal matrix in

equation (2.18) is vectorized and expressed as [60]

y =
√
P
(
VT
t ⊗WH

t

)
ADhα + zQ, (2.19)

where equation (2.19) is obtained from applying the virtual channel representa-

tion in equation (2.7), with quantised AoAs/AoDs taken from a uniform grid ofM

points, and assuming that the transmitted symbols are equal, i.e., X =
√
P IGT

.

AD represents the NTNR×M2 dictionary matrix with its columns corresponding

to the Kronecker product of the transmitter and receiver array response vectors,

aHT (ϕ̂u)⊗ aR(θ̂v), with ϕ̂u and θ̂v being the angles taken from the quantised grid.

29



2.4. Channel Estimation

Further, hα = vec (Hα) denotes the M2 × 1 vector containing the path gains

corresponding to the quantised directions. From equation (2.19), the channel

estimation problem can be formulated as [7]

min
hα

∥hα∥0, (2.20a)

s.t.∥y −
√
P
(
VT
t ⊗WH

t

)
ADhα∥2 ≤ σ. (2.20b)

The problem described by equations (2.20a)–(2.20b) is the generalized channel

estimation problem based on hybrid architecture. Additional constraints maybe

added depending on the hardware used for analog processing. Specifically, if phase

shifters are used, then the RF precoding and combining matrices must have unit

norm entries, whereas if switches are used, each column of the RF precoding and

combining matrices must have exactly 1 at the index of the selected antenna and

0 elsewhere [46]. Nevertheless, we only have to detect the non-zero elements of

hα (i.e., the dominant paths of the channel) with the corresponding AoAs and

AoDs to solve the channel estimation problem described by equations (2.20a)–

(2.20b). Thus, those equations pose a sparse recovery problem which can be

efficiently solved with adaptive CS algorithms that define a sensing matrix to

recover the non-zero elements of hα with high probability and a small number

of measurements [60, 62] or with the use of standard greedy recovery algorithms

such as the multi-grid orthogonal matching pursuit (OMP) [46].

2.4.3 Channel estimation with 1-bit ADCs

Channel estimation methods for mmWave systems employing the low-resolution

receivers also rely on the sparsity of the channel and utilise the narrowband virtual

channel model. Therefore, the sparse recovery problem can be formulated.

Considering the system with a 1-bit architecture illustrated in Fig. 2.12, the

quantised processed signal is given as

y = sgn (Hs+ z) . (2.21)

If the transmitter uses GT beamforming vectors to transmit the training symbols,

the received signal obtained by concatenating GR received vectors is given by [32]

Y = sgn (HX+Q) , (2.22)
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where X ∈ CNT×K is the training sequence with K representing the length of the

sequence, and Q is the noise matrix. Using the virtual channel model in equation

(2.8) and setting X = UTZ, we have

Y = sgn
(
URHαU

H
TUTZ+Q

)
, (2.23)

= sgn (URHαZ+Q) . (2.24)

Exploiting the sparse nature of the mmWave channel through vectorization, we

obtain

vec (Y) = sgn (vec (URHαZ+Q)) (2.25)

yv = sgn
((
ZT ⊗UR

)
hα + vec (Q)

)
, (2.26)

where equation (2.26) follows from the identity vec (ABC) =
(
CT ⊗A

)
vec (B),

and hα = vec (Hα). The formulation of yv in equation (2.26) represents the

sparse recovery formulation for channel estimation using 1-bit ADCs and it in-

volves estimating hα given Z. Accordingly, the compressive sensing framework

can be applied to recover the sparse vectors. Assuming prior information about

the distribution of hα is available, the generalised approximate message passing

(GAMP) algorithm can be employed to estimate the channel in quick steps [32].

Other algorithms which do not require prior information of hα, such as expec-

tation maximisation (EM), can be used to detect the non-zero elements of hα

[63].
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Chapter 3

Multi-user Millimeter Wave

Cloud Radio Access Networks

with Hybrid Beamforming

3.1 Introduction

As mentioned previously in Chapter 2, the increasing prevalence of high-speed,

real-time data applications, such as social networking and high-quality wireless

video streaming, is driving greater demand for more bandwidth and faster data

rates from mobile users. For example, smartphone traffic, which has experienced

tremendous increase over the last two decades, is predicted to dominate the global

traffic ( taking up 99%) by 2022 [1]. While recent years have seen major advances

in physical layer techniques to boost spectral efficiency, the spectrum crunch in

existing cellular systems presents a fundamental impediment to further capacity

increase. Therefore, the current research direction is to exploit under-utilised or

unused bands on the frequency spectrum that have not been previously used for

cellular communication.

The mmWave frequencies have advanced as promising bands for the realisation

of 5G cellular systems because of their potential to achieve the significant goals of

the next generation of mobile cellular systems [4] (a general overview of mmWave

bands was provided earlier in section 2.1). Recent works have demonstrated the

feasibility of mmWave cellular communications. For example, [65] shows that

Work in this chapter has been published in IEEE Systems Journal, December 2018 [64].
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wide coverage and high data rates are achievable through the use of trellis coding

in constant-envelope orthogonal frequency division multiplexing based mmWave

systems. [66] shows how mmWave bands can be used to provide high bandwidth

data transfer operations to ensure reliable connectivity especially in congested

urban areas. Moreover, [12, 33] and [67] demonstrate how to deploy practical

outdoor mmWave communications via real-time measurements at 28-, 38-, 60-,

and 70-GHz mmWave bands made in urban environments.

The distinct features of mmWave communication (outlined earlier in sec-

tion 2.1.1) indicate that propagation at mmWave frequencies is more involved

than just changing the carrier frequency. For example, to measure the impact of

blockages on mmWave cellular systems, a two-state model (LOS and NLOS) is

used [7, 18, 68, 69]. In addition, the work in [14], which studied cellular commu-

nication in a dense urban environment, shows that mmWave systems can offer

unparalleled increases in capacity for such dense networks.

Network architecture is critical to providing robust networks, which is a key

goal for the upcoming 5G networks [70]. Accordingly, CRAN is also receiving

heightened interest in academia and industry as the prime architecture for deploy-

ment of dense networks to provide increased capacities and efficiencies [71, 72].

Some works focus on a fixed CRAN model, where RRH nodes are fixed at spe-

cific locations. For example, [71, 73, 74] show that for MIMO channels gains

can be achieved in terms of spectral efficiency, capacity and energy efficiencies,

respectively. Other works focus on randomly distributed RRHs. Scenarios with

both single cells and multiple cells are considered in [75] and [76]. These studies,

demonstrating different performance metrics, attest to the feasibility of CRAN

as a distributed antenna network architecture. However, these models have only

been studied for standard MIMO communications. Therefore, since the CRAN ar-

chitecture can deploy dense networks, this chapter presents an analysis of CRAN

architecture using mmWave fronthaul and access links.

The main contribution of our work is in the design of a system that couples

two potential candidates – mmWave and CRAN – for next-generation cellular

communication into multi-user mmWave CRAN systems. In addition, we build a

tractable system using stochastic geometry to show the effects of outage probabil-

ity, average latency and throughput against the signal-to-interference-noise-ratio

(SINR) threshold for mmWave CRAN systems1. The performance of this system

1Note that this work only provides the performance characterisation of the mmWave CRAN
system and relies on the hybrid precoder design from the literature cited therein.
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is studied for two association schemes. In the first, the RRH or the baseband

unit (BBU) with the best channel participates in the transmission where the to-

tal power is given to this channel, also called best channel participation (BCP).

In the second, the participating RRH is the one closest to the typical UE, also

called nearest-neighbour participation (NNP). We characterise this system under

key factors including blockages, antenna gain, path losses, and cluster radius.

Exact closed-form expressions of outage probability considering LOS and NLOS

channels are derived for both scenarios in the noise-limited case (neglecting ICI)

while outer bounds of outage probability are also developed for the interference-

limited case.

The rest of this chapter is organised as follows. Section 3.2 provides the

system model introducing the propagation assumption, SINR model, association

scenarios, fronthaul and traffic models. In section 3.3, we present preliminary

statistics used in the analysis of the system model. Next, in section 3.4, we derive

the closed-form expressions for outage probability and throughput in a noise-

limited scenario, while the outer bounds for the interference-limited counterpart

is provided in section 3.5. In section 3.6, we provide derivations for calculating

the average latency of the system, and we present numerical results validated by

simulations in section 3.7. Finally, section 3.8 provides the concluding remarks.

3.2 System Model

We consider the downlink of a multi-user mmWave CRAN system, which consists

of a mmWave transmission network, a BBU, multiple mobile UEs and multiple

RRHs, as illustrated in Fig. 3.1. The BBU is the central intelligence unit con-

nected to RRHs by high-bandwidth links called “fronthaul links”, whereas the

links between the RRHs and UEs are referred to as “access links”. The interface

in the fronthaul is standardised as common public radio interface (CPRI) [77].

To meet the strict requirements imposed on the fronthaul by CPRI, the proposed

solution is to split the functionality (from baseband to packet processing and

radio functions such as amplification, frequency conversion, ADC and digital-to-

analogue converter, or DAC, conversion) between the BBU and RRHs. Thus,

the BBU performs functions such as baseband and packet processing while the

RRHs perform the radio functions and transfer (send/receive) data from BBU

to UEs in the system. Although dedicated fibre links are commonly used at the

35



3.2. System Model

fronthaul links, recent European projects including 5G PPP [78] and 5G-XHaul

[79] propose that mmWave bands can be used for the transmission of fronthaul

data because the centralisation in CRAN requires a large consumption of fibre

cores which are scarce and expensive to deploy. Therefore, the transmission links

of both fronthaul and access in this system operate in the mmWave frequency

bands. Each RRH is distributed in a randomly ordered fashion in R2 using

independent homogeneous PPP, ΦRRH and intensity, λRRH. Similarly, UEs are

randomly distributed as PPP and ΦUE with intensity λUE. The positioning of

UEs are not dependent on the location of RRHs; hence, all point processes are

independent of each other2. The number of antennas on each RRH, UE and the

BBU are denoted as Nr, NUE and NT, respectively. We assume that there are a

number K of UEs in the system such that Nr ≥ K or NT ≥ K, and that each

RRH communicates with several UEs in one instant. Note that throughout this

chapter we focus on the access link transmissions between RRHs and UEs in the

circular region in Fig. 3.1, which will be referred to as “cluster G”.

Figure 3.1: An illustration of a multi-user mmWave CRAN system model.

2Although the positioning of the UEs are independent of the position of the RRHs, we assume
that since the BBU makes the decisions about which RRH serves a user, thus ensuring that
the RRHs that serve the UEs are not violating the effective isotropic radiated power (EIRP)
limitations.
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3.2.1 Propagation assumptions

3.2.1.1 Transmission model

The propagation from any RRH to each UE is via a fully connected hybrid pre-

coder that combines RF and BB precoding. We assume that every UE is served

via only one stream, thus it is sufficient that each UE employs an RF-only com-

biner to decode the transmitted signal, as described in [80]. Hybrid precoding is

also used to cancel out the unwanted signals of other UEs. Considering a typi-

cal UE located at the origin of the cluster, UE0, the clustered mmWave channel

between the kth RRH located at position y in G and UE0 is given as

Hk,0 =

√
NrNUE

L(k, 0)

Wk,0∑
u=1

ηu,k,0 aUE(θu,k,0)a
H
RRH(ϕu,k,0), (3.1)

where ηk,0 is the complex gain, assumed to follow a normal distribution with

zero mean and unit variance for both LOS and NLOS links to enhance analytical

tractability [42, 69], θ is the AoA, ϕ is the AoD, Wk,0 is the number of paths

from the kth RRH to the UE0,
3 L(k, 0) is the path loss given as L(k, 0) = rαi

k,0,

with i ∈ L,N. Here αi denotes the path-loss exponent and can either be LOS

and NLOS depending on the link between them, and aRRH and aUE are the array

response vectors of each RRH and UE, respectively.

Due to the sparsity of mmWave channels, we assume that all scattering hap-

pens in the azimuth plane, and model these array vectors as ULAs. Hence, the

array response vector at the RRH is given by

aRRH(ϕ) =
1√
Nr

[
1, ei

2π
λ
d sin(ϕ), . . . , e(Nr−1)i 2π

λ
d sin(ϕ)

]
, (3.2)

where λ is the wavelength and d is the distance between antenna elements. The

array response vectors at the UE (aUE(θ)) and BBU (aBBU(ϕ)) are written in

similar fashion.

3.2.1.2 Received signal

We denote U as the maximum number of UEs in G to which a single RRH can

instantaneously communicate4, and assume that the maximum value of U is the

3Unit paths are assumed for each UE in this system throughout this chapter.
4This assumption is to ensure that an RRH is not overloaded.
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number of RF chains (U ≤ NRF) since the hybrid precoding gain is constrained

by min(NRF, K) [81]. For the links between the kth RRH in cluster G and the U
UEs connected to it, the BB and RF precoders are presented, respectively, as

Vk
BB =

[
vk,1BB,v

k,2
BB, . . . ,v

k,U
BB

]
(3.3)

Vk
RF =

[
vk,1RF,v

k,2
RF, . . . ,v

k,U
RF

]
. (3.4)

At the typical UE, the RF combiner w0
RF is used to process the received signal.

The processed signal is given by

y0=ϱk,0h
eff
k,0v

k,0
BBs0 +

∑
g∈U ,g ̸=0

ϱk,gh
eff
k,gv

k,g
BBsg+z0, (3.5)

where s0 denotes the transmitted symbol for the typical UE, while sg denotes the

transmitted symbol for a user other than the typical UE associated with RRHk,

heff
k,0 = (w0

RF)
HHk,0V

k
RF is a 1×NRF vector called the “effective channel”, ϱk,0 is

the average received power given as ϱk,0 =
PT

K
, z0 is additive white Gaussian noise

(AGWN) such that z0 ∼ CN (0, σ2
z) and PT is the total transmit power enforced

by the normalization of VBB such that ||VRFVBB||2F = Ns with Ns representing

the number of data streams [28].

To design the hybrid beamformers, we adopt the two-stage hybrid scheme pro-

posed in [80]5. Here, in the first stage, the kth RRH and the typical UE connected

to it design the RF precoder and combiner simultaneously using phase shifters

to maximize the desired signal for the typical UE. In the second stage, the RRH

designs the baseband precoder for the typical UE to mitigate the interference

from other UEs.

Accordingly, the optimization problem providing the RF precoder and com-

biner from the kth RRH to UE0 takes the form

P1 :
(
(w0

RF)
opt, (vk,0RF)

opt
)
=argmax

w0
RF,v

k,0
RF

|(w0
RF)

HHk,0v
k,0
RF|. (3.6)

To solve the problem described by P1, first we apply the singular value de-

composition (SVD) to the channel matrix Hk,0, i.e., we set Hk,0 = UΣVH , where

U and V are NUE×NUE and NRRH×NRRH matrices containing the eigenvectors

5This hybrid beamforming design is less computationally complex than other existing so-
lutions to the hybrid beamforming problem in literature such as the manifold optimisation
method [82] and provides results close to that of the unconstrained beamformers.
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of Hk,0(Hk,0)
H and (Hk,0)

HHk,0, respectively, while Σ is an NUE×NRRH diagonal

matrix consisting of the eigenvectors of Hk,0(Hk,0)
H in decreasing order.

Lemma 3.1. [83, Theorem 3]. For a large number of antennas, the optimal

RF precoder and combiner
(
(w0

RF)
opt, (vk,0RF)

opt
)
are obtained when right and left

singular vectors corresponding to the non-zero eigenvalues of Hk,0 converge in

chordal distance to aUE(θu,k,0) and aRRH(ϕu,k,0)∀u = 1, . . . ,Wk,0 when Wk,0 ≪
min(NRRH, NUE).

From the above lemma, w0
RF = aUE(θumax,k,0) and vk,0RF = aRRH(ϕumax,k,0),

where umax = argmax
u
|ηu,k,0| indicates the path with the maximum gain.

Next, the BB precoders are designed such that interference from other UEs

in G is cancelled. Within this context, a simple ZF precoder can be utilised.

Accordingly, the BB precoder for the typical UE from kth RRH is given as

vk,0BB = (heff
k,0)

H

(
heff
k,0(h

eff
k,0)

H

)−1

. (3.7)

3.2.1.3 Blockage model

To model blockages in this mmWave network, we use the probabilistic model

validated in [18] which defines a link of length a as LOS with probability pL,
6 if

a is less than or equal to the radius of some region D; a ≤ D.7 However, when

a > D, the link is NLOS with probability of pN.

3.2.2 SINR model

To model the SINR of a mmWave network, we consider the two different schools

of thought about propagation in mmWave networks; on one hand, the authors of

[12, 18, 84] mention that mmWave networks tend to be noise-limited due to high

blockage density, which make signals from unwanted sources negligible. On the

other hand, the authors of [11, 22, 42] consider high base station density with

moderate blockages and assume that mmWave networks tend to be interference-

limited. Therefore, we model the SINR in both noise-limited and interference-

limited cases.
6It is important to note that the values of pL are dependent on the geography of an area i.e.

a low value is assumed for dense urban areas and a higher one for semi-urban areas.
7D is defined in [18] as the radius of a circle from actual measurements in urban regions of

New York
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3.2.2.1 Noise-limited case

In this scenario, we consider only intra-cluster interference from other users as-

sociated with an RRH. The analysis is performed for a typical UE following

Slivnyak’s theorem. The SINR between the kth RRH and the typical UE is

obtained from equation (3.5). Denoting SINR as ρ, we obtain

ρk,0 =
ϱk,0∥heff

k,0v
k,0
BB∥2∑

g∈ny
g ̸=0

ϱk,g∥heff
k,gv

k,g
BB∥2 + σ2

z

, (3.8)

where the first term of the denominator denotes the intra-cluster interference to

the typical UE, which is zero after successful interference cancellation, and σ2
z is

the noise variance.

For tractability in the statistical analysis in this paper, we rewrite the SINR

in equation (3.8) as

ρk,0 ≈
Bk,0 η

2
k,0 ωp(Nr,U)
rαi
k,0 σ

2
z

, (3.9)

where Bk,0 = ϱk,0NrNUE, and ωp(Nr,U) is the precoding penalty defined as

ωp(Nr,U) =

1, w.p.
(
1− 1

Nr

)U−1

0, otherwise.
(3.10)

The explanation of this penalty can be found in [69, Proposition 1].

3.2.2.2 Interference-limited case

In this scenario, the typical UE experiences interference from within the cluster

as well as from neighbouring clusters. It should be noted that the RRHs from

other clusters causing interference are those minimally affected by blockages.

Consequently, the received signal after applying the RF precoders and combiners

to the transmitted signal is given as

y0=ϱk,0h
eff
k,0v

k,0
BBs0 +

∑
g∈U ,g ̸=0

ϱk,gh
eff
k,gv

k,g
BBsg+ IΦ′

BS
+z0 (3.11)

where s0 and sg denotes the transmitted symbols for the typical UE and for

another UE associated with RRHk, IΦ′
BS

is the inter-cluster interference, and z0
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is the complex Gaussian noise, z0 ∼ CN (0, σ2
z).

Thus, the SINR of the typical UE served by the kth RRH is obtained from

the received signal in equation (3.11) and expressed as

SINRk,0 =
ϱk,0

∣∣heff
k,0v

0
BB

∣∣2
σ2
z +

∑
g∈Φ′

UE,g ̸=0

ϱk,g
∣∣heff

k,gv
g
BB

∣∣2 + IΦ′
BS

, (3.12)

where ϱb =
PBS

Ub
with Ub denoting the number of users connected to a base station

(BS) in another cluster, and Φ′
BS = ΦBS \ G ∩ ΦBS.

Next, the SINR in equation (3.12) is approximated for the statistical analysis

and expressed as:

SINRk,0 ≈
G0 |ηk,0|2 r−αi

k,0 ωp(Nr,U)
σ2
z + IΦ′

BS

, (3.13)

where G0 = ϱk,0NUENr,ηk,0 = heff
k,0v

0
BB, rk,0 is the distance between the typical UE

and the kth RRH, αi is the path-loss exponent which could be LOS or NLOS,8

ωp(Nr,U) is the precoding penalty similarly defined in equation (3.10) and IΦ′
BS

is the inter-cluster interference given as [42]

IΦ′
BS

=
∑

b∈Φ′
BS,v ̸=0

Gv |ηb,v|2 r−αv

∑
v∈Uv

||aUE(θv,y,x)a
H
RRH(ϕv,y,x)||2, (3.14)

=
∑

b∈Φ′
BS,v ̸=0

Gv |ηb,v|2 r−αv Υv, (3.15)

where Gv is the gain from another cluster, similarly defined as G0 but scaled by

the precoding penalty.9,Υv is defined as the inner product of the transmit and

receive beam steering vectors, expressed as

Υv ,
{

1, θv,y,x = ϕv,y,x

τRRH, otherwise,
(3.16)

where τRRH < 1 denotes the side lobe gain.

Remark 3.1. Note that although the analyses in this chapter focus on the down-

link transmission, the results are applicable to uplink transmissions, with the roles

8The parameters for α used in simulations are adopted from measurements validated in
[10, 18, 14].

9For simplicity we assume the sum of penalties from RRHs in interfering clusters to be
constant.
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of the UEs and RRHs reversed. More specifically, where multiple UEs transmit

independent messages to their associated RRHs, the received signal can be for-

mulated similar to equation (3.11). In this case, ICI is caused by the other UEs

associated with the same RRH as well as those outwith the cluster, and these

interferences can be characterised with similar stochastic geometry tools.

3.2.3 Association scenarios

When a UE associates itself with an RRH and makes a request, the RRHs help

the signals from the UE to be decoded by the BBU. Thus, a UE is serviced

through the access link (from UE to RRH) and fronthaul link (from tagged RRH

to BBU). To analyse the performance of this system, we consider two schemes

based on how the UE associates with an RRH in cluster G, namely:

• BCP: in this scenario, BBU determines which RRH has the best channel

in cluster G for transmission to UEs, and

• NNP: this scenario is considered for its ability to reduce overhead whilst

achieving acceptable performance; the metric is based on distance where

the RRH closest to an UE is selected for transmission.

3.2.4 Traffic model

To measure the quality of service (QoS) and model the traffic delivery from the

BBU to an UE via its associated RRH in this mmWave CRAN system, we adopt

the queueing theory of [85], denoting the typical UE as UE0 and its associated

RRH as RRHk. We assume that the traffic arrival times to UEs in the network

follows a PPP with parameter λ which denotes the arrival rate per unit area,

with an average time of µ seconds.10 On the account of a constant fronthaul rate,

it is reasonable to assume that the traffic delivery time of the fronthaul is also

an exponential distribution. Thus, the traffic delivery in fronthaul actualises an

M/M/1 queuing system [85].

Similarly, in the access links, the traffic arrival to UE0 follows a PPP with an

average arrival rate of λ0. However, since the UEs at various locations associated

with RRHk have different rates depending on the channel conditions, the service

10This assumption is based on the fact that the UEs are distributed according to a PPP,
ΦUE.
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time in RRHk is generally distributed [86]. Therefore, the traffic delivery from

RRHk to UE0 realises an M/G/1 queueing model [85]. Accordingly, the traffic

delivery from BBU to UE0 via RRHk is modelled as a combined queue system.

3.2.5 Fronthaul model

For completeness, and to give a general overview of the functionality between the

BBU and RRHs in the network, we include the fronthaul model.

Note that for the implementation of CRAN, the BBU does not have to be

physical, implying that the network operator can dynamically map radio signals

from the BBU to any RRH using software-defined networking (SDN) concepts[87].

As highlighted earlier in section 3.2, CPRI imposes strict requirements on the

fronthaul network [77] which determine the functionality between the BBU and

RRHs.

Figure 3.2: CRAN fronthaul-link logical structure [81].

Therefore, Fig. 3.2 presents a logical structure illustrating the downlink and

uplink processing chain of the fronthaul link. In the downlink, data packets for the

UEs are processed at the media access control (MAC) layer, where appropriate

headers and schedules are added on followed by forward error correction (FEC)
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encoding and then modulation and precoding. These operations are performed

with CSI available at the BBU11. Next, an inverse Fourier transform is performed

to map UE data to physical resources in time slots and sub-carriers. After that,

the data is converted to the analogue domain using a DAC and then up-converted

to the carrier frequency and transmitted to the antenna of the RRH. More details

of the processing can be found in [88]. Note that for the uplink, the process is

reversed as indicated by the upward flow of Fig. 3.2.

3.3 Preliminary Statistics

This section gives preliminary statistics introducing the statistical properties of

the mmWave channel and the performance metrics which will be used in the

subsequent analysis of the access links.

3.3.1 Millimeter wave channel statistics

If we assume Gaussian symbols are transmitted, then the probability distribution

function (PDF) of the signal-to-noise-ratio (SNR), ρk,0, is F-scaled [89] and can

be written as

fρk,0(z) =

(
1− 1

Nr

)U−1
Nr! (Bk,o)

KzNr−K

(K − 1)!(Nr −K)!(Bk,0 + z)Nr+1
. (3.17)

The work in [90] shows that the F-distribution can be approximated to chi-

square distribution. Therefore, rewriting equation (3.17) in terms of chi-squared

distribution with 2(Nr −K + 1) degrees of freedom, we obtain

fρk,0(z) ≈
(
1− 1

Nr

)U−1∑
i∈L,N

(Krαi
k,0)

Nr−K+1

(Nr −K)!

1

(Bk,0)Nr−K+1
zNr−Ke

−
z K r

αi
k,0

Bk,0 . (3.18)

Note that for ease of exposition and without abuse of notation, we will treat the

subsequent derivations from (3.18) as exact expressions. Moreover, integrating

equation (3.18) for a given distance, rk,0, yields a conditional cumulative distri-

11The assumption of full CSI availablility is ideal. Notwithstanding, the analyses presented
in this work provide an upper bound on the performance of the mmWave CRAN system and
can be easily extended to imperfect CSI considerations.
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bution function (Fρk,0|rk,0), which is expressed as

Fρk,0|rk,0(z) =

(
1− 1

Nr

)U−1∑
i∈L,N

pi
1

(Nr −K)!
γ

(
Nr −K + 1,

z K rαi
k,0

Bk,0

)
, (3.19)

where γ is the lower incomplete gamma function.

3.3.2 Performance metrics

The performance of the network will be measured in terms of outage probability,

throughput and latency.

3.3.2.1 Outage probability of a generic RRH

The outage probability of any RRH in cluster G is given as

Pout(ξ) =
∫ R

0

fr(r)Fρ|r(ξ) dr, (3.20)

where ξ denotes the SNR threshold, fr(r) represents the uniform distribution of

all RRHs in G given as fr(r) =
2 r

R2
and Fρ|r is the CCDF given as

Fρ|r(ξ) =

(
1− 1

Nr

)U−1∑
i∈L,N

pi
1

(Nr −K)!
γ

(
Nr −K + 1,

ξ K rαi

B

)
. (3.21)

It is worthwhile to notice that the cumulative distribution function (CDF) of re-

ceived SNR at kth RRH from a BBU follows from equation (3.19) and is expressed

as

Fρf (ξ)=

(
1− 1

Nt

)M−1∑
i∈L,N

pi γ
(
Nt −M + 1,

ξM r
αi
f

Bf

)
(Nt −M)!

. (3.22)

In the following proposition, we show the overall outage probability of the kth

RRH which will be used in analysis of the association schemes.

Proposition 3.1. The outage probability of the kth RRH to a typical UE is given
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as

Pout(t) =
(
1− 1

Nr

)U−1∑
i∈L,N

pi
2 (tK)

−
2

αi

R2

1−
Nr−K∑
m=0

[
Γ
(

2
αi

+m
)
− Γ

(
2
αi

+m,KRαit
)]

m!

 .

(3.23)

Proof. The outage probability of the kth RRH is defined as

Pout(z) =
∫ R

0

frk,0(r)Fρk,0|rk,0(z) dr. (3.24)

Substituting the expressions of frk,0(r) =
2r
R2 and Fρk,1|rk from equation (3.19),

we obtain

Pout(t) =
∫ R

0

2r

R2

(
1− 1

Nr

)U−1∑
i∈L,N

pi
1

(Nr −K)!
γ
(
Nr −K + 1, tK rαi

k,0

)
dr, (3.25)

where t =
ξ

Bk,0

.

Starting with the LOS link, we have

PL
out(t) =

∫ R

0

(
1− 1

Nr

)U−1
2r

R2

pLγ
(
Nr −K + 1, tKrαL

k,0

)
(Nr −K)!

dr,

(a)
=

∫ R

0

2r

R2

(
1− 1

Nr

)U−1

pL

[
1−

Nr−K∑
m=0

(tKrαL)m

m!
etKr

αL

]
dr, (3.26)

(b)
=

(
1− 1

Nr

)U−1

pL

[
1−

Nr−K∑
m=0

2 (tK)
−
2

αL

R2

[
Γ
(

2
αL

+m
)
− Γ

(
2
αL

+m,KRαLt
)]

m!

]
,

where (a) follows from the series equivalent of the lower Gamma incomplete

function given by γ(N, t) = (N − 1)!

(
1− e−t

∑N−1
k=0

tk

k!

)
, and (b) follows from

solving the integral with respect to r.

The outage probability of the NLOS link can be derived by following similar

steps to obtain

PN
out(t) =

(
1− 1

Nr

)U−1

pN

[
1−
Nr−K∑
m=0

2 (tK)
−

2

αN

R2

[
Γ
(

2
αN

+m
)
− Γ

(
2
αN

+m,KRαNt
)]

m!

]
.

(3.27)
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Finally, the proof of (3.23) can be concluded by the summation of PL
out(t) and

PN
out(t).

3.3.2.2 Throughput

By definition, throughput R is given by

R = log2 (1 + ρ) (1− Pout) , (3.28)

where ρ is the received SINR. The throughput can be obtained by substituting

Pout from equation (3.23) with the appropriate values of ρ for the scenario under

consideration.

3.3.2.3 Latency ratio

This performance metric is used to measure the QoS of the network. It is defined

as the delayed UE duration per unit of service time during the transmission

process and will be discussed in detail in section 3.6.

3.4 Performance in a Noise-Limited Scenario

In this section, we study the access link outage probability performance of our

system model in a noise-limited scenario under the two different user-association

scenarios aforementioned in section 3.2.3.

3.4.1 NNP

Outage occurs in this scenario when the channel of an RRH closest to the typical

UE is in outage. Note that throughout this section, we denote the kth RRH as the

RRH closest to the typical user. Additionally, for this scenario, the BBU trans-

mits directly to the user only when there are no RRHs in G. Therefore, the outage
probability for the nearest neighbour is defined by the following proposition:

Proposition 3.2. The outage probability of an RRH closest to the typical UE is
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expressed as

PNNP
out (ξ) =

(
1− 1

Nt

)U−1∑
i∈L,N

pi γ (Nt −K + 1, ξ K Rαi)

(Nt −K)!

×
(
1− 1

Nr

)U−1
e−λRRH π R

2

(Nr −K)!

∞∑
n=0

(−1)n

n!

(ξ K)(Nr−K+n+1)

(Nr −K + n+ 1)

×

[ ∑
i∈L,N

pi
γ (αi(Nr−K+n+1)

2
+ 1, πλRRHR

2)

(πλRRH)
(αi(Nr−K+n+1)

2

]
. (3.29)

Proof. During the NNP scenario, the typical UE is served by the RRH closest

to it. Denoting r as the distance between the typical UE and its closest RRH,

we can express its PDF as [91]

fclosest = 2 π λRRH r e
−λRRH π r

2

. (3.30)

Consequently, the outage probability for the closest RRH to the typical UE

is given by

PNNP
out (ξ) =

∫
Fρ|r(ξ)fclosest(r), (3.31)

where fclosest(r) is the PDF of distance between the UE and its closest RRH

already defined in equation (3.30), and Fρ|r is the CDF given by equation (3.21).

Next, by taking into consideration the fact that the BBU can transmit to

the UE, which happens only when there is no RRH in cluster G, we expand the

definition of the nearest neighbour outage probability to the typical UE as

PNNP
out (ξ) =

∫ R

0

fclosest(r)Fρk,0|rk,0(ξ) dr +

∫ ∞

R

fclosest(r)Fρ0(ξ)dr,

where

Fρ0(ξ) =

(
1− 1

Nt

)U−1∑
i∈L,N

pi γ
(
Nt −K + 1, ξ K Rαi

Bk,0

)
(Nt −K)!

. (3.32)

After substituting the expressions of Fρ0(ξ), Fρk,0|rk,0(ξ) and fclosest(r) into
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equation (3.32), we obtain

PNNP
out (ξ) =(

1− 1

Nr

)U−1 ∫ R

0

2πλRRH re
−πλRRH r

2
∑
i∈L,N

pi γ
(
Nr −K + 1, ξ K rαi

k,0

)
(Nr −K)!

dr︸ ︷︷ ︸
I

+

(
1− 1

Nt

)U−1∫ ∞

R

2π λRRH re
−π λRRH r

2
∑
i∈L,N

pi γ (Nt −K + 1, ξ K Rαi)

(Nt −K)!
dr︸ ︷︷ ︸

II

.

(3.33)

To integrate I in equation (3.33), we start with an LOS link, i.e.,

IL =

(
1− 1

Nr

)U−1∫ R

0

2πλRRH re
−πλRRH r

2
∑
i∈L,N

pL γ
(
Nr −K + 1, ξ K rαL

k,0

)
(Nr −K)!

dr,

(a)
=

(
1− 1

Nr

)U−1
pL

(Nr −K)!

∞∑
n=0

(−1)n

n!

(ξ K)(Nr−K+n+1)

(Nr −K + n+ 1)

×
γ
(
αL(Nr−K+n+1)

2
+ 1, π λRRHR

2
)

(π λRRH)
(αL (Nr−K+n+1)

2

, (3.34)

where (a) follows from performing the integration after replacing the lower in-

complete gamma function with its series equivalent given by

γ
(
Nr−K + 1, ξ K rαL

k,0

)
=

∞∑
n=0

(−1)n
(
ξKrαL

k,0

)Nr +n−K+1

n! (Nr + n−K + 1)
. (3.35)

In a similar manner, IN for the NLOS link can be derived. Subsequently, summing

IN and IL yields the result of integrating I in equation (3.33) and is expressed as

I =

(
1− 1

Nr

)U−1
1

(Nr −K)!

∞∑
n=0

(−1)n

n!

(ξK)(Nr−K+n+1)

(Nr −K+ n + 1)
(3.36)

×

[ ∑
i∈L,N

pi
γ (αi(Nr−K+n+1)

2
+ 1, πλRRHR

2)

(πλRRH)
(αi(Nr−K+n+1)

2

]
.
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Next, integrating II, we have

II=

(
1− 1

Nt

)U−1∑
i∈L,N

pi γ (Nt −K+ 1, ξKRαi)

(Nt −K)!
e−λRRH πR2

. (3.37)

The proof of equation (3.29) is obtained from substituting equations (3.37)

and (3.36) in equation (3.33).

3.4.2 BCP

In this scenario, the best channel in cluster G (either an RRH or the BBU) is

selected to participate in transmission with the typical UE. This implies that

outage occurs when this channel is in outage. Thus, the outage probability for

the best channel is given as

PBCP
out (ξ) = Fρ0(ξ)Pkout(ξ), (3.38)

where Pkout is the outage probability of the kth RRH given as

Pout(ξ) =
(
1− 1

Nr

)U−1∑
i∈L,N

pi
2 (ξ K)

−
2

αi

R2

1−
Nr−K∑
m=0

[
Γ
(

2
αi

+m
)
− Γ

(
2
αi

+m,KRαiξ
)]

m!

 ,

(3.39)

and Fρ0(ξ) is the CDF of the SNR at the BBU given as

Fρ0(ξ)=

(
1− 1

Nt

)U−1∑
i∈L,N

pi γ
(
Nt −K + 1, ξ K Rαi

B0

)
(Nt −K)!

. (3.40)

3.5 Performance in an Interference-Limited Sce-

nario

In the sequel, we present the corresponding outage analyses of the system whilst

considering inter-cluster interference for both association scenarios.
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3.5.1 BCP

In this scenario, the typical UE associates itself with the RRH that provides it

with the best signal in the network. This can also be explained from the path-loss

perspective where the best channel is the one that offers the least path-loss.

Proposition 3.3. The outage probability of received SINR at the typical UE from

the best RRH in the cluster is given as

PBCP
out (ξ) =

∑
j∈L,N

pj

(
1− 1

Nr

)U−1 ν∑
k=0

(
ν

k

)
(−1)k (3.41)

×
∫
y>0

e
−Ak ξ yσ2

z
G0

∏
j∈L,N

EIj
Φ′
BS

[
exp

(
−Ak ξ yIjΦ′

BS

G0

)]
fζ(y)dy,

where ν = Nr−K is a parameter from the tight upper bound of gamma distribution

given as P[|ηm,n|2 < γ < (1 − e−Aγ)ν ] with A = ν(ν!)
−1
ν and y , r

αj
n , and fζ is

the distribution of the least path-loss, which is given by

fξ(x) =
∏

j∈{L,N}

2pj
αj
πλRRHP

2
αj

RRH x
2
αj

−1
e−πpjλRRHP

2
αj
RRHx

2
αj
. (3.42)

Proof. Let y , r
αj
n represent the path loss. The outage probability conditioned

on the least path-loss from the best RRH in the cluster to the typical UE averaged

over the plane is defined as

PBCP
out|y(ξ) = E

[
P

[
G0 |ηk,0|2 y−1 ωp(Nr,U)

σ2
z + IΦ′

BS

< ξ|y

]]
. (3.43)

For the LOS link, y = rαL , the conditional outage probability is then given as

PL
out|y(ξ) = E

[
pL P

[
G0 |ηk,0|2 y−1 ωp(Nr,U)

σ2
z + IΦ′

BS

< ξ|y

]]
, (3.44)

=

∫
y > 0

pL P

[
G0 |ηk,0|2 y−1 ωp(Nr,U)

σ2
z + IΦ′

BS

< ξ|y

]
fζ(y) dy.

Given that the small-scale fading, ηk,0, is Rayleigh, |ηk,0 |2 follows chi-squared

distribution with 2(Nr−K) degrees of freedom, and employing the upper bound

of gamma distribution with parameter ν such that P
[
|ηk,0 |2 < γ < (1− e−Aγ)ν

]
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with A = ν(ν!)
−1
ν , the outage probability is expressed as

P

[
G0 |ηk,0|2 y−1 ωp(Nr,U)

σ2
z + IΦ′

BS

< ξ|y

]

= EIΦ′
BS

[
P
[
|ηk,0|2 <

ξ y

G0 ωp(Nr,U)
(σ2

z + IΦ′
BS
)|y, IΦ′

BS

] ]
,

(a)
=

(
1− 1

Nr

)U−1

EIΦ′
BS

[(
1− e−A

ξ y
G0

(σ2
z+IΦ′

BS
)
)ν
|y, IΦ′

BS

]
,

(b)
=

(
1− 1

Nr

)U−1 ν∑
k=0

(
ν

k

)
(−1)ke

−Ak ξ yσ2
z

G0 EIΦ′
BS

[
e
−

−Ak ξ y I
Φ′
BS

G0

]
, (3.45)

(c)
=

(
1− 1

Nr

)U−1 ν∑
k=0

(
ν

k

)
(−1)ke

−Ak ξ yσ2
z

G0

∏
j∈L,N

EIj
Φ′
BS

[
exp

(
−Ak ξ y IjΦ′

BS

G0

)]
,

where (a) follows from the precoding penalty and the tight gamma approximation

previously defined, (b) follows from applying binomial expansion, and (c) follows

from the fact that interference links can be LOS or NLOS such that IΦ′
BS

=

ILΦ′
BS
+INΦ′

BS
. Substituting equation (3.45) into equation (3.44), we obtain the LOS

outage probability as

PL
out(ξ) =

(
1− 1

Nr

)U−1

pL

∫
y > 0

ν∑
k=0

(
ν

k

)
(−1)k e

−Ak ξ yσ2
z

G0

×
∏
j∈L,N

EIj
Φ′
BS

[
exp

(
−Ak ξ y IjΦ′

BS

G0

)]
fζ(y) dy. (3.46)

Following similar steps, we can derive the NLOS outage probability PN
out(ξ). Next,

to obtain the least path-loss distribution fζ , let Θ = {x =
|ν|αi
PRRH

, ν ∈ ΦRRH} with
intensity function λ where the subscript i of αi denotes whether the link is LOS or

NLOS. We find the intensity function λ and measure Λ of this process Θ that finds

the RRH with the least path-loss by utilising the mapping theorem introduced

in [92, Theorem 2.34] expressed as

Λ =

∫ P

1
αi
RRHx

1
αi

0

2πλRRHνdν,

= πλRRHP
2
αi
RRHx

2
αi , (3.47)
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and

λ =
d

dx
(Λ)

= πλRRH
2

αi
P

2
αi
RRHx

2
αi

−1
. (3.48)

Next, the distribution of the RRH with the least path-loss is obtain from the null

probability of a PPP and given as

fζ(x) = λRRH(x)e
−ΛRRH(x), (3.49)

Substituting the values of λ and Λ from equations (3.48) and (3.47) respectively,

we obtain the least path-loss distribution fζ given as

fζ(x) =
∏

j∈{L,N}

2pj
αj
πλRRHP

2
αj

RRH x
2
αj

−1
e−πpjλRRHP

2
αj
RRHx

2
αj
. (3.50)

To obtain the expectation of the LOS interfering link, we leverage results from

[42, Lemma 6], focusing on the single-path case. Thus, the expectation is given

as

EIL
Φ′
BS

[
exp

(
−Ak ξ y ILΦ′

BS

G0

)]
= EIL

Φ′
BS

 ∏
b∈Φ′

BS

exp

(
−Ak ξ y Gv xΥv

G0 r
αL
v

) , (3.51)
found by substituting ILΦ′

BS
=
∑

b∈Φ′
BS,v ̸=0Gv |ηb,v|2 r−αL

v and x = |ηb,v|2 . Applying
the probability-generating functional of PPP (PGFL) [92], we obtain

EIL
Φ′
BS

[
exp

(
−Ak ξ y ILΦ′

BS

G0

)]
=

exp

−2 π λRRH

∫ ∞

r

1− 1(
1 +

AkGv ξ yτ
2
RRH

G0 r
αL
v

)ν pLdr
 . (3.52)

The expectation for an NLOS interfering link can be obtained similarly. Finally,

the proof of outage probability from the best RRH in cluster G to the typical

UE is obtained by the summation of both LOS and NLOS outage probabilities,

respectively.
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3.5.2 NNP

We consider the RRH closest to the typical UE, which experiences outage when

the SINR is less than a predefined value.

Proposition 3.4. The outage probability of the RRH closest to the typical UE

considering the impact of inter-cluster interference is expressed as

PNNP
out (ξ) =

∑
j∈L,N

pj

(
1− 1

Nr

)U−1∫
r>0

ν∑
k=0

(
ν

k

)
(−1)k (3.53)

× e
−Ak ξ yσ2

z
G0

∏
j∈L,N

EIj
Φ′
BS

[
exp

(
−Ak ξ yIjΦ′

BS

G0

)]
fr(r) dr,

where y and ν are defined in equation (3.41) and fr is the PDF of the nearest

distance to the typical UE given as

fr(r) = 2 π λRRH r e
−λRRH π r

2

. (3.54)

Proof. The outage probability conditioned on the distance r from the nearest

RRH in the cluster to the typical UE averaged over the plane is defined as

PNNP
out|y(ξ) = E

[
P

[
G0 |ηk,0|2 y−1 ωp(Nr,U)

σ2
z + IΦ′

BS

< ξ|r

]]
. (3.55)

For the LOS link the conditional outage probability is then given as

PL
out|r(ξ) = E

[
pL P

[
G0 |ηk,0|2 r−αL ωp(Nr,U)

σ2
z + IΦ′

BS

< ξ|r

]]
, (3.56)

=

∫
r > 0

pL P

[
G0 |ηk,0|2 r−αL ωp(Nr,U)

σ2
z + IΦ′

BS

< ξ|r

]
fr(r) dr.

Since the small-scale fading, ηk,0 follows Rayleigh fading, |ηk,0 |2 follows chi-

squared distribution with 2(Nr−K) degrees of freedom, and employing the upper

bound of gamma distribution with parameter ν such that P
[
|ηk,0 |2 < γ < (1− e−Aγ)ν

]
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with A = ν(ν!)
−1
ν , the outage probability is expressed as

P

[
G0 |ηk,0|2 r−αL ωp(Nr,U)

σ2
z + IΦ′

BS

< ξ|r

]

= EIΦ′
BS

[
P
[
|ηk,0|2 <

ξ rαL

G0 ωp(Nr,U)
(σ2

z + IΦ′
BS
)|r, IΦ′

BS

] ]
,

(a)
=

(
1− 1

Nr

)U−1

EIΦ′
BS

[(
1− e−A

ξ

G0 rαL
(σ2

z+IΦ′
BS

)
)ν
|r, IΦ′

BS

]
,

(b)
=

(
1− 1

Nr

)U−1 ν∑
k=0

(
ν

k

)
(−1)ke

−Ak ξ r−αLσ2
z

G0 EIΦ′
BS

[
e
−

−Ak ξ r−αL I
Φ′
BS

G0

]
,(3.57)

(c)
=

(
1− 1

Nr

)U−1 ν∑
k=0

(
ν

k

)
(−1)ke

−Ak ξσ2
z

G0 rαL

∏
j∈L,N

EIj
Φ′
BS

[
exp

(
−Ak ξ IjΦ′

BS

G0 rαL

)]
,

where (a) follows from the precoding penalty and the tight gamma approximation

previously defined, (b) follows from applying binomial expansion, and (c) follows

from the fact that interference links can be LOS or NLOS such that IΦ′
BS

=

ILΦ′
BS

+ INΦ′
BS
. Next, substituting equations (3.57) and (3.54) into equation (3.56),

we obtain the LOS outage probability as

PL
out(ξ) =

(
1− 1

Nr

)U−1

2πλRRHpL

∫
r > 0

ν∑
k=0

(
ν

k

)
(−1)k e

−Ak ξσ2
z

G0 rαL

×
∏
j∈L,N

EIj
Φ′
BS

[
exp

(
−Ak ξIjΦ′

BS

G0 rαL

)]
re−λRRHπr

2

dr. (3.58)

By following similar steps, we can derive the NLOS outage probability as

PN
out(ξ) =

(
1− 1

Nr

)U−1

2πλRRHpN

∫
r > 0

ν∑
k=0

(
ν

k

)
(−1)k e

−Ak ξσ2
z

G0 rαN

×
∏
j∈L,N

EIj
Φ′
BS

[
exp

(
−Ak ξIjΦ′

BS

G0 rαL

)]
re−λRRHπr

2

dr. (3.59)

Finally, the proof of outage probability from the nearest RRH to the typical UE

can be obtained by the summation of both LOS and NLOS outage probabilities,

respectively.

Remark 3.2. Note that the throughput for both UE association scenarios in

noise-limited and interference-limited cases can be obtained by the direct appli-
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cation of the respective outage probabilities derived in sections 3.4 and 3.5 to

equation (3.28).

3.6 Network Latency

In this section, we investigate the average latency as a measure of the QoS of the

network.

3.6.1 Average rate

In order to compute the average latency, we need to characterise the average rate.

Therefore in this subsection we adopt the framework developed by the work in

[93] to evaluate average rate in terms of moment-generating functions (MGFs).

Thus, we present the average rate between the typical UE and its associated RRH

in the next proposition12 13

Proposition 3.5. The average rate between a typical UE and its associated RRH

is given as

R̄ =
(
1− 1

Nr

)U−1
∞∫
0

(1− LS(t)) LIΦ′
BS

(t)
e−t

t
dt, (3.60)

where S denotes the SNR and IΦ′
BS

represents the interference,

LS(t) =
ν∑
k=0

(
ν

k

)
(−1)k+1

(
1+

tG0

Ak rαL
k,0σ

2
z

)−1

pL+
ν∑
k=0

(
ν

k

)
(−1)k+1

(
1 +

tG0

Ak rαN
k,0σ

2
z

)−1

pN,

(3.61)

and

LIΦ′
BS

(t) =
∏
q∈L,N

pq exp

(
− 2πλRRH

∫ ∞

r

1−

(
1 +

Ak tGv r
αq

k,0

G0 r
αq
v

)−ν

dr

)
.

Proof. From the generalised expression for average rate in terms of MGFs

12Note that this proposition also holds for the noise-limited case when the interference is
equal to zero.

13It is important to note that although propositions 3.3-3.5 are not in closed form, they
give an approximation for their respective outage probabilities and average rate performances,
providing useful analytical insights into the performance of the mmWave CRAN system.
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[93],

R̄ =

∞∫
0

(1− LS(x))LIΦ′
BS

(x)
e−x

x
dx, (3.62)

where

S =
G0 |ηk,0|2 r

−αj

k,0

σ2
z

, (3.63)

and

IΦ′
BS
=
∑

b∈Φ′
BS,v ̸=0

Gv |ηb,v|2 r−αv

∑
v∈Uv

||aUE(θv,y,x)a
H
RRH(ϕv,y,x)||2. (3.64)

The MGF of S is obtained after following similar steps from the proof of

proposition 3.3 and is expressed as

LS(t) =
ν∑
k=0

(
ν

k

)
(−1)k+1

(
1+

tG0

Ak rαL
k,0σ

2
z

)−1

pL +
ν∑
k=0

(
ν

k

)
(−1)k+1

(
1 +

tG0

Ak rαN
k,0σ

2
z

)−1

pN.

In like manner, the MGF of the interference-to-noise ratio, LIΦ′
BS

(t) in equation

(3.62) is obtained using steps similar to equations (3.51)–(3.52). This concludes

the proof.

Remark 3.3. The analysis of this chapter focuses on the access links between

RRHs and UEs. However, it is worthy of mention that the fronthaul rate is

constant and dependent on digitised I and Q samples and the number of antennas

as described in section 4.4.1 of [94], and is given as

RFH = 2γfsNANq, (3.65)

where the factor 2 accounts for I and Q phases of the signal, γ represents the over-

head introduced by FEC and control signals, NA is the number of antennas, and

fs and Nq are the sampling frequency and resolution of the quantiser, respectively.

3.6.2 Traffic latency

In this subsection, we utilise the queuing theory model described in 3.2.4 to

analyse the delay in data delivery from BBU to UE0.
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3.6.2.1 Access link latency

In the network, where an RRH is connected to different UEs, if we assume that

each UE connected to an RRH is served in a round-robin manner, and denote

the coverage area of all RRHs as B, then the average traffic load density at UE0

from RRHk is defined as

δ(0) =
λ0 κ0
R̄0

, (3.66)

where 0 denotes the origin of the cluster where UE0 is located, R̄0 is the access

link rate defined in equation (3.60), and κ0 is the traffic load of UE0 associated

with RRHk given by

κ0 =
λ0
µ0

, (3.67)

where λ0 is the arrival rate per unit area and µ0 is the average number of requested

volumes (average traffic load).

Therefore, the total traffic load in RRHk is expressed as

Dk =

∫
B
δ(x) dx, (3.68)

where x denotes the location of the UE connected to RRHk and δ(x) denotes

the average traffic load density of the UE at location x. Next, computing the

required service time to satisfy the demands of UE0, we have

ν0 =
κ0
R0

. (3.69)

Given that traffic delivery in the access link emulates the M/G/1 queueing

model, the average traffic delivery time for UE0 in RRHk is given as [85]

Tk =
κ0

R0(1−Dk)
. (3.70)

At RRHk, the average waiting time for the traffic load of UE0 is obtained by

subtracting the required service time from the average traffic delivery time and

is expressed as

χk = Tk − ν0 =
Dk κ0

R0 (1−Dk)
; (3.71)

the latency in the access link of RRHk and UE0 is then calculated as the ratio of
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waiting time and service time. Accordingly,

Ψk =
χk
ν0

=
Dk

1−Dk

. (3.72)

3.6.2.2 Fronthaul-link latency

In the fronthaul link between the BBU and RRHk, the required time to satisfy

the traffic demand of UE0 is dependent on the fronthaul rate, RFH. Thus the

required time is expressed as

ν̂0 =
κ0
RFH

, (3.73)

where RFH is defined in equation (3.65). From the M/M/1 queueing model in

[85], the average wait time for UE0’s traffic load in RRHk’s fronthaul is defined

as

χ̂k =
D̂k κ0

RFH (1− D̂k)
, (3.74)

where D̂k is the total load in the fronthaul of RRHk. In this case, the latency

ratio to measure how much time UE0 waits per unit service time in the fronthaul

of RRHk is given as

Ψ̂k =
χ̂k
ν̂0

=
D̂k

1− D̂k

. (3.75)

Consequently, the traffic-delivery latency from BBU to UE0 via RRHk is given as

∆k = Ψ̂k +Ψk. (3.76)

Remark 3.4. Note that the latency ratio of the fronthaul link in equation (3.75)

is dependent only on the traffic load at the fronthaul of RRHk, implying that all

UEs associated with RRHk have the same latency ratio. Therefore, a smaller ∆k

would suggest that RRHk introduces a low latency to its associated UEs.

3.7 Numerical Results

This section provides numerical results to validate the system model and an-

alytical derivations from the aforementioned propositions. In Figs 3.3–3.7, we

show how the performance of the outage probability varies to system factors such

as RRH density, cluster radius, path-loss exponents and blockage density, while

Figs 3.9 and 3.10 illustrate the throughput and average latency performances.
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Table 3.1: Multi-user mmWave CRAN simulation parameters.

Notation Parameter Value
R Cluster radius 250 meters
NUE Number of UE antennas 2×2, 4×4 UPA
B Bandwidth 2GHz
Nr Number of RRH anten-

nas
4×4,8×8 UPA

NT Number of BBU anten-
nas

4×4, 8×8 UPA

K Number of UEs 4
pL, R Blockage model 0.1, 250 meters
PT Transmit power 30 dBm
λRRH Density of RRH nodes 6/1000π
α Path-loss exponent L-2, N-3.5
N0 Noise power −100 dBm

The parameters used for all the simulations, unless otherwise stated, are tabu-

lated in Table 3.1 with their corresponding values taken from literature mentioned

in the references. We evaluate the RRH intensity as λRRH =
Λ

πR2
, where Λ repre-

sents the average number of RRHs in a cluster of size πR2 with transmit power of

30 dBm and noise power of −100 dBm. A cluster radius of 250 m is considered.

Starting with the BCP scenario of the noise-limited case from equation (3.38),

Fig. 3.3 presents a plot of outage probability against SNR threshold, and we ob-

serve that with an increase in the required threshold, the probability of outage also

increases. However, as the average number of RRHs in the cluster is increased,

outage probability is reduced. We also show the validity of the approximations

used in the analysis of the outage probability by the small difference between

the simulation and analytical results. An interesting observation is the impact

of inter-cluster interference on the outage probability. This will subsequently be

explained from Fig. 3.6.

Next, we consider the effect of changing the cluster radius on outage probabil-

ity in Fig. 3.4. Here, we observe that increasing the radius does not increase the

outage probability for the best channel scenario. We may infer by this result that

there is a trade-off between cluster radius and outage performance in mmWave

CRAN, as smaller cluster radii lead to better performance. This can be used

in network planning by operators, especially in urban areas where many small
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Figure 3.3: Comparison between analytical and simulated BCP outage probabil-
ity in a noise-limited scenario under varying RRH densities.
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Figure 3.4: BCP outage probability against SNR in a noise-limited scenario for
varying cluster radii.

clusters can be formed.

Fig. 3.5 shows the comparison of outage probability in both noise-limited and
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Figure 3.5: Comparison of NNP outage probability for noise-limited and
interference-limited scenarios under different RRH densities.

interference-limited scenarios for NNP(i.e., comparing propositions 3.2 and 3.4.).

It is evident from the figure that for a given moderate number of blockages, the

outage probability is much less in the noise-limited regime when compared to the

interference-limited regime. It can also be observed that as the number of interfer-

ers is decreased (by the reduction in RRH node density), the performance in the

interference-limited scenario tends to that in the noise-limited regime. This out-

come indicates that in systems employing mmWave links, successful transmission

is largely dependent on blockage and nodal densities.

Fig. 3.6 shows that an increase in the average number of RRHs does not lead

to a decrease in outage probability from proposition 3.3. Although this result

appears to be counter-intuitive, it can be explained by the fact that increasing

the number of RRHs also increases the probability of interfering RRHs. We

establish by the small difference in outage probabilities between RRH intensities

in Fig. 3.6, a trade-off between outage performance and interference. It is also

evident from Fig. 3.6 that increasing the array size improves the performance,

leading to smaller outage probabilities.

In Fig. 3.7, we plot the outage probability as a function of SINR threshold.

In measuring the effect of path loss on the transmission from the best channel to

a typical UE, we observe that outage probability decreases with reducing α. We
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Figure 3.6: Comparison of BCP outage probability in an interference-limited
scenario under different RRH densities and number of antennas.

may thus deduce that increasing the value of the path-loss exponent will degrade

communication.

Next, Fig. 3.8 illustrates the outage probability of the BCP and NNP scenarios

against SINR threshold comparing propositions 3.3 and 3.4. It is clear that BCP

always outperforms NNP. For example, to achieve an SINR threshold of 20 dB

when RRH density is 0.0001, the outage probabilities for BCP and NNP are 0.25

and 0.8, respectively. Although NNP is considered in some CRAN applications

for the reduction of overhead in the selection process, it is worthwhile to note

that in multi-user mmWave CRAN systems we opt for the best channel selection

process for better transmission due to the big difference between NNP and BCP

performances.

Fig. 3.9 illustrates the throughput performance of BCP and NNP schemes

against SINR threshold by applying equation (3.28). In Fig. 3.9, we show the

comparison of throughput performance for both BCP and NNP scenarios. Follow-

ing from the result that increasing the number of RRHs can cause a degradation

in communication between either the best or nearest RRH and the typical UE,

the throughput performance for an RRH intensity of 0.0001 is better than that

for an intensity of 0.0005 in both cases. Furthermore, Fig. 3.9 shows that BCP
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Figure 3.7: Comparison of BCP outage probability in an interference-limited
scenario with varying path-loss exponents.
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Figure 3.8: Outage probability comparison of BCP and NNP in an interference-
limited scenario.

significantly outperforms NNP. To achieve an SINR of 20 dB, the BCP through-

put for λRRH = 0.0001 is 5 bits/Hz while that of NNP is 1.3 bits/Hz; this confirms
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the results of Fig. 3.8. Note that there exists an optimal value of throughput as

shown by the shape of the curves in Fig. 3.9, with the implication that increas-
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ing SINR does not indefinitely lead to better performance. Determination of the

optimal point can be explored in future works.

Having seen the effect on increasing the number of RRHs on outage prob-

ability, we now determine the impact of varying RRH density on the average

data-delivery latency in the network. Hence, Fig. 3.10 is plotted for different val-

ues of λRRH obtained from equation (3.76). We observe that increasing the RRH

density leads to a rise in average latency. This outcome, although unexpected, is

not so unusual given that an increased number of RRHs implies a larger traffic

load at the fronthaul queue, leading to more latency. In addition, we also observe

that increasing the antenna gain, which in turn increases the fronthaul and ac-

cess link rates, leads to reducing the latency. It is important to note that at low

RRH density, the latency for both antenna gains are almost equal due to the fact

that when the traffic load is small, there is no significant gain in increasing the

fronthaul or access link rate. In other words, the impact of fronthaul and access

link rates are negligible for small traffic loads.

3.8 Conclusion

In this chapter, we studied the performance of a system that couples mmWave

and CRAN (mmWave CRANs) for future-generation communication. We con-

sidered the downlink scenario of multiple distributed RRHs and a BBU in a

multi-user system employing mmWave technologies such as hybrid beamforming

in both fronthaul and access links. Analytical expressions for outage probabil-

ity and throughput were derived for two UE association scenarios, namely, BCP

and NNP. These analytical expressions provide a means of measurement for the

performance of a mmWave CRAN system. We considered two cases to model

the practical deployment of mmWave CRANs networks; namely, (a) noise-limited

and (b) interference-limited. In addition, we analysed the impact of the fronthaul

rate on the average data-delivery latency in the system. These analytical expres-

sions were validated by simulations in the section of numeral results. Specifically,

our results showed that there exists a trade-off between RRH deployment (mea-

sured by the density) and inter-cluster interference. Additionally, we showed that

deploying larger antenna arrays can compensate for the degradation of commu-

nication in terms of delivery latencies, throughput and outage probabilities with

higher RRH deployment. This can be exploited by engineers in practice for the
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maintenance of high performance. We also showed that in highly dense urban

environments, there can be a positive impact of increased blockages and path-loss

exponents on outage probability and throughput in a highly dense deployment .

For the UE association scenarios, our results clearly showed that BCP scenarios

grossly outperform the NNP scenarios. Despite the attractiveness of NNP in ex-

isting literature, based on its reduction in overheads compared to other scenarios,

the BCP is shown to be more viable for multi-user mmWave CRAN systems.
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Chapter 4

Energy-efficient transceiver

design in mmWave systems

4.1 Introduction

In Chapter 3, we presented a functional network architecture for the multi-user

mmWave cellular communication with hybrid beamforming and analysed its per-

formance. In this chapter, we propose energy-efficient hybrid beamformers which

enable us to address the energy-efficiency concerns in the practical implemen-

tation of mmWave systems, both in the combination of mmWave and massive

MIMO (outlined earlier in section 2.1.1), and in the mmWave-connected devices.

Recent years have seen a paradigm shift in the definition of connected devices,

and as a result one of the requirements of future wireless networks is that they

must be robust to exponential increases in the number of connected devices [95].

IoT is an emerging, paradigm-shifting technology that enables the connectivity of

physical things in a network, so that communication is possible between devices

such as cars, bicycles, speakers, headphones, fitness trackers, etc. With appli-

cations in many different sectors, such as healthcare, transportation, industry

and home automation, IoT will form an integral part of future wireless networks

[27, 96]. However, providing such interconnectivity will require a network with

enormous amounts of bandwidth to support the exponentially increasing number

of connected devices.

Work in this chapter is under minor revision for publication in IEEE Transactions on Green
Communications and Networking, January 2019.
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Appropriately, the large amounts of unused/moderately used bandwidths in

the mmWave spectrum can be used to achieve IoT communication. In other

words, the mmWave spectrum has the potential to provide a significant increase

in capacity and support millions of connected devices with high reliability and

reduced latency [3]. Based on the facts that mmWave systems require large

antenna arrays to achieve high quality communication [13, 21], and that IoT

devices are mostly energy-constrained, it becomes infeasible to employ digital

processing (requiring an RF chain per antenna) for IoT communications at such

frequencies. Consequently, hybrid precoding and combining (a general overview of

which was provided earlier in section 2.3.2) can be utilised in IoT communications.

Within this context, in this chapter we consider a hybrid transceiver design

problem with both perfect and imperfect CSI considerations for mmWave com-

munications involving IoT devices. In general, the efficiency of a communication

system is measured in terms of spectral efficiency (SE). This metric evaluates how

the frequency spectrum is being utilised and, as such, most prior work on design-

ing the hybrid precoders in mmWave communication [21, 28, 42, 80, 97, 98, 82]

focus on SE maximisation using iterative maximisation or minimisation algo-

rithms. However, if we consider the fact that IoT devices are more constrained

in energy than capacity, the above design methodologies can be considered lim-

ited since they provide no insight on the efficiency of energy consumption in the

network.1 Nevertheless, some recent works on hybrid precoding do consider en-

ergy efficiency (EE) as a design criteria [43, 82, 99]. However, they do so by

implementing a partially-connected structure, using a reduced number of phase

shifters, and providing algorithms that reduce the rate loss characteristic of the

structure. Our work differs from theirs in that we investigate the non-trivial

fully-connected hybrid transceiver design for EE maximisation in mmWave IoT

networks. It is important to note that although the partially-connected hybrid

tranceiver design is less complicated than the fully-connected structure, it incurs

a significant capacity loss of N log2N bits/s/Hz [43]. Therefore, designing an

energy-efficient fully-connected hybrid transceiver is of interest and is the focus

of this work.

Furthermore, a commonality among the aforementioned studies on hybrid

transceiver design is the assumption of ideal hardware. In practice however,

low-power circuits, which are more sensitive to hardware impairments, are de-

1The terms “network” and “system” are used interchangeably throughout this chapter; both
represent the same thing.
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ployed at the transceivers of mmWave systems for cost-effective implementa-

tion of large-scale antenna arrays. In such cases, signal processing in the dig-

ital domain fails to eliminate the impairments that arise from quantization er-

rors, in-phase/quadrature (I/Q) imbalance, non-linearities in the amplifiers and

mutual coupling between antenna ports [100, 101]. Therefore, robust mmWave

transceiver designs which take into consideration the hardware impairments im-

pacting the system’s performance are of considerable interest.

To this end, in this chapter, we focus on the robust hybrid transceiver design

for EE maximisation in mmWave interference channels involving IoT devices.

We propose a two-stage algorithm to obtain the near-optimal hybrid transceiver

design solutions. In the first stage, we first transform the hybrid transceiver prob-

lem into its univariate equivalent and propose a two-layer algorithm for solving

the univariate problem. For the inner layer, we transform the fractional objective

function into a subtractive equivalent, and exploit the relationship between WSR

and WMMSE problems to solve efficiently for the optimal precoders and com-

biners, while in the outer layer, we apply a one-dimensional bisection search to

determine the optimal EE parameter. On the other hand, in the second stage, we

separate the design of the hybrid precoders and combiners into two sub-problems

and adopt an orthogonal matching pursuit approach to solve each optimisation

sub-problem. This technique is guaranteed to converge and has been proven to

work for WSR maximisation in mmWave systems [28, 42, 97]. Furthermore, the

hybrid transceiver design is improved to account for imperfect CSI based on the

stochastic error modelling. The main distinctions of this chapter are summarised

in terms of design guidelines, as follows.

• The power-constrained nature of ubiquitous smart devices make EE a cru-

cial design criteria in IoT communication. In a mmWave interference chan-

nel involving IoT devices, the problem is further elevated by the inter-device

interference. Thus, we consider the non-trivial EE maximisation transceiver

design problem.

• In hybrid transceivers, which combine both analog and digital processing,

additional constraints involving multiple variables as well as the non-convex

constraints on the analog precoders must be considered.

• In a mmWave IoT network, the quality of communication, affected by

the inevitable transceiver impairments, strongly relates to the EE per-
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formance/design of the system. In this regard, we consider an accurate

transceiver model that accounts for the transmitter and receiver distortions.

• In IoT networks, the achievable EE may be affected by the inevitable CSI

errors at the transmitters. Hence, it is important to look at the resilience

of the transceiver designs for error-prone CSI estimates at the transmitter.

The rest of this chapter is organised as follows. Section 4.2 presents some pre-

liminaries including the system model, power consumption model and EE max-

imisation problem formulation. Section 4.3 provides the equivalent EE univari-

ate problems and solutions. In Section 4.4, we tackle the hybrid precoder and

combiner sub-problems and provide insights on the complexity of the proposed

algorithms, while in section 4.5, we provide the robust transceiver designs un-

der imperfect CSI considerations. Numerical results are presented in section 4.6.

Finally, section 4.7 presents the conclusion of the chapter.

4.2 Preliminaries

4.2.1 System model

We consider K–user interference channels consisting of 2K mmWave IoT devices,

K of which are transmitting while the other K represents the receiving devices.

For simplicity, we assume that each transmitting device is equipped with a hybrid

processor and is paired with a single receiving device in a one-to-one mapping as

illustrated in Fig. 4.1. Specifically, each transmitter with NT antennas and NRF
T

RF chains communicates with its corresponding receiver with NR antennas and

NRF
R RF chains by sendingNs independent data streams. The conditions to enable

multi stream communication and satisfy the degrees of freedom of interference

networks are described by [102]

Ns = min(NRF
T , NRF

R ), (4.1)

Ns ≤ NRF
T ≤ NT, (4.2)

Ns ≤ NRF
R ≤ NR. (4.3)

The hybrid processor at the transmitting device j consists of an NRF
T × Ns

baseband precoder Vj,BB, and an NT×NRF
T RF precoder Vj,RF, as illustrated in

Fig. 4.2. Hence, the transmitted signal from device j is given by
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Figure 4.1: An illustration of a mmWave interference channel involving K pairs
of IoT devices, where solid black lines represent direct links and the dashed red
lines denote interfering links.

xj = Vj,RFVj,BBsj, (4.4)

where sj ∈ CNs×1 denotes the transmit data vector, which is assumed to be com-

plex with zero mean and unit variance, i.e., sj ∼ CN (0, INs), and ∥Vj,RFVj,BB∥2F ≤
Pj. Here, Pj represents the transmit power of the jth device.

The channel output at the receiving device j is given by

yj = Hj,j

(
xj + ηj

)
+

K∑
k ̸=j

Hk,j (xk + ηk) + ξj + zj, (4.5)

where yj ∈ CNR×1 is the received signal, xj ∈ CNT×1 is the transmitted signal from

device j and xk ∈ CNT×1 is the interference received from device k. Furthermore,

Hk,j ∈ CNR×NT represents the mmWave channel matrix from the transmitting

device j to receiver k, and zj ∈ CNR×1 denotes the circularly symmetric AWGN

with zero mean and variance σ2
z . In addition, we have considered the hardware

impairments which are unavoidable in practical mmWave transceivers in equation
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Figure 4.2: An illustration of hybrid processing between the jth transmit–receive
pair.

(4.5). Accordingly, at the transmitter, ηj ∈ CNT×1 denotes the transmit distor-

tion, which encompasses the effects of non-linearities in the DAC, phase noise

and additive power-amplifier noise. The covariance matrix of ηj is proportional

to the energy of the desired signal xj. In particular, ηj is modelled as [103, 104]

ηj ∼ CN
(
0, κ diag

(
Vj,RFVj,BBV

H
j,BBV

H
j,RF

))
, ηj ⊥ xj, (4.6)

where ⊥ denotes statistical independence, and κ ≪ 1 is the level of impairment

at the transmitter [105] .

Similarly, at the receiver, ξj represents receive distortions which approximate

the combined effects of the non-linearities in the ADC, phase noise and additive

gain control noise. The covariance matrix of ξj is given by β times the energy of

the undistorted received signal at device j, with β ≪ 1. Hence, ξj is modelled as

ξj ∼ CN (0, β diag (Υj)) , ξj ⊥ uj, (4.7)

where uj is the undistorted received signal at device j, given as uj = yj−ξj, and

Υj = cov{uj} and β represents the level of impairment at the receiver.

We also assume that the receive devices are equipped with hybrid processors.
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Hence, the received signal at device j is processed through an NR × NRF
R RF

combiner Wj,RF followed by an NRF
R ×Ns baseband combiner Wj,BB. Thus, the

output signal at the receiving device j is given by

ŝj = WH
j,BBW

H
j,RFyj

= WH
j,BBW

H
j,RFHj,j

(
Vj,RFVj,BBsj + ηj

)
(4.8)

+WH
j,BBW

H
j,RF

K∑
k ̸=j

Hk,j (Vk,RFVk,BBsk + ηk) +WH
j,BBW

H
j,RF

(
ξj + zj

)
= WH

j,BBW
H
j,BBHj,jVj,RFVj,BBsj +mj, (4.9)

where mj is the interference plus noise term, given as

mj = WH
j,BBW

H
j,RFHj,jVj,RFVj,BBηj +WH

j,BBW
H
j,RF

(
ξj + zj

)
+ WH

j,BBW
H
j,RF

K∑
k ̸=j

Hk,j (Vk,RFVk,BB sk + ηk) . (4.10)

Considering the perfect CSI case, where perfect channel knowledge is available

at the transmitting nodes, the achievable spectral efficiency of receive device j is

given as

Sj = log|INs +WH
j,BBW

H
j,RFHj,jVj,RFVj,BBV

H
j,BBV

H
j,RFH

H
j,jWj,RFWj,BBR

−1
j |,
(4.11)

where R−1
j is the covariance matrix of mj, given as2

Rj = κWH
j,BBW

H
j,RFHj,jdiag

(
Vj,RFVj,BBV

H
j,BBV

H
j,RF

)
HH
j,jWj,RFWj,BB

+ WH
j,BBW

H
j,RF

K∑
k ̸=j

[
Hk,jVk,RFVk,BBV

H
k,BBV

H
k,RFH

H
k,j

]
Wj,RFWj,BB

+ κWH
j,BBW

H
j,RF

K∑
k ̸=j

[
Hk,jdiag

(
Vk,RFVk,BBV

H
k,BBV

H
k,RF

)
HH
k,j

]
Wj,RFWj,BB

+ βWH
j,BBW

H
j,RFdiag

(
Hj,jVj,RFVj,BBV

H
j,BBV

H
j,RFH

H
j,j

)
Wj,RFWj,BB

+ βWH
j,BBW

H
j,RF

K∑
k ̸=j

[
diag

(
Hk,jVk,RFVk,BBV

H
k,BBV

H
k,RFH

H
k,j

)]
Wj,RFWj,BB

+ σ2
zW

H
j,BBW

H
j,RFWj,RFWj,BB, (4.12)

2The terms including the multiplication of κ and β have been neglected in equation (4.12)
since κ≪ 1 and β ≪ 1.
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and the corresponding sum spectral efficiency is given as

R =
K∑
j=1

Sj. (4.13)

The imperfect CSI case will be considered in section 4.5.

4.2.1.1 Channel model

The mmWave propagation environment is characterised by limited scattering

due to high free-space path-loss. Hence, a narrowband clustered model, which is

based on the Saleh–Valenzuela model, where each scatterer contributes to a signal

propagation path, can be accurately used to describe the mmWave channel [30].

Thus, the mmWave channel matrix Hk,j is expressed as

Hk,j =

√
NTNR

NclNp

Ncl∑
l=1

Np∑
k=1

α
(k,j)
l,k aR(ϕ

l,k
k,R, θ

l,k
k,R)a

H
T (ϕ

l,k
j,T, θ

l,k
j,T), (4.14)

where Ncl and Np denote the number of scattering clusters and number of paths

per cluster, respectively, and α
(k,j)
l,k represents the complex gain of the kth path

in the lth cluster. We assume α
(k,j)
l,k to be Rayleigh-distributed, i.e., α

(k,j)
l,k ∼

CN (0, σ2
α,l), where σ2

α,l is the average power in the lth cluster. ϕl,kk,R and θl,kk,R
denote the azimuth and elevation AoAs at receive device k, while ϕl,kj,T, and θ

l,k
j,T

are the corresponding AoDs at transmit device j. Finally, aT and aR represent

the transmit and receive antenna array response vectors, respectively.

We consider UPAs to model the array response vector which takes into account

the azimuth and elevation angles and enables three-dimensional (3D) beamform-

ing. In particular, at transmit device j, the array response vector is given by

aT(ϕj,T, θj,T) =
1√
NT

[
1, e

i2
π

λ
d(a sin(ϕj,T) sin(θj,T)+b cos(θj,T))

,

. . . e
i2
π

λ
d((A−1) sin(ϕj,T) sin(θj,T)+(B−1) cos(θj,T))

]
, (4.15)

where λ denotes the wavelength, d represents the distance between antenna el-

ements, and 0 ≤ a ≤ A and 0 ≤ b ≤ B are the indices of antenna elements in

the 2D plane with NT = AB. The array response vector of the receive device k
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follows a similar representation and is expressed as

aR(ϕk,T , θk,T ) =
1√
NR

[
1, ei2

π
λ
d(a sin(ϕk,R) sin(θk,R)+b cos(θk,R)),

. . . ei2
π
λ
d((A−1) sin(ϕk,R) sin(θk,R)+(B−1) cos(θk,R))

]
. (4.16)

4.2.1.2 Power consumption model

To calculate the EE effectively, we consider power consumption at the transmitter

using the linear power model in [106]. The power consumption at the receiver side

is neglected since in downlink transmissions, the power consumed by transmitter

takes main possession [107, 108]. Thus, the power model at the transmitter side

of a mmWave system can be given by

Ptotal = ϑPT + PC , (4.17)

where ϑ ≥ 1 denotes the inefficiency of the power amplifier and is dependent on

the design and implementation of the power amplifier, and PT is the transmitted

power, which is expressed as

PT =
K∑
j=1

∥Vj,RFVj,BB∥2F . (4.18)

The circuit power consumption PC is independent of PT and composed of two

parts: the dynamic power Pdyn and the static power Psta. Pdyn in a hybrid

architecture describes both the power consumed by the phase shifters and the

power radiation to the components of all RF chains in the circuit, e.g., mixers,

local oscillators, DACs and frequency synthesizers. Accordingly,

Pdyn =
K∑
j=1

N j,RF
T PRF +Nj,PSPPS, (4.19)

where PRF is the power consumed by components of the RF chain, which depends

on the number of RF chains, and PPS is the power consumed by the phase shifters

i.e., the power required for excitation of the phase shifters and also to compensate

for insertion losses [109]. The number of phase shifters for a fully connected

hybrid architecture is given as NPS = NTN
RF
T . Furthermore, Psta is the static

circuit power independent of the number of transmit antennas and describes the
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power consumed by the cooling system, power supply and baseband processors.

4.2.1.3 Problem formulation

The EE metric is defined as the ratio of the WSR and the total power consump-

tion, and is expressed as

EE(VRF,VBB,WRF,WBB) = (4.20)
K∑
j=1

φjSj(VRF,VBB,WRF,WBB)

K∑
j=1

[
ϑ∥Vj,RFVj,BB∥2F +N j,RF

T PRF +Nj,PSPPS + Psta

] ,
where φj is the weight used to denote the priority of device j in the system.

Throughout this work, the EE is measured in bits/J/Hz.

Our analysis is concerned with the EE maximisation as a design criteria for

obtaining the near-optimal hybrid precoders and combiners. Hence, the EE max-

imisation problem is formulated as

max
VRF,VBB,WRF,WBB

EE(VRF,VBB,WRF,WBB) (4.21a)

s.t. WRF ∈ WRF (4.21b)

VRF ∈ VRF (4.21c)

∥Vj,RFVj,BB∥2F ≤ Pj, ∀ j, (4.21d)

where Pj is the transmit power constraint at device j, WRF and VRF represent

the feasible RF combiner and precoder sets with constant-magnitude entries re-

spectively.

4.3 EE Maximisation

In this section, we focus on designing the mmWave hybrid precoders (VRF,VBB)

and combiners (WRF,WBB) in order to improve the network’s EE by solving

the problem described in equations (4.21a)–(4.21d). Note that the optimisation

problem (4.21a)–(4.21d) is non-convex due to the coupling of optimisation vari-

ables and the non-convex constraints in equations (4.21c) and (4.21d). Hence,

it is difficult to obtain a tractable optimal solution of the joint problem in its
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current state. To this end, we will first transform the problem into an equivalent

univariate joint optimisation problem and then, employ an alternating maximi-

sation algorithm. Afterwards, the near-optimal mmWave hybrid precoders will

be achieved by minimising the Euclidean distance between the optimal univari-

ate precoder and the multivariate precoders. Finally, the hybrid combiners will

be obtained by the minimisation of the minimum mean squared error (MMSE)

between the transmitted and received signals.

4.3.1 Univariate EE maximisation

The equivalent univariate EE maximisation problem is computed by letting the

product of the hybrid precoders VRFVBB = V, where V ∈ CNT×Ns , and the

multiplication of the hybrid combiners WRFWBB = W, where W ∈ CNR×Ns .

Accordingly, the problem (4.21a)–(4.21d) can be reformulated by assuming fixed

analog precoders and combiners [82] and expressed as

max
V,W

EE(V,W) (4.22a)

s.t. tr
{
VjV

H
j

}
≤ Pj, ∀ j, (4.22b)

where EE(V,W) is expressed as

EE(V,W) =

K∑
j=1

φj log
∣∣INs +WH

j Hj,jVjV
H
j H

H
j,jWjR

−1
n,j

∣∣
K∑
j=1

[
ϑtr
{
VjVH

j

}
+N j,RF

T PRF +Nj,PSPPS + Psta

] , (4.23)

where Rn,j is given as

Rn,j ≈ κWH
j Hj,jdiag

(
VjV

H
j

)
HH
j,jWj +WH

j

K∑
k ̸=j

[
Hk,jVkV

H
k H

H
k,j

]
Wj

+ κWH
j

K∑
k ̸=j

[
Hk,jdiag

(
VkV

H
k

)
HH
k,j

]
Wj + βWH

j diag
(
Hj,jVjV

H
j H

H
j,j

)
Wj

+ βWH
j

K∑
k ̸=j

[
diag

(
Hk,jVkV

H
k H

H
k,j

)]
Wj + σ2

zW
H
j Wj. (4.24)

We note that the transformed EE maximisation problem (4.22a)–(4.22b) is not

jointly convex over the precoding matrix V and combining matrix W but it is
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component-wise convex overV andW. Consequently, we will employ an iterative

algorithm method to obtain the efficient solutions of V and W. In particular,

we update the precoding matrix V when the combining matrix W is fixed, and

then, with V obtained from the previous step, we update the combining matrix

W. This alternating maximisation process continues until convergence or a pre-

defined number of iterations is reached. Under a fixed receive combining matrix

W, the EE is given by

EE(V) =
f1(V)

f2(V)
,

=

K∑
j=1

φjIj(V)

K∑
j=1

[
ϑtr
{
VjVH

j

}
+N j,RF

T PRF +Nj,PSPPS + Psta

] , (4.25)

where Ij = log
∣∣INR

+ Σ−1
j Hj,jVjV

H
j H

H
j,j

∣∣ is the rate, and Σj is the covariance

matrix of the interference-plus-noise terms, given as

Σj ≈ κHj,jdiag
(
VjV

H
j

)
HH
j,j +

K∑
k ̸=j

Hk,j

(
VkV

H
k + κ diag

(
VkV

H
k

))
HH
k,j

+ β diag
(
Hj,jVjV

H
j H

H
j,j

)
+

K∑
k ̸=j

β
(
diag

(
Hk,jVkV

H
k H

H
k,j

))
+ σ2

zINR
.

(4.26)

Accordingly, the EE maximisation problem to compute the optimum precoding

matrix can be formulated as

max
V

EE(V) (4.27a)

s.t. tr
{
VjV

H
j

}
≤ Pj, ∀ j, (4.27b)

Nonetheless, the optimisation problem described by equations (4.27a)–(4.27b) is

still non-convex due to the fractional form of the objective function in equation

(4.25). Thus, we will exploit the relationship between the fractional and para-

metric programming problems to transform the fractional objective function into

its non-fractional equivalent [110].

Lemma 4.1. Let the maximum EE be denoted as g∗. Then, the optimal transmit
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precoding matrix Vopt can achieve g∗ = f1(Vopt)
f2(Vopt)

if and only if

max
V

f1(V)− g∗f2(V)

= f1(V
opt)− g∗f2(Vopt) = 0, (4.28)

provided that f1(V) ≥ 0 and f2(V) > 0.

Proof. The maximum EE can be expressed as

g∗ =
f1(V

opt)

f2(Vopt)
→ f1(V

opt)− g∗f2(Vopt) = 0 and, (4.29)

g∗ ≥ f1(V)

f2(V)
→ f1(V)− g∗f2(V) ≤ 0. (4.30)

From equation (4.29) and (4.30), we can conclude that max
V
f1(V)− g∗f2(V) = 0

when V = Vopt.

Hence, it can be deduced from Lemma 4.1 that any fractional objective func-

tion can be transformed into an equivalent function in subtractive form. Within

this context, for a given g, we rewrite the problem (4.27a)–(4.27b) as

max
V

K∑
j=1

φjIj(V)− gf2(V) (4.31a)

s.t. tr
{
VjV

H
j

}
≤ Pj, ∀ j. (4.31b)

Here, g can be treated as the EE parameter depicting the severity of high power

consumption, and the optimal solution of the problem (4.27a)–(4.27b) is achieved

when we determine the parameter g such that non-fractional problem (4.31a)–

(4.31b) is zero. Interestingly, if the value of g is zero then the transformed opti-

misation problem reduces to the WSR maximisation problem since
K∑
j=1

φjIj(V)

represents the WSR.

Despite the non-fractional transformation of (4.27a)–(4.27b), the resulting

optimisation problem (4.31a)–(4.31b) is still non-convex due to the coupling of

the variable V in Ij(V) and f2(V). To tackle this, we exploit the relationship

between the WSR andWMMSE [111, 112]. We first need to define the MSE which

will be employed in determining the relationship between WSR and WMMSE.
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Thus, the MSE matrix of the jth transmitter–receiver pair is given by

Mj =
(
WH

j yj − INs

) (
WH

j yj − INs

)H
+WjΣjW

H
j , (4.32)

where yj and Σj have been previously defined in equations (4.5) and (4.26),

respectively. The optimal receiver at device j is the MMSE receiver, which is

expressed as

Wj = VH
j H

H
j,j

(
Hj,jVjV

H
j H

H
j,j +Σj

)−1
. (4.33)

Given the independence of the input signals and noises, and using an argument

parallel to that in [111, 112], we can establish an equivalence between the WSR

in equation (4.31a) and a corresponding MMSE one. Accordingly, the WMMSE

optimisation problem is formulated as

max
V,W,Q

f1(V,W,Q)− gf2(V) (4.34a)

s.t. tr
{
VjV

H
j

}
≤ Pj, ∀ j, (4.34b)

where

f1(V,W,Q) =
K∑
j=1

[
tr {QjMj} − φj log

∣∣∣∣ ln2φj Qj

∣∣∣∣− Nsφj
ln2

]
, (4.35)

in which Qj represents the MSE weight matrix associated with device j.

Theorem 4.1. The WMMSE problem described in equations (4.34a)–(4.34b) is

equivalent to the WSR problem in equations (4.31a)–(4.31b), since the solution

for the precoders obtained from solving both problems are identical.

Proof. The MSE matrix, Mj, can be obtained by substituting the receiver

Wj from equation (4.33) in equation (4.32). Next, considering equations (4.34a)–

(4.34b), it can be seen that for fixed V and W the weight matrix Qj is obtained

as

Qj =
φj
ln2

(
Ej(V)

)−1

, (4.36)

where Ej is the MSE matrix is given by

Ej = E
{(

WH
j yj − sj

) (
WH

j yj − sj
)H}

,

=
(
INs +VH

j H
H
j,jΣ

−1
j Hj,jVj

)
. (4.37)
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Now, substituting for Mj and Qj in equation (4.34a) and using the relationship

Ij(V) = log

∣∣∣∣(Ej(V)
)−1

∣∣∣∣, we obtain the WSR objective function in equation

(4.31a).

Note that the EE maximisation problem described in equations (4.34a)–(4.34b)

is not jointly convex in V, W or Q, but is separately convex for each variable.

Having obtained the optimal solutions for W and Q in equations (4.33) and

(4.36), respectively, we focus on determining the optimal solution of the precoder

V.

For fixed Q and W, the optimisation problem to obtain V is expressed as

max
V

K∑
j=1

[
−tr {QjMj} − gϑtr

{
VjV

H
j

}]
(4.38a)

s.t. tr
{
VjV

H
j

}
≤ Pj, ∀ j. (4.38b)

The Lagrange objective function of the problem (4.38a)–(4.38b) is given as

L =
K∑
j=1

[
−tr {QjMj} − gϑtr

{
VjV

H
j

}]
−

K∑
j=1

λj
[
tr
{
VjV

H
j

}
− Pj

]
, (4.39)

where λj ≥ 0 is the Lagrange multiplier associated with the transmit power

constraint. By setting ∂L
∂VH

j
= 0, we obtain the closed-form solution of the optimal

precoder as

Vj = (λjINT
+ gϑINT

+Φj)
−1HH

j,jW
H
j Qj, (4.40)

where Φj is defined as

Φj = HH
j,jW

H
j QjWjHj,j + κdiag

(
HH
j,jW

H
j QjWjHj,j

)
+ β HH

j,jdiag
(
WH

j QjWj

)
Hj,j. (4.41)

The Lagrange multiplier in equation (4.40) should either be positive or zero

and must satisfy

tr
{
VjV

H
j

}
=

NT∑
l=1

[Bj]l
([Dj]l + λj)

= Pj, (4.42)

where Bj = UH
j H

H
j,jW

H
j QjQ

H
j WjHj,jUj, and Dj is computed from the eigen-
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value decomposition of

(gϑINT
+Φj) = UjDjU

H
j . (4.43)

Further, [Bj]l denotes the lth element along the diagonal of Bj. Hence, we

numerically solve for λj by using linear search techniques [111].

Algorithm 4.1: WMMSE-based EE maximisation algorithm.

1 Set the iteration number n = 0 and Initialise Vj such that

tr
{
VjV

H
j

}
≤ Pj ∀ j

2 Set the EE parameter g = 0.
3 n← n+ 1 Update Wj ∀ j by solving (4.33).
4 Update Qj ∀ j using (4.36).
5 Compute Vj ∀ j by solving (4.34a)–(4.34b) .
6 Repeat steps 3–5 until convergence or a pre-defined number of iterates is

reached.
7 if f1(V,W,Q)− gf2(V) ≤ δ then
8 Stop the iterations.
9 else

10 g = f1(V,W,Q)
f2(V)

, and go to step 3.

11 end

12 end

4.3.2 Discussion

4.3.2.1 Convergence

The WMMSE-based alternating process used to solve the EE maximisation prob-

lem is presented in Algorithm 4.1 and should be run for every coherence time. The

algorithm increases the objective function monotonically at each step of the iter-

ations. In particular, the updates of W,Q,V in steps 3–5 maximise the objective

function (4.34a). As (4.34a) is upper-bounded by the transmit power constraint,

the algorithm is guaranteed to converge. In addition, given that (4.34a) is differ-

entiable, the convergence of equations (4.34a)–(4.34b) to a stationary point can

be proven using the dual-coordinate ascent method [113].
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4.3.2.2 Complexity analysis

In this subsection, we evaluate the complexity of the WMMSE-based EE maximi-

sation algorithm by counting the number of floating point operations (flops) in

each iteration. A flop is counted when either a complex summation or a complex

multiplication occurs. The complexity of standard matrix operations relevant to

our analysis are given as follows. Let R ∈ CM×N and S ∈ CN×N be the matrices

to be utilised, then the complexity involved in the following computations are

given as [114]

(1) matrix–matrix multiplication: R× S requires 2MN2 −MN flops,

(2) matrix inversion: S−1 requires N3 +N2 +N flops,

(3) matrix Hermitian–matrix multiplication: RHR requiresM(N2+N)−N2+N
2

flops,

(4) diagonal matrix multiplication: R diag (S) requires MN flops,

(5) scalar–matrix multiplication: cR requires MN flops.

Accordingly, the computational complexity involved in the evaluation of Al-

gorithm 4.1 is given as follows.

• The complexity involved in computing the receiver, i.e.,

Wj = VH
j H

H
j,j

(
Hj,jVjV

H
j H

H
j,j +Σj

)−1

is given as follows. The inverse function requires N3
R + N2

R + NR flops,

multiplication of the terms outside the inverse function requires 2NsN
2
R +

2NsNTNR − 2NsNR flops and multiplication of terms inside the inverse

function requires 2NT

(
NsNT +Ns − NT+1

2
+ 2NTNR + 2N2

R − 2NR

)
− 2N2

R

flops. Therefore, O (K(N3
R + 2N2

T(NR +Ns) + 4N2
RNT)) flops are required

to compute the optimal receive matrix W.

• For the weight matrix, Qj =
φj

ln2

(
Ej(V)

)−1

, the interference-plus-noise-

matrix, Σj, is already available since it was used in the calculation of Wj.

Thus, we only require N3
R+N

2
R+NR flops for the calculation of the inverse of

Ej(V), and 2NsNR

(
Ns +NT +NR − 1− Ns

2NR

)
flops for the multiplication in

Ej(V). Thus, O (K(N3
R + 2N2

RNs + 2N2
sNR)) flops are required to calculate

the optimal weight matrix.
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• For the precoder Vj = (λjINT
+ gϑINT

+Φj)
−1HH

j,jW
H
j Qj, the inverse

function requires N3
T +N2

T +NT flops, 2N2
sNR + 2NsN

2
R − 2NRNs − 2N2

R +

4NTN
2
R + 4N2

TNR − 2NRNT − 2N2
T flops are required to compute Φj and

2NsNT (NT +NR − 1) flops are required for multiplying the inverse func-

tion with the terms outside the inverse. Hence, the total number of flops

required for deriving the optimal V is O (K(N3
T + 4N2

TNR + 4N2
RNT)).

Remark 4.1. Note that although the complexity of the proposed algorithm to

obtain the energy-efficient precoder V is cubic in the number of transmit and

receive antennas, the application for communication between IoT devices puts a

contraint on the number of transmit and receive antennas to be used in each device

and as such the moderate complexity permits the use of the algorithm in this case.

4.4 EE Hybrid Transceiver Design

In mmWave communications, due to the hybrid nature of the transceivers, the

EE univariate precoders and decoders obtained from the analysis in section 4.3

cannot be directly applied to the system. Therefore, in this section, we present

the derivation of the energy-efficient hybrid precoders (VRF,VBB) for the trans-

mitting devices and the corresponding hybrid combiners (WRF,WBB) for the

receiving devices.

4.4.1 Design of hybrid precoders

The proposed hybrid precoders for the jth transmit device are designed by the

minimisation of the Euclidean distance between the optimal energy-efficient pre-

coder Vopt
j in equation (4.40) and the product of Vj,RF and Vj,BB. Using an

argument parallel to that of [28, 115], we can establish that the hybrid precoders

can be obtained by finding the projection of Vopt
j on to the hybrid precoders

Vj,RF and Vj,BB, with Vj,RF belonging to a feasible set of constant magnitude

entries. Therefore, we consider the following optimisation problem

min
VRF,VBB

∥Vopt
j −Vj,RFVj,BB∥F (4.44a)

s.t. Vj,RF ∈ Vj,RF, (4.44b)

∥Vj,RFVj,BB∥2F ≤ Pj. (4.44c)
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The problem described by equations (4.44a)–(4.44c) is non-convex due to the

constraint (4.44b) and it cannot be solved by standard optimisation tools. Ac-

cordingly, to deal with the non-convexity of equation(4.44b), we will follow the

method in [115] which chooses vectors from a set of candidate beamformers whose

elements can form the bases of Vopt. If we choose the array response beamform-

ers which are implemented by phase shifters, the problem (4.44a)–(4.44c) can be

reformulated as

min
VRF,VBB

∥Vopt
j −Vj,RFVj,BB∥F (4.45a)

s.t. [Vj,RF]l ∈ aT(ϕ
l,k
j,T, θ

l,k
j,T) ∀ l, k, (4.45b)

∥Vj,RFVj,BB∥2F ≤ Pj. (4.45c)

Next, we can insert the constraint (4.45b) directly into the objective function

(4.45a) to obtain the following equivalent problem as

min
VBB

∥Vopt
j −Aj,TVj,BB∥F (4.46a)

s.t.∥Aj,TVj,BB∥2F ≤ Pj. (4.46b)

∥diag
(
Vj,BBV

H
j,BB

)
∥0 ≤ NRF

T , (4.46c)

where Aj,T = [aT(ϕ
1,1
j,T, θ

1,1
j,T), . . . , aT(ϕ

Ncl,Np

j,T , θ
Ncl,Np

j,T )] is the array response matrix

with AoDs pointing to the desired user, and equation (4.46c) is the sparsity

Algorithm 4.2: OMP-based algorithm for energy-efficient hybrid pre-
coders.
1 Initialise Vj,RF and Vj,BB .

2 Set Vj,res = Vopt
j using (4.40).

3 for i ≤ NRF
T do

4 Ωj = AH
j,TVj,res

5 [value, index] = max
(
diag

(
ΩjΩ

H
j

))
6 k = index

7 Vj,RF =
[
Vj,RF|Ak

j,T

]
8 Vj,BB =

(
VH
j,RFVj,RF

)−1
VH
j,RFVj,res

9 Update Vj,res =
Vopt

j −Vj,RFVj,BB

∥Vopt
j −Vj,RFVj,BB∥F

10 end

11 Vj,BB =
Vj,BB

Vj,RFVj,BB
∥Vopt

j ∥F .
12 Return Vj,BB and Vj,RF.
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constraint.

The problem (4.46a)–(4.46c) takes the form of a sparse signal recovery problem

[116] and can be efficiently solved using the OMP methods [117]. The steps to

obtain the optimal energy-efficient hybrid precoders are outlined in Algorithm 4.2.

Note that steps 4–7 find the basis vectors ofAj,T that have the best representation

of Vopt
j , and the transmit power constraint is ensured in step 11 as Vopt

j has

already been designed in section 4.3 to satisfy the power constraint.

4.4.2 Design of hybrid combiners

The EE hybrid combiners at the receive device j are designed by the decomposi-

tion of the optimal MMSE receiver Wopt
j from equation (4.33) into the product

of Wj,RF and Wj,BB. This approach is based on minimising the MMSE between

the transmitted and received signal. Hence, a minimisation problem to obtain

the hybrid combiners can be formulated as

min
WRF,WBB

E{∥sj −WH
j,BBW

H
j,RFyj∥2} (4.47a)

s.t. Wj,RF ∈ Wj,RF. (4.47b)

If we assume Wj,RF is given, the problem (4.47a)–(4.47b) can be restated as

min
WBB

E{∥sj −WH
j,BBW

H
j,RFyj∥2}, (4.48)

which has the well-known least-squares solution

Wj,BB = WH
j,RF E{yjsHj }

(
WH

j,RF E{yjyHj }Wj,RF

)−1
. (4.49)

The problem (4.47a)–(4.47b) can be rewritten as

min
WRF,WBB

∥R1/2
yj ,yj

Wopt
j −R1/2

yj ,yj
Wj,RFWj,BB∥2F (4.50a)

s.t. Wj,RF ∈ Wj,RF, (4.50b)

whereWopt
j is given by equation (4.33),Ryj ,yj

= E{yjyHj },Rsj ,sj = E{sjsHj }, and
equation (4.50a) is derived by introducing tr{

(
Wopt

j

)H
Ryj ,yj

Wopt
j } − tr{Rsj ,sj}

into the objective function (4.47a). Note that since the terms
(
Wopt

j

)H
Ryj ,yj

Wopt
j

and Rsj ,sj are independent of WRF and WBB, the problems (4.47a)–(4.47b) and
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(4.50a)–(4.50b) share the same optimal solutions.

By following steps similar to the design of the hybrid precoders in section 4.4.1,

we can remove the non-convexity of the constraint (4.50b) by choosing the array

response vectors aR(ϕ
l,k
j,R, θ

l,k
j,R) ∀ l, k as the feasible set Wj,RF. Consequently, the

equivalent problem is stated as

min
WBB

∥R1/2
yj ,yj

Wopt
j −R1/2

yj ,yj
Aj,RWj,BB∥2F (4.51a)

s.t.∥diag
(
Wj,BBW

H
j,BB

)
∥0 ≤ NRF

R , (4.51b)

where Aj,R = [aR(ϕ
1,1
j,R, θ

1,1
j,R), . . . , aR(ϕ

Ncl,Np

j,R , θ
Ncl,Np

j,R )], and can be solved by the

OMP method, summarized in Algorithm 4.3. For each iteration, steps 4–7 selects

the column of R
1/2
yj ,yjAj,R most correlated to R

1/2
yj ,yjW

opt
j and appends it to Wj,RF.

Wj,BB is derived from the least-squares solution given in equation (4.49). After

NRF
R iterations, the optimal combiners Wj,RF and Wj,BB are found and problem

(4.47a)–(4.47b) is solved.

Algorithm 4.3: OMP-based algorithm for energy-efficient hybrid combin-
ers.
1 Initialise Wj,RF and Wj,BB .

2 Set Wj,res = Wopt
j using (4.33).

3 for i ≤ NRF
R do

4 Ωj =
(
R

1/2
yj ,yjAj,R

)H (
R

1/2
yj ,yjWj,res

)
5 [value, index] = max

(
diag

(
ΩjΩ

H
j

))
6 k = index

7 Wj,RF =
[
Wj,RF|Ak

j,R

]
8 Update Wj,BB using (4.49)

9 Update Wj,res =
Wopt

j −Wj,RFWj,BB

∥Wopt
j −Wj,RFWj,BB∥F

10 end
11 Return Wj,BB and Wj,RF.

4.4.3 Computational complexity

The following number of floating point operations are required in the evaluation

of Algorithm 4.2 to design the proposed hybrid precoders:

• the multiplication of AH
j,TVj,res in step 4 requires 2NRF

T NTNs−NRF
T Ns flops,
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• 2NRF
T N2

s +2NRF
T Ns−N2

s −Ns flops are required to compute diag
(
ΩjΩ

H
j

)
,

• computing the baseband precoder in step 8 requires
(
NRF

T

)3
+
(
NRF

T

)2
+

NRF
T + NT

(
2NRF

T NT + 2NRF
T −NT − 1

)
+ 2NRF

T Ns

(
NT +NRF

T − 1
)
flops,

and

• updating Vj,res in step 9 requires NTNs flops.

Therefore, the total number of flops required for computing the precoders

Vj,RF andVj,BB isO
(
K
((
NRF

T

)3
+ 2

(
NRF

T

)2
Ns + 2NRF

T N2
T + 2NRF

T N2
s

))
.

The computational complexity of the hybrid combiners in Algorithm 4.3 can be

obtained in a similar manner.

4.5 Imperfect CSI Considerations

In the previous sections, the near optimal EE maximisation based beamformers

were designed under the assumption of perfect CSI at the IoT nodes. In prac-

tice, however, it may not always be possible to obtain perfect CSI at all the IoT

nodes due to errors in channel estimation, quantisation errors and feedback delay,

amongst other factors. Therefore, in this section we investigate to what extent

the analysis can be extended for the imperfect CSI case. In particular, we con-

sider the design of robust hybrid beamformers which account for the fact that

the available channel knowledge would be based on estimates obtained from an

imperfect observation of the actual channel state.

In this regard, the imperfect channel is modelled as

Hj,j = Ĥj,j +∆j, (4.52)

Hk,j = Ĥk,j +∆k k ̸= j, (4.53)

where H and Ĥ denote the perfect and imperfect channels, respectively, and ∆

represents the CSI stochastic error, which is assumed to be independent of the

perfect channel and is distributed as

∆ ∼ CN (0, γI) , (4.54)

where γ represents the variance of the CSI error given by [118]

γ , τρ−ν τ > 0, ν ≥ 0, (4.55)
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with the parameters τ and ν denoting various instances of CSI acquisition and ρ

representing the signal-to-noise-ratio of the link given as

ρ = Pj∥Σ−1
j Hj,jVjV

H
j H

H
j,j∥F , (4.56)

where Σj is expressed as

Σj = κHj,jdiag
(
VjV

H
j

)
HH
j,j +

K∑
k ̸=j

Hk,j

(
VkV

H
k + κ diag

(
VkV

H
k

))
HH
k,j

+ β diag
(
Hj,jVjV

H
j H

H
j,j

)
+

K∑
k ̸=j

β
(
diag

(
Hk,jVkV

H
k H

H
k,j

))
+ σ2

zINR
,

(4.57)

indicating that the stochastic error is affected by the hardware impairments. Since

all the nodes have access to Ĥ instead of H, rather than focusing on the actual

achievable EE we consider the lower bound, EEL, where the estimation errors are

treated as noise [119]. Accordingly,

EEL(V) =
f1(V)

f2(V)

=

∑K
j=1 φjILj (V)∑K

j=1

[
ϑtr{VjVH

j }+N j,RF
T PRF +Nj,PSPPS + Psta

] , (4.58)

where ILj = log
∣∣INR

+ Σ̂
−1

j Ĥj,jVjV
H
j Ĥ

H
j,j

∣∣ is the rate and Σ̂j is defined as

Σ̂j = κĤj,jdiag
(
VjV

H
j

)
ĤH
j,j +

∑K

k ̸=j
Ĥk,j

(
VkV

H
k + κ diag

(
VkV

H
k

))
ĤH
k,j

+ β diag
(
Ĥj,jVjV

H
j Ĥ

H
j,j

)
+
∑K

k ̸=j
β
(
diag

(
Ĥk,jVkV

H
k Ĥ

H
k,j

))
+

(
σ2
z + fe

)
INR

, (4.59)

where fe reflects the effect of the imperfect CSI and is given by

fe ≈ γ (1 + κ+ β)
∑K

j=1
diag

(
VjV

H
j

)
. (4.60)
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Next, the EE maximization problem we want to solve is expressed as

max
V

EEL(V) (4.61a)

s.t. tr{VjV
H
j } ≤ Pj, ∀ j. (4.61b)

Similar to the perfect CSI case, we exploit the relationship between the fractional

and parametric programming problems to reformulate the problem as

max
V

∑K

j=1
φjILj (V)− gf2(V) (4.62a)

s.t. tr{VjV
H
j } ≤ Pj, ∀ j, (4.62b)

then we will solve this problem by transforming the WSR in equation (4.62a)

into an equivalent WMMSE one. This relationship is expressed by the following

theorem.

Theorem 4.2. The imperfect CSI error WSR problem in equations (4.62a)–

(4.62b) is equivalent to the WMMSE problem described in equations (4.63a)–

(4.63b) since the optimal solution for the precoders obtained from solving both

problems are identical.

max
V,W,Q

∑K

j=1

[
tr{QL

jM
L
j } − φj log

∣∣∣∣ ln2φj QL
j

∣∣∣∣− Nsφj
ln2

]
− gf2(V) (4.63a)

s.t. tr{VjV
H
j } ≤ Pj, ∀ j. (4.63b)

Proof. Using QL
j as defined in equation (4.64) and following steps analogous

to Theorem. 4.1, the proof can be obtained.

QL
j =

φj
ln2

(
EL
j (V)

)−1

, (4.64)

where EL
j is defined as

EL
j =

(
INs +VH

j Ĥ
H
j,jΣ̂

−1

j Ĥj,jVj

)
. (4.65)

Note that for the imperfect CSI problem, the optimal receiver at device j is given

by

WL
j = VH

j Ĥ
H
j,j

(
Ĥj,jVjV

H
j Ĥ

H
j,j +Gj +

(
σ2
z + fe

)
INr

)−1

, (4.66)
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where Gj is given by

Gj = κĤj,jdiag
(
VjV

H
j

)
ĤH
j,j +

∑K

k ̸=j
Ĥk,j

(
VkV

H
k + κ diag

(
VkV

H
k

))
ĤH
k,j

+ β diag
(
Ĥj,jVjV

H
j Ĥ

H
j,j

)
+
∑K

k ̸=j
β
(
diag

(
Ĥk,jVkV

H
k Ĥ

H
k,j

))
(4.67)

Comparable to the perfect case, we employ an alternating optimization method

to solve the stochastic CSI error problem described by equations (4.63a)–(4.63b).

Therefore, the optimal precoder at device j can be obtained for fixed QL
j and WL

j

using the Lagrangian approach. Therefore, we obtain

VL
j =

(
λLj INT

+ gϑINT
+ΦL

j

)−1
ĤH
j,jW

H
j Qj, (4.68)

where λLj is the Lagrangian multiplier associated with the stochastic CSI error

problem and ΦL
j is defined as

ΦL
j = ĤH

j,jW
H
j QjWjĤj,j + κ diag

(
ĤH
j,jW

H
j QjWjĤj,j

)
(4.69)

+ βĤH
j,jdiag

(
WH

j QjWj

)
Ĥj,j +

∑K

j=1
γ (1 + κ+ β) diag

(
WH

j QjWj

)
.

Next, having obtained the optimal precoder VL
j , the hybrid precoders and

combiners of the imperfect CSI error model, VL
j,RF and VL

j,BB, can be derived

by following similar steps to algorithms 4.2 and 4.3 of the perfect CSI case.

In addition, the convergence and complexity considerations of the perfect CSI

formulation are also applicable to the alternating optimization method applied

to solve the imperfect CSI error EE maximization problem in equations (4.62a)–

(4.62b).

4.6 Numerical Results

In this section, we provide numerical results to show the performance of the

proposed energy-efficient hybrid precoders and combiners, and we investigate the

EE for a mmWave MIMO IoT network as a function of the hardware impairment

parameters (κ, β) and the transmit power constraint for each device i.e., Pj ∀ j.
The results validate the analyses presented in sections 4.3 and 4.4.

Without loss of the generality, the parameters used in the simulations are

as follows. We set the same number of receive and transmit RF chains at each
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Figure 4.3: Convergence behaviour of Algorithm 4.1 for varying K IoT devices.

device i.e., NRF
R = NRF

T = NRF. We also assume an equal number of transmit and

receive antennas, i.e., NT = NR = N , and equal weights for each receive device,

i.e., φj = φ ∀ j. The initial values for the variables in the proposed algorithms are

randomly generated, convergence thresholds are set to 10−5, noise variance σ2
z is

fixed at 1, and all the results presented are averaged over 100 channel realizations.

Unless otherwise stated, some of the simulation parameters are: κ = β = −40
dB indicating a wide dynamic range [120, 121], NRF = 2, N = 4, ϑ = 1/0.32,

Ncl = 8, Np = 10, Ns = K and Pj = 40 dBm.

We begin by illustrating the evolution of the WMMSE-based EE maximisation

algorithm described by Algorithm 4.1 in Fig. 4.3. We set the dynamic circuit

power to PRF = 20 dBm and PPS = 0 dBm. The consumed static power is set to

Psta = 27 dBm. It can be seen from the figure that the alternating maximisation

process converges in 10–12 iterations when K = 2, whereas when K = 3 the

process converges in 13–15 iterations. Nevertheless, for both cases the monotonic

increase of the EE is verified.

Next, in Fig. 4.4, we analyse the effect of the transmit and receive distortions

on the mmWave IoT network. Accordingly, the EE is plotted with respect to

κ = β values. The settings for the dynamic and static power consumption of the

transmitting devices are maintained from Fig. 4.3. Here, we illustrate that high
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Figure 4.4: Comparison of EE achieved by transceiver design solutions with re-
spect to transmitter/receiver distortions, i.e., κ = β for K = 2 and K = 3.

distortions at the transmitter/receiver lead to a decrease in EE since the mmWave

system requires more power to achieve the transmission requirement. Moreover, it

can also be seen that our proposed hybrid transceiver design algorithm achieves

virtually the same EE as the optimal univariate design. To quantify this, the

hybrid transceiver design algorithm achieves up to 99% of the optimal univariate

performance. This result validates Algorithms 4.2 and 4.3. Furthermore, as can

be seen in Fig. 4.4, the EE maintained at low transmitter/receiver distortions is

about 0.58 bits/J/Hz for K = 2, which is slightly higher than the EE of 0.31

bits/J/Hz when K = 3. This outcome is due to the fact that the interference in

the system increases with an increase in the number of devices, which directly

affects the power allocation in the beamforming solution.

In Fig. 4.5, we compare the EE performance achieved by employing the hy-

brid transceiver design for two different designs when K = 2, namely (1) SE

maximisation and (2) EE maximisation. The SE maximisation can be achieved

by a slight modification to Algorithm 4.2. Specifically, when the EE parameter

g is not updated, steps 1–6 solve the WSR problem. Hence, Fig. 4.5 illustrates

the SE and EE performances with respect to maximum transmit power. It can
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Figure 4.5: Comparison of EE achieved by EE maximisation and SE maximisation
design criteria for K = 2.
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Figure 4.6: Comparison of SE achieved by EE maximisation and SE maximisation
design criteria for K = 2.

be observed that in the low transmit power regime, both designs result in equiv-

alent EE performance, i.e., an increase in the maximum transmit power yields a
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Figure 4.7: Comparison of EE achieved by EE and SE maximisation design so-
lutions with respect to circuit power consumption

corresponding rise in EE. However, the performances of the two designs diverge

drastically as the transmit power is increased. In particular, the EE resulting

from the SE maximisation design steadily decreases after achieving a maximum

value of approximately 0.7 bits/J/Hz at 25 dBm. This can be explained by the

fact that maximising the SE requires full transmit power, which then leads to

an increase in total power consumption. Conversely, the EE obtained from the

EE maximisation design remains constant beyond the peak value obtained at 25

dBm, as this design takes into account the total power consumption of the system.

In other words, the EE maximisation design guarantees that the optimal trans-

mit power is achieved. Additionally, the small gap in performance between the

results obtained by the optimal univariate transceiver design and that produced

by the proposed algorithms validates the hybrid transceiver design.

Next, for the sake of comparison, we evaluate the SE performance of the

system with respect to the maximum transmit power constraint in Fig. 4.6 for

both the EE and SE maximisation designs. A monotonic increase in the SE

performance is achieved by the SE maximisation design, in direct proportion to

the maximum transmit power. This result is expected since the SE maximisation

design fails to take into consideration the total power consumption of the system

and is just focussed on increasing the SE of the system. Thus, although a high
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Figure 4.8: EE achieved by the EE maximisation hybrid transceiver design with
respect to phase shifter power consumption.

transmit power implies high circuit power consumption, this is not accounted

for in this design. In contrast, the SE obtained by the EE maximisation design

increases until the optimal transmit power is achieved, then it remains constant

irrespective of further increase in the transmit power. Specifically, after 25 dBm,

which is the maximum transmit power for the system, the spectral efficiency

saturates at around 2 bits/s/Hz. Hence, we illustrate by this result that if the

maximum transmit power is higher than the optimal transmit power for a given

system, the EE maximisation design ensures that transmission happens at or

below the optimal power so as to provide the maximum EE. This result highlights

the benefits of the proposed optimal EE maximisation design in mmWave IoT

networks.

In Fig. 4.7, we evaluate the EE performance of both designs with respect to

the power consumed by the RF components of the system (i.e., RF chains). We

set the dynamic power consumed by the transmitters to PRF = 20 dBm and

PPS = 0 dBm, the static power to Psta = 27 dBm, the number of devices K = 2,

and the maximum transmit power, Pj = 40 dBm. It can be seen that the hybrid

transceiver design based on EE maximisation produces better EE performance

than the results from the SE maximisation design, especially for low circuit power

consumption. However, the EE performance of both the designs at high circuit
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Figure 4.9: Complexity comparisons of univariate and proposed hybrid
transceiver designs with respect to (a) number of antennas and (b) number of
devices.
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power consumption becomes identical. This is due to the fact that when the

total power consumed is mostly the circuit power, maximising the EE becomes

equivalent to the maximisation of SE.

In Fig. 4.8, we analyse the impact of the power consumption of the phase

shifters on the EE of the mmWave IoT system. The settings of the dynamic and

static power consumption, and maximum transmit power are maintained from

Fig. 4.7. Here, we observe that an EE of around 0.6 bits/J/Hz is sustained for low

phase shifter power consumption. However, the EE decreases with an increase

in the phase shifter power consumption. This result suggests that low power

phase shifters are required in practical mmWave IoT systems for energy-efficient

operation. In addition, the identical EE performance of both transceiver designs

suggests that the contribution of the phase shifters to the total power consumed

when compared with the contribution from the other sources is minimal.

Now that we have established the fact that the proposed hybrid transceiver

design algorithms produce near-optimal performance, we present the computa-

tional complexity comparison of the proposed hybrid algorithms (Algorithms 4.2

and 4.3) with the WMMSE-based univariate transceiver design algorithm (Al-

gorithm 4.1) for different numbers of antennas and devices in Fig. 4.9(a) and

Fig. 4.9(b) respectively. We observe from both figures that the computational

complexity of the proposed hybrid transceiver design algorithm is much lower

than that of the univariate algorithm, especially when the number of antennas

and devices is high. This result further illustrates the benefits of the proposed

EE maximisation design for IoT networks.

Finally, to show how the robust EE design performs, Fig. 4.10 illustrates the

energy and spectral efficiencies for varying values of τ from the imperfect CSI

error model discussed in section 4.5. We set the dynamic power consumed by the

transmitters to PRF = 20 dBm and PPS = 0 dBm, the static power to Psta = 27

dBm, the number of devices K = 2, and the maximum transmit power Pj = 30

dBm. The robust design is compared with the non-robust version, obtained

by using the available imperfect channel as if it were perfect. It can be seen

that for a fixed value of ν, both energy and spectral efficiencies decrease with

increasing values of τ . This can be explained by the fact that larger τ values

imply an increase in the CSI error variance, thus the performance degrades with

more errors. Additionally, it can be noticed τ = 0 corresponds to the perfect

CSI case, as shown by the equivalent performances of the non-robust and robust
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Figure 4.10: Comparison of EE and SE achieved by hybrid transceiver design
with respect to varying imperfect CSI errors.

designs. However, as τ increases, the proposed robust design outperforms the

non-robust design in both EE and SE, stressing the resilience of the proposed

robust beamforming designs for mmWave IoT networks.

Remark 4.2. Note that EE values ranging from 0 − 1 are common place in

literature, (e.g. [122, 123, 124, 125, 126].), where the EE is computed as a ratio

of the spectral efficiency (bits/s/Hz) to the energy consumed (J/s).

4.7 Conclusion

In this chapter, we studied an energy-efficient hybrid transceiver design for mmWave

interference channels involving IoT devices, taking into consideration the in-

evitable hardware impairments at the transmitters and receivers. Since the joint

hybrid transceiver design problems were non-convex, we transformed them into

their equivalent univariate maximisation problems and proposed alternating max-

imisation algorithms based on the relationship between WSR and WMMSE to

solve them. Furthermore, using the concept of orthogonal matching pursuit,

we proposed a low-complexity optimal hybrid transceiver design algorithm that
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4.7. Conclusion

maximises the EE of the IoT network. Numerical results showed that the pro-

posed algorithms achieve near-optimal EE performance to support mmWave IoT

systems for both perfect and imperfect CSI considerations.
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Chapter 5

Rate-Splitting Transmission in

Multi-User mmWave Systems

5.1 Introduction

As discussed earlier in Chapter 2, the tremendous interest of recent years in

mmWave has resulted in major advances in terms of understanding mmWave

cellular communication. While these initial studies have provided a baseline for

mmWave propagation, they have mainly been studied under the idealistic as-

sumption of the availability of perfect CSI. However, in practice, the available

CSI is usually obtained by imperfect estimates which result in performance loss.

Therefore, in this chapter we propose an alternative transmission strategy that

will enable us to glean more improvements in the system’s performance despite

the availability of imperfect CSI.

Within the context of imperfect CSI, some works have focused on estimation

of the mmWave channel (the research background for channel estimation was pro-

vided earlier in section 2.4). Other works have focused on hybrid beamforming

design that avoids the dependence on perfect CSI. For example, [44] proposed

the hybrid transceiver design in a single-user scenario that relies on partial chan-

nel knowledge at the BS and UE. For settings with multiple users, the hybrid

beamforming approach proposed in [80] relies on a two-stage feedback method,

where the analog beamformer is designed using instantaneous CSI at the receiver,

and the baseband beamformer is designed by the quantized CSI containing in-

Work in this chapter has been presented at IEEE SPAWC, 2018 [127].
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formation about an effective channel at the transmitter. In addition, a simplified

signalling and feedback procedure was introduced in [128] in which analog beam-

forming directions are designed by feedback from the receiver and second-order

statistics of the channel is used to tackle the MUI at the baseband level. These

studies illustrate the usability of mmWave communication for practical scenarios.

Nevertheless, if CSI inaccuracies are considered, the residual MUI is a restricting

factor to mmWave systems. To avoid this, we investigate the RS transmission

strategy in this chapter.

In the RS approach, successive interference cancellation (SIC) and superpo-

sition coding techniques are utilised. In particular, for the multi-user system

setting, the message intended for each UE is divided into two parts: a common

part and a private part. This common message is drawn from a public codebook

accessible to all UEs in the system and should therefore be decoded by all the

UEs with zero error probability. The private messages are transmitted using a

fraction of the total power while the common part is superimposed on the private

messages by using the residual power. At the user end, the common message is

decoded first by treating the private messages as noise and then removed from

the received signal using SIC. Afterwards, each UE decodes its desired private

message from the received signal.

RS has been studied extensively for scenarios with imperfect CSI in standard

multi-user MIMO communications and is shown to be robust to CSI errors since

the attainability of the degree of freedom (DoF) of the common message is not

dependent on interference cancellation. Specifically, RS was shown to expand the

achievability of the degrees of freedom (DoFs) when CSI inaccuracies increase for

multiple-input single-output (MISO) broadcast channels[129, 130], and for MIMO

systems [131]. Compared with conventional transmission methods that do not

employ RS (these methods will subsequently be referred to as “NoRS”), RS has

been shown to provide a reduction in feedback overhead in [132]. Furthermore,

for MIMO settings that account for hardware impairments, RS is introduced to

mitigate the effects of phase and amplified thermal noises in [133]. Despite the

fact that RS has been considerably researched for standard MIMO systems, few

studies have attempted employing the RS transmission strategy for mmWave

transmissions, as applying RS strategy to multi-user mmWave MIMO systems

under imperfect CSI, where the users are equipped with multiple antennas, is

non-trivial.
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Accordingly, in this work, we build a tractable mmWave system investigat-

ing the RS transmissions and characterising the spectral efficiency performance

achieved by this strategy. At this point, we would like to note that our work

differs from [128], where RS was introduced for multi-user mmWave system in

the presence of statistical CSIT, due to the fact that we consider multiple anten-

nas at the UEs. Additionally, the channel estimation technique presented in this

chapter differs from the one-stage feedback scheme considered in [128], in that we

consider quantised CSI feedback using adaptive compressed sensing tools. The

results illustrate that transmission by means of RS provides significant gains in

achievable sum rate over the standard NoRS transmission strategy. In addition,

it is also shown that RS performance can be improved by increasing the resolution

parameter. Nevertheless, RS is robust to the available level of channel knowledge.

The rest of this chapter is organised as follows. Section 5.2 presents the

some preliminaries including the system model, non-ideal hardware and imperfect

CSI considerations and hybrid beamforming with the RS transmission strategy.

Section 5.3 provides the design of the RF, BB and RS precoders and characterises

the SINR and rate performances of the mmWave system under imperfect CSI and

non-ideal hardware. Simulation results are presented in section 5.4, and finally

section 5.5 contains a summary of the chapter.

5.2 System Model

In this section, we illustrate our system model of a multi-user mmWave downlink

system where the BS equipped with NT antennas and NRF
T RF chains transmits

simultaneously toK NR-antenna users by means ofNs data streams, as illustrated

by Fig. 5.1.

The mmWave channels are expected to be sparse [13] and we assume a geomet-

ric channel model with a few scatterers, each of which contributes a propagation

path between the BS and users. Under this model, the NR ×NT channel matrix

for user k is expressed as

Hk =

√
NTNR

Wk

Wk∑
l=1

αl,k aUE(ϕ
l,k
R , θ

l,k
R )aHBS(ϕ

l,k
T , θ

l,k
T ), (5.1)

where Wk is the number of paths between the BS and user k, αl,k ∼ CN (0, 1)

is the complex gain of the lth path, and the variables θl,kR (ϕl,kR ),∈ [0, 2π] and
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Figure 5.1: Transceiver block diagram of a BS communicating with the kth UE
that uses RF and baseband beamformers at both ends.

θl,kT (ϕl,kT ) ∈ [0, 2π] correspond to the elevation (azimuth) AoAs and AoDs of the

lth path, respectively. Further, aUE and aBS correspond to the UPA response

vectors at the user k and BS, respectively.

5.2.1 Imperfect CSI considerations

As highlighted earlier in Chapter 2, the huge cost of feedback makes obtaining

perfect CSI at the BS infeasible. Thus, the BS relies on information from the

user to estimate the channel and design the hybrid precoders for transmission.

Hence, the geometric channel for user k in equation (5.1) can be estimated by

using random measurement matrices to estimate the channel parameters, i.e., the

AoAs (ϕl,kR , θ
l,k
R ), AoDs (ϕl,kT , θ

l,k
T ) and gains (αl,k) of each path. Specifically, at

the estimation phase, a vector of Ns pilot symbols sp is transmitted to each user

such that E [∥sp∥22] = 1.

Relying on feedback from the user, the hybrid precoders are designed using the

multi-resolution codebook structure [60]. More specifically, the RF beamformers

are first designed using a codebook beam-training strategy, where through an

iterative process of information exchange between the BS and the users, the BS

chooses the beam patterns that maximise the power for each user. Next, the

effective channel is quantized using random vector quantization and fed back
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5.2. System Model

to the BS for the baseband precoder design. In other words, the BS uses the

channel estimates from the user to mitigate MUI. The detailed design of the

hybrid precoders are discussed in section 5.3.3.

5.2.2 Conventional hybrid beamforming (NoRS)

We begin by describing the conventional transmission strategy for the mmWave

multi-user systems with hybrid beamforming to facilitate our understanding of

the similarities and differences between both transmission schemes.

On the downlink, the BS employs a KNT×KNRF
T hybrid RF precoder VRF,

and a KNRF
T × KNs baseband precoder VBB. Thus, the transmitted signal is

given by

x = VRFVBB s =
K∑
k=1

√
PkVRFV

k
BBsk, (5.2)

where s = [s1, . . . , sk, . . . , sK ]
T is the KNs × 1 vector of transmit data symbols

for all users, Pk is the transmit power allocated to user k, and su is the Ns × 1

symbol vector for user u. VRF and VBB are diagonal matrices containing the RF

precoders and baseband precoders of each user, respectively, and are expressed

as

VRF =


V1

RF . . . 0
...

. . .
...

0 . . . VK
RF

 , (5.3)

and

VBB =


V1

BB . . . 0
...

. . .
...

0 . . . VK
BB

 . (5.4)

The signal received by user k can be written as

yk =
√
PkHkVRFV

k
BBsk +Hk

K∑
j=1,j ̸=k

√
PjVRFV

j
BBsj + nk, (5.5)

where Vk
BB denotes the baseband precoder for user k obtained using the its esti-

mated channel Ĥk, and nk ∼ CN (0, σ2) is the AGWN.
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5.2.3 Rate-splitting hybrid beamforming

The RS transmission strategy operates such that the message intended for each

user is split into two parts: the private part and the common part. The common

part of each user’s message is drawn from a public codebook accessible to all

users in the network, then all the common parts are put together in a common

message, which can be decoded by all users with zero error probability. On the

other hand, the private part of each user’s message is transmitted using a fraction

of the total power, and will be decoded only by the selected user. Consequently,

the transmitted signal from the BS is a superimposition of the private messages

intended for all K users over the common message, expressed as

x =
√
PcVRFVcsc +

K∑
k=1

√
PkVRFV

k
psk, (5.6)

where sc is the common message, and sk is the private message for user k. Pk

denotes the transmit power of the private message, while Pc represents the power

allocated to the common message, which is the residual power after the sub-

traction of the power allocated to the private messages from the total transmit

power.

The basic principle in this RS approach is to ensure that the fraction of power

used to transmit the private message is such that they can be decoded by each

user in a non-interference-limited SNR region. This guarantees that the residual

power used for transmitting the common message yields a rate enhancement [131].

In the decoding procedure, first the common message is decoded by each user via

SIC by treating all the private messages as noise. Then, after the removal of the

common message from the received signal, each user decodes its unique private

message.

5.2.4 Hardware impairment consideration

Our analysis is concerned with improving the performance degradation in mmWave

systems when the available CSI is imperfect. However, the system’s performance

is also degraded by transceiver hardware impairments which are unavoidable in

practice. Hence, in this subsection, we take into account the hardware impair-

ments affecting the transmitters and receivers of practical mmWave systems. In

particular, we present the models describing the transmitter and receiver dis-
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tortion noises, respectively. For ease of exposition, we assume that hardware

impairments are known by the operator through the hardware specification.

5.2.4.1 Transmitter hardware impairments

The transmitter distortion noise emerges from the combined effects of non-linearities

in the power amplifier, imperfect compensation of the quantization noise in the

DACs, phase noise from the local oscillators and additive power-amplifier noise

[134]. Hence, this distortion models the impact of the limited dynamic range of

the transmitter and is statistically independent of the transmitted signal. There-

fore, the distortions at the transmitter can be modelled as [135]

ηk ∼ CN
(
0, κdiag

(
Vk

RFV
k
BB(V

k
BB)

H(Vk
RF)

H
) )
, ηk ⊥ xk, (5.7)

where ⊥ denotes statistical independence, and κ≪ 1 is a constant of proportion-

ality depicting the severity of the impairments at the transmitter.

5.2.4.2 Receiver hardware impairments

Similarly, the receiver distortion captures the effect of the limited dynamic range

at the receiver. These impairments encompass the non-linearities in the ADC,

distortions in the local oscillator at the receiver and gain control noise. Regarding

the mathematical description of the receiver noise, if Υk is the covariance matrix

of the undistorted received signal at the user, then the covariance matrix of the

receiver distortion is given by β times the energy of the undistorted signal. Thus,

the receiver distortion, statistically independent of the received signal, is modelled

as

ξk ∼ CN
(
0, β diag (Υk)

)
, ξk ⊥ uk, (5.8)

where uk = yk−ξk is the undistorted received signal, Υk = cov{uk} and β ≪ 1 as

the constant of proportionality denoting the severity of the receiver impairments.1

In other words, β is defined as the ratio between the receiver distortion noise

variance and the signal power.

1Note that, in practical systems, the constants β and κ appear as error vector magnitudes
(EVM) at the receiver and transmitter, respectively [136].
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5.3 SINR and Rate Analysis with Imperfect CSI

and Hardware Impairments

In this section, combining the effects of imperfect CSI with transceiver impair-

ments, we elaborate on the performance of both conventional and RS transmission

strategies in terms of sum rate and signal-to-interference-noise-ratio (SINR).

5.3.1 Conventional transmission

Under the assumption of uniform power allocation amongst all users in the sys-

tem, the received signal at user k, after incorporating the aforementioned trans-

mitter and receiver distortions, is given by

yk =
√
PkH̃kVRFV

k
BBsk + H̃k

K∑
j=1,j ̸=k

√
PjVRFV

j
BBsj︸ ︷︷ ︸

multi-user interference

+mk, (5.9)

where H̃k = [Hk 0] is an NR × KNT matrix containing the NR × NT channel

matrixHk and NR×NT(K−1) appended zeros,2 andmk represents the combined

contribution of transmitter and receiver distortions and the AWGN, given as

mk =
√
PkH̃kηk +

K∑
j=1,j ̸=k

√
PjH̃kηj + ξk + nk. (5.10)

From equation (5.9), the SINR of user k is expressed as

SINRnoRS
k =

Pk∥H̃kVRFV
k
BB∥2F

Pj
K∑

j=1,j ̸=k
∥H̃kVRFV

j
BB∥2F + ∥Σk∥F

, (5.11)

2We note that Hk and H̃k can be considered as equivalent since the Frobenius norms of
both matrices yield the same result. Moreover, H̃k is an extended version of Hk.
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where Σk is the covariance matrix of mk approximated as3

Σk ≈ κPkH̃kdiag
(
VRFV

k
BB(V

k
BB)

HVH
RF

)
H̃H
k

+β Pkdiag
(
H̃kVRFV

k
BB(V

k
BB)

HVH
RFH̃

H
k

)
+ σ2 I (β + 1) (5.12)

+
K∑

j=1,j ̸=k

κPjH̃kdiag
(
VRFV

j
BB(V

j
BB)

HVH
RF

)
H̃H
k

+
K∑

j=1,j ̸=k

β Pjdiag
(
H̃kVRFV

j
BB(V

j
BB)

HVH
RFH̃

H
k

)
.

Given (5.11), the corresponding rate of user k is given by

RnoRS
k = log2 (1 + SINRk) , (5.13)

and the sum rate of the system is given by

RnoRS
sum =

K∑
k=1

RnoRS
k . (5.14)

5.3.2 RS transmission

In the RS transmission strategy, the transmit power is split between common and

private messages. Assuming equal power allocation among the private messages,

the received signal at user k when considering transceiver hardware impairments

is defined as

yk =
√
PcH̃kVRFVcsc︸ ︷︷ ︸
common message

+
K∑
k=1

√
PkH̃kVRFV

k
ps
k
p︸ ︷︷ ︸

private messages

+mk, (5.15)

where Pk =
P τ
K

denotes the power allocated to the private messages with τ as a

fraction of the total transmit power (P ), Pc = P (1 − τ) represents the residual

power that is allocated to the common message and sc and skp are the data symbol

vectors for common and private messages, respectively. Furthermore, Vc and Vk
p

denotes the precoders for the common and private messages, respectively, and

3The approximation is obtained by omitting the terms containing the multiplication of κ
and β since their product is very small and negligible.
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mk represents the combined noises as defined in equation (5.10).

Using equation (5.15), the SINR for the common message at user k can be

computed by treating all the private messages as noise, and is given by

SINRk
c =

Pc ∥H̃kVRFVc∥2F
K∑
k=1

Pk∥H̃kVRFVk
p∥2F + ∥Σk∥F

, (5.16)

where Σk is the covariance matrix of mk as defined by equation (5.12). After

subtracting the common message, the SINR for the private message at user k is

given by

SINRk
p =

Pk∥H̃kVRFV
k
p∥2F

K∑
j=1,j ̸=k

Pj ∥H̃kVRFV
j
p∥2F︸ ︷︷ ︸

multi-user interference

+∥Σk∥F

. (5.17)

In order to guarantee that the common message be decoded by all users with

zero error probability, the achievable rate of the common message is determined

by the user with the weakest channel gain and is given by

Rc = min
k
{Rk

c} = min
k
{log2(1 + SINRk

c)}. (5.18)

On the other hand, the sum rate of all private messages is given by

Rp =
K∑
k=1

Rk
p =

K∑
k=1

{log2(1 + SINRk
p)}. (5.19)

Accordingly, the RS sum rate is given as RRS = Rc +Rp.

5.3.3 Hybrid precoder design with imperfect CSI

In this subsection, we elaborate on the hybrid precoders design under imperfect

channel knowledge. First, with the goal of maximising the received signal power

on each BS–UE link, the analog beamformers are designed. Secondly, the digital

precoders are designed for MUI nulling.
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5.3.3.1 RF beamformer design

The objective in designing the RF precoder from the BS to any user is to maximise

the received signal power on that link. In particular, the BS searches for beams

from a feasible finite-sized RF beam-steering codebook, then the selected user

feedbacks the index of the codewords that yield the maximum received signal

power [80].

V denotes the RF beamforming codebook with low-resolution phase shifters

and a large number of antenna elements. The cardinality of V is given by |V| =
2BRF , where BRF denotes the number of quantization bits for the phase-shifting

resolution. Consequently, for the transmission link between the BS and user k,

the problem providing the optimal precoder Vk
RF takes the form

argmax
Vk

RF

∥ĤkV
k
RF∥2F

s.t. Vk
RF ∈ VRF.

(5.20)

The problem described by equation (5.20) is a typical RF beamforming design

problem and can be solved using the efficient beam-training algorithms in [19,

137]. When the BS has computed the RF precoder for every user, then VRF from

equation (5.3) can be computed.

5.3.3.2 Baseband precoder design

Given that Ĥk and VRF are now known at the BS, the baseband precoder for user

k can be designed using a simple multi-user beamforming strategy like regularised

zero-forcing (RZF). Considering the transmitter and receiver noises, Vk
BB is given

as [138]

Vk
BB = G̃H

k

(
κ G̃kG̃

H
k + β diag

(
G̃kG̃

H
k

)
+ Zk +NRψI

)
, (5.21)

where G̃k = H̃kVRF, ψ > 0 is the regularization parameter scaled by NR, and

Zk ∈ CNR×NR is an arbitrary Hermitian positive definite matrix.4

5.3.4 RS precoder design

The RS transmission strategy with hybrid precoding requires the design of three

precoders, namely, the RF precoder, the precoder of the private message and the

4Both Zk and ψ can be optimised using interior point methods [139, Theorem 6] .
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precoder of the common message. With Ĥk known as the BS, the RF precoder for

user k is designed through the iterative process of information exchange between

the BS and user k as discussed in section 5.3.3.1. Furthermore, once VRF is

designed, the precoder of the private message can be designed using a multi-user

beamforming strategy and takes the form of RZF as in equation (5.21).

Regarding the design of the common precoder Vc, we aim to maximise the

achievable rate of the common message. Since the rate of the common message is

limited to the weakest user, Vc can be optimised by solving the max–min problem

formulated as

max
Fc

min
k

qk ∥H̃kVRFVc∥2F (5.22a)

s.t. tr{VH
c V

H
RFVRFVc} ≤ 1, (5.22b)

where (5.22b) is the power constraint and

qk =
Pc

K∑
k=1

Pk∥H̃kVRFVk
p∥2F + ∥Σk∥F

. (5.23)

By the introduction of an auxiliary variable t, and the use of epigraph form,

the max–min optimisation problem (5.22a)–(5.22b) can be rewritten as

max
Fc,t

t (5.24a)

s.t. tr{VH
c V

H
RFVRFVc} ≤ 1, (5.24b)

t ≤ qk tr{VH
c V

H
RFH̃

H
k H̃kVRFVc} ∀ k, (5.24c)

where equation (5.24c) follows from the identity ∥A∥F =
√

tr{AAH}. Replacing
Vc with X, the problem described by equations (5.24a)–(5.24c) can be written

as

max
X,t

t (5.25a)

s.t. tr{XHVH
RFVRFX} ≤ 1, (5.25b)

t ≤ qk tr{XHVH
RFH̃

H
k H̃kVRFX} ∀ k, (5.25c)

Note that the problem described by equations (5.24a)–(5.24c) is non-convex

due to coupling of optimisation variables and the non-convex constraint (5.24c).
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Hence, it is difficult to obtain a tractable optimal solution in its current state.

Accordingly, we transform the problem by applying the vec(.) operation, the use

of the identity ∥vec(A)∥22 = tr{AAH}, and introducing a new variable Z such

that for any Z, we have that

(X− Z)H HH
k,EFFHk,EFF (X− Z) ≥ 0, (5.26)

where Hk,EFF = H̃kVRF. In this regard, the maximisation optimisation problem

(5.25a)–(5.25c) can be written as

max
X,t

t (5.27a)

s.t. ∥vec (VRFX)∥22 ≤ 1, (5.27b)

qk tr{2Re
[
ZHHH

k,EFFHk,EFFX
]

− ZHHH
k,EFFHk,EFFZ} ≥ t ∀ k, (5.27c)

where

XHHH
k,EFFHk,EFFX ≥ 2Re

[
ZHHH

k,EFFHk,EFFX
]

−ZHHH
k,EFFHk,EFFZ. (5.28)

The problem described by equations (5.27a)–(5.27c) is a second-order cone pro-

gramming (SOCP) problem since the objective function (5.27a) is linear and

the constraints (5.27b)–(5.27c) are second-order cones. Accordingly, equations

(5.27a)–(5.27c) can be efficiently solved through an iterative maximisation pro-

cess with standard second-order cone programming (SOCP) solvers as outlined

in Algorithm 5.1.

Algorithm 5.1: Alternating maximisation process to solve common pre-
coder.

1 Require Ĥk and VRF

2 Set the iteration number n = 0 and initialize Z
3 n← n+ 1.
4 Obtain X∗ by solving (5.27a)–(5.27c)
5 Update Z = X∗

6 Repeat from step 3 until convergence or a fixed number of iterations is
reached.

7 Return Vc = X∗.
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5.3.5 Power allocation

To determine the power allocation in the RS transmission strategy for each user

accurately, the saturation point of the achievable rate of the private message is

first determined. In other words, we evaluate the point at which the multi-user

interference becomes the dominant factor in the achievable rate of the private

message. At this point, increasing the power allocated to the private message has

no tangible effect and power saturation occurs. Once the power saturation point

has been determined, the residual power is allocated to the common message.

Mathematically, the fraction of transmit power allocated to the private mes-

sage τ ∈ (0, 1] for user k is expressed as [131]

τ = min{ K
PΥ
, 1}, (5.29)

where Υ = min
k
{ 1
K

∑
j ̸=k
∥H̃kVRFV

j
p∥2F} represents the interference power from

other users in the network.

Remark 5.1. The case of τ = 0 implies that the common part is transmitted

with the full transmit power resulting in an RS rate limited by the UE with the

weakest channel. Accordingly, this case (τ = 0) is meaningless and excluded from

the analysis. On the other hand, the case of τ = 1 indicates that full transmit

power is allocated to the private messages and as a result the RS rate of this case

(τ = 1) is equivalent to the rate of conventional transmission strategy in equation

(5.14).

5.4 Numerical Results

In this section, we evaluate the performance of the proposed RS transmission

scheme in a multi-user mmWave system. We consider a mmWave system op-

erating at 28-GHz carrier frequency with a bandwidth of 100 MHz where a BS

communicates with 4 UEs. Unless otherwise stated, the BS has NT = 64 anten-

nas and NRF
T = 16 RF chains, while each UE has N = 16 antennas and NRF

T = 8

RF chains, and the transmitter and receiver distortions are κ = β = −60 dB

[120].

Throughout the simulations, RF beamforming vectors are made up of elements

of quantized phase shifts. Thus, we implement the beamforming vectors with 7
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Figure 5.2: Comparison of the sum-rate performance achieved by RS and NoRS
transmission strategies for multi-path channels with resolution parameter Nres =
256 and Q = 2 beamforming training vectors.

quantization bits. For channel estimation, we employ the method based on hybrid

architecture detailed in section 2.4.2 with the sparse channel formulation given

as y =
√
P
(
VT
t ⊗WH

t

)
ADhα + z, where z represents the additive noise vector.

Accordingly, the channel parameters are obtained by estimating the locations

of the non-zero elements of hα which correspond to the AoAs/AoDs and the

channel path gains. In particular, adopting the adaptive CS algorithm in [60],

the AoA/AoDs are estimated by means of a multi-level resolution codebook with

resolution parameter Nres and with Q beamforming training vectors for each level.

We employ equal transmit power P in all precoding and combining solutions.

Note that P is dependent on SNR, i.e., SNR= P
σ2 , where σ

2 denotes the noise

variance.

Our aim is to shed light on the performance of RS in a pragmatic mmWave

system where imperfect CSI is taken into account. Hence, throughout the simu-

lations we provide a comparison of the conventional NoRS transmission strategy

with the proposed RS approach. Specifically, in Figs. 5.2–5.6, the solid lines

depict the simulations of the RS method while the corresponding dotted lines

correspond to the NoRS cases. In Fig. 5.2, we analyse the impact of scattering

and blockages that contribute to propagation paths in mmWave systems. Conse-
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Figure 5.3: Comparison of the sum-rate performance achieved by RS and NoRS
transmission strategies for multi-path channels with varying beamforming vectors
and resolution parameter Nres = 162.

quently, Fig. 5.2 illustrates the sum-rate performance achieved by the estimation

of multi-path channels. It can be seen that rate gain is increased for a higher

number of paths since the hybrid architecture is implemented with the number

of multiplexed streams equal to the number of paths. In addition, it is quite

evident that, in all cases, the RS transmission method achieves a much higher

sum rate than the NoRS schemes. For example, when the two-path channels are

estimated, the gain of the RS strategy over the corresponding NoRS is about 4.5

bits/s/Hz at 0 dB. This validates the effectiveness of the proposed RS scheme for

multi-path mmWave channels.

The accuracy of the channel estimation when using adaptive CS methods

is dependent on the multi-resolution codebook structure used to estimate the

channel and beamforming vectors i.e., the resolution parameter Nres and the Q

number of beamforming vectors at each codebook level. Hence, in Figs 5.3 and

5.4 we analyse the impact of varying the number of beamforming vectors and

the resolution parameter, respectively. We set the number of paths to 2 and the

resolution parameter Nres = 162 in Fig. 5.3. It can be observed that the rate gain

for both transmission schemes is decreased when a lower number of beamforming

vectors (Q = 3) are used for training the RF precoders/combiners. However,
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Figure 5.4: Comparison of the sum-rate performance achieved by RS and NoRS
transmission strategies for multi-path channels with varying resolution parame-
ters and Q = 2 beamforming training vectors.

it should be noted that the beamforming vectors impact the training overhead

and should not be increased indefinitely. Further, the RS transmission strategy

performs better than the NoRS scheme, suggesting that even in low-complexity

scenarios, RS can achieve comparable gains. In Fig. 5.4, the number of paths are

set to 3, it is evident that the quantization loss decreases for increasing resolution

parameters. The results from both Figs 5.3 and 5.4 suggest that the RS transmis-

sion scheme always provides an improvement in the sum-rate performance over

the NoRS strategies regardless of the available channel knowledge.

Next, in Fig. 5.5, we illustrate the comparison of the sum-rate performance

between employing the RS transmission strategy and the NoRS schemes in a

mmWave system with respect to the transmitter and receiver distortions. For

brevity, we assume equal transmitter and receiver distortions, i.e., κ = β. We

set Nres = 96, Q = 2, and the SNR to 20 dB for estimating three-path channels.

It can be seen from Fig. 5.5 that when the distortion in the transceiver is low

for both transmission schemes, the achievable sum rate is high. For instance, at

κ = β = −60, a sum rate of 22 bits/s/Hz is achieved by using the RS trans-

mission scheme while the corresponding rate achieved by the NoRS approach is
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Figure 5.5: Achievable sum rate of RS and NoRS transmission strategies with
respect to transmitter and receiver distortions.

17 bits/s/Hz. However, the rate decreases steadily as the transceiver distortions

increase. This suggests that the transmitter/receiver distortions affect the per-

formance of system and should be considered in the design of the precoders and

combiners. Notwithstanding, the case of RS is desirable, showing that splitting

the power between a common and private message achieves additional gain to

counter the degradation caused by the hardware impairments.

Finally, we investigate the impact of varying the number of users on the sum-

rate performance of the mmWave system in Fig. 5.6. It is shown clearly that,

with both transmission schemes, increasing the number of UEs leads to a de-

crease in the sum-rate performance. This can be explained by the fact that there

is increased MUI in the system resulting from more interactions by more users.

Specifically, at 20 dB in the NoRS transmission case, when the BS communicates

to 3 UEs, the sum rate achieved is approximately 24 bits/s/Hz, attaining a 30%

improvement in sum-rate gain over approximately 21 bits/s/Hz obtained when

there are 4 users. Nevertheless, the RS transmission scheme is even more desirable

in both scenarios; this is as expected since, by power-splitting in the RS trans-

mission, residual MUI due to CSI mismatch is tackled. This further validates the

effectiveness of applying RS strategies to multi-user mmWave systems.
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Figure 5.6: Comparison of the sum-rate performance achieved by RS and NoRS
transmission strategies for varying number of users with resolution parameter
Nres = 96 and Q = 2 beamforming training vectors.

5.5 Conclusion

In multi-user mmWave networks, imperfect CSI results in MUI, which adversely

affects the sum-rate performance of the system. Accordingly, this chapter in-

vestigated the RS transmission strategy for multi-user mmWave communications

with hybrid precoding. The estimated channel was derived from estimates of the

angles of departure, arrival and gain of each path, and the hybrid beamforming

matrices were constructed using the multi-resolution codebook structure. The

numerical results showed that the RS transmission scheme is beneficial to multi-

user mmWave systems with imperfect CSI, as the residual MUI in the system,

caused due to channel estimation errors, is tackled by the power splitting in RS.

Additionally, it was shown that increasing the resolution parameter increases the

efficiency of the RS scheme. Moreover, the RS strategy is robust for practical

scenarios with constrained feedback overheads and imperfect hardware.
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Chapter 6

Impact of Hardware Impairments

on mmWave MIMO Systems

6.1 Introduction

The research background for hybrid beamforming in mmWave systems has been

presented in section 2.3.2, along with a description of some of the most recent

techniques that may contribute to the improvement of the system’s performance.

Among the classes of hybrid beamforming techniques, the structures implemented

with digitally controlled phase shifters have been identified as one of the promising

measures that may be used with quantized phases to correct the lack of precision

in analog beamforming techniques [28, 43, 42, 81, 140, 141].

A convention among these studies regarding hybrid beamforming in mmWave

MIMO communications is the assumption of ideal hardware. In practice, how-

ever, the RF front-end (where amplification and down conversion of signals occur)

operates at dynamic ranges of frequencies which are much higher than the op-

erating frequencies of the baseband [134]. On this ground, the signal processing

at baseband level cannot remove the hardware impairments which arise from

non-linearities of the amplifier, phase noise, quantization errors, mutual cou-

pling between antenna ports, and I/Q imbalance [100, 101]. Moreover, low-power

circuits, which are more susceptible to hardware impairments, are deployed by

the cost-effective implementation of massive multi-antenna systems [135]. These

transceiver hardware impairments present a design challenge for commercially vi-

Work in this chapter has been presented at IEEE WCNC, 2018 [102].
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able mmWave MIMO transceivers. Therefore, this chapter extends existing work

by investigating the impact of hardware imperfections on mmWave systems with

hybrid beamforming from a design perspective.

In standard massive MIMO cellular systems operating at lower frequencies,

hardware impairments and their impact have been studied extensively (e.g., see

[142, 143, 144, 145, 146, 104]). Specifically, three major sources of hardware im-

pairments are the multiplicative impairments, the amplified thermal noise (ATN),

and residual additive transceiver impairments (RATHI) [143, 145, 104]. Multi-

plicative imperfections such as amplitude and phase errors are modelled using a

stochastic error model in [143]. Using this model, the work in [146] showed that

the degradation in performance due to user mobility is increased by phase errors.

The additive impairments are modelled as power-dependent Gaussian additive

noise [144], and results from [147] show that RATHIs have a greater impact on

downlink transmissions than the uplink counterparts.

Notably, fewer studies have considered hardware impairments from a mmWave

perspective. In [148], the performance of a mmWave system employing analog

beamforming under hardware impairments is evaluated by using a logarithmic

error model, which assumes that the combiner losses are dependent on the num-

ber of RF chains. However, analog beamforming is not robust for multi-stream

or multi-user scenarios. Moreover, the other major impairments of additive dis-

tortions and amplified thermal noises are not considered in [148]. On the other

hand, the work of [149] studies the major hardware impairments using othorgonal

frequency division multiplexing (OFDM) waveforms. For this chapter, we move

beyond the assumptions of analog beamforming [148] and digital precoding/com-

bining (the limitations of which have been outlined earlier in section 2.3) [149] to

consider a mmWave MIMO system with hybrid beamforming and provide an as-

sessment of the impact of these key impairments on the system, with the potential

to aid hybrid beamforming designs. We develop a framework for the modelling

of RTHIs and, within this context, design the hybrid precoders and combiners.

Additionally, we provide a detailed analysis on how the variation of key factors

of the system affects each individual hardware impairment. Results show that an

increase in the number of RF chains mitigates the effect of the multiplicative PN.

This presents a unique observation regarding the spectral efficiency performance

and should be considered in the design of mmWave systems with hybrid precod-

ing. Furthermore, for a general overview, we provide comparisons with outcomes

obtained under the assumption of ideal hardware.
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The remainder of this chapter is organised as follows. Section 6.1a presents the

basic parameters of the mmWave MIMO system model with hybrid precoding. In

section 6.3, we provide a description of the various hardware impairments under

consideration and model the spectral efficiency under the presence of these RTHIs.

We provide the hybrid precoder and combiner designs over practical mmWave

MIMO channels with RTHIs in section 6.4 and section 6.4.2 respectively. The

numerical results are presented in section 6.5. Finally, section 6.6 provides the

concluding remarks.

6.2 System Model

We begin by considering a basic mmWave MIMO system with hybrid precoding as

illustrated in Fig. 6.1a, then subsequently we enrich this model by introducing (i)

the multiplicative phase noise, (ii) the residual additive transceiver impairments

and (iii) the amplified thermal noise, which are unavoidable in practical systems,

as indicated in Fig. 6.1b.

6.2.1 Conventional model

The basic mmWave system consists of a transmitter with NT antennas communi-

cating with an NR-antenna receiver by means of Ns data streams. Multi-stream

communication is enabled if the transmitter deploys NRF
T transmit chains under

the constraint Ns ≤ NRF
T ≤ NT. In other words, a hybrid hardware architecture

is designed, where an NRF
T ×Ns digital baseband precoder, VBB, with N

RF
T trans-

mit chains is accompanied by an NT × NRF
T analog precoder, VRF. Considering

the downlink transmission and assuming that a single carrier waveform is used,

the discrete-time transmitted signal at sample time-interval n is given by

x(n) = VRFVBB s(n) (6.1)

where s(n) = [s1(n), . . . sNs(n)] is the Ns × 1 symbol vector obeying E[ssH ] =
1
Ns
INs .

When implementing VRF with analog phase shifters, all of its elements have

equal norm since they satisfy (V
(i)
RFV

(i)H
RF )k,k = 1

NT
. Note that (.)k,k denotes the

kth diagonal element of a matrix. Regarding the total power constraint of the

transmitter VBB, it is normalized such that ||VRFVBB||2F = Ns. Adopting a
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Figure 6.1a: An illustration of a basic hybrid mmWave cellular MIMO network
with hybrid precoding and combining.

Figure 6.1b: An illustration of a realistic basic hybrid mmWave cellular MIMO
network with transceiver hardware impairments.

narrowband block-fading channel model [23], the N × 1 received signal is given

by

y(n) = HVRFVBB s(n) + z(n), (6.2)

where z is the Gaussian noise vector such that z ∼ CN (0, σ2
zIN) and H represents

the N ×NT channel matrix which satisfies E[||H||2F ] = NTNR and is expressed as

H =

√
NTNR

NclNp

Ncl∑
l=1

Np∑
k=1

αl,kaR

(
ϕl,kR , θ

l,k
R

)
aHT

(
ϕl,kT , θ

l,k
T

)
, (6.3)

where Ncl, Np and αl,k denote the number of scattering clusters, the number

of paths per cluster and the complex gain of the kth path in the lth cluster,

respectively. aT and aR represent the transmit and receive antenna array response

vectors.1 In a similar way, the receiver uses NRF
R chains and analog shifters such

that Ns ≤ NRF
R ≤ NR for processing the received signal. Here, the processed

1Implicitly, this model, focusing on the transceiver hardware impairments and not on the
knowledge of the channel, is based on the strong assumption that the transmitter and receiver
have instantaneous and perfect knowledge of the channel H.
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Ns × 1 signal is given by

ys(n) = WH
BBW

H
RFHVRFVBBs(n) +WH

BBW
H
RFz(n), (6.4)

where WBB is the NRF
R ×Ns baseband combining matrix, and WRF is the NR ×

NRF
R analog combining matrix, which is implemented using phase shifters and

obeys (W
(i)
RFW

(i)H
RF )k,k =

1
NR

.

If the transmission consists of Gaussian symbols, the spectral efficiency, achieved

over the aforementioned mmWave MIMO channel, is given by [150]

R = log2

(∣∣∣∣INs +
ρ

Ns

R−1WHHVVHHHW

∣∣∣∣) , (6.5)

where ρ is the average received power and R = σ2WHW denotes the noise

covariance matrix with W = WRFWBB, and V = VRFVBB.

6.3 Hardware Impairments

The transceiver of practical systems is affected by various impairments, as illus-

trated in Fig. 6.1b. These impairments are presented below by means of their

models. Fortunately, the impairments can be described physically and mathe-

matically. In particular, we focus on (1) the multiplicative PN at both the trans-

mitter and the receiver, (2) the residual additive power dependent distortions at

the transmitter and receiver and (3) the ATN at the receiver side.

6.3.1 Multiplicative PN

Physically, the PN is defined as a distortion in the phase caused by the random

phase drifts in the signal. This distortion, which comes from the local oscillators

(LOs) of the transmitter and the receiver is induced during the up-conversion of

the baseband signal to passband and vice-versa. Mathematically, this conversion

takes place by multiplying the signal with the LO’s output. In other words, every

RF transceiver chain is affected by PN, expressed as

sout(n) = sin(n)e
jψ(n), (6.6)
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where sout(n) and sin(n) represent the output and input signal of each transceiver,

and ψ(n) denotes the instantaneous phase noise at the nth time interval, which

can be described by a discrete-time independent Wiener process [104, 151, 152]

and expressed as

ψi(n) = ψi(n− 1) + δψi(n), i = T,R (6.7)

where δψi(n) ∼ N (0, σ2
ψi
) denotes the PN increment variance given by σ2

ψi
=

4π2fc cn Ts with fc, cn and Ts referring to the carrier frequency, a constant

dependent on the oscillator and the symbol interval, respectively. Denoting

Ψ(n) , diag{ejψT,1(n), . . . , ejψT,NT
(n)}, and Ω(n) , diag{ejψR,1(n), . . . , ejψR,NR

(n)}
as the total PN matrices due to imperfections in the LOs of the transmitter and

receiver, respectively. The received signal under PN is given by

ys(n) = WH
BB (Ω(n))H WH

RFHVRFΨ(n)VBBs(n) +WH
BB (Ω(n))H WH

RFz(n).

(6.8)

6.3.2 RATHIs

The second category of hardware impairments that we are considering are the

RATHIs that emerge from the DC offset, the antenna coupling, I/Q mismatch

and the imperfect compensation of the quantization noise in the ADCs at the

receiver and in the DACs at the transmitter [134]. To be more specific, at the

transmitter, the distortions occur from a mismatch appearing between the signal

that is intended to be transmitted and the generated signal, while the received

signal is distorted during the reception processing at the receiver side. These

impairments appear as additive variables in the signal model.

Regarding the mathematical description of the additive noises, measurement

results from [101] show that the additive transmitter and receiver distortion noises

are distributed as circularly-symmetric complex Gaussian random variables with

their average power proportional to the signal power. This Gaussian distribution

can further be justified by aggregating the contributions of many impairments

[103, 105, 134]. More precisely, denoting Q , diag{q1, . . . , qNT
} as the trans-

mit covariance matrix, the distortions at the transmitter and the receiver are

expressed, respectively, as

ηT ∼ CN (0,Λn) (6.9)

ηR ∼ CN (0,Υn), (6.10)
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where Λn = (κT(n))
2 diag{q1, . . . , qNT

}, and Υn = (κR(n))
2 HHQH with κ2T

and κ2R denoting the constants of proportionality which depict the severity of the

residual additive impairments at the transmitter and receiver. In other words,

they are defined as the ratio between the additive distortion noise variance and

the signal power. In practical systems, these constants appear as EVMs at the

transceiver [136].

6.3.3 ATN

The third category of hardware impairments are the ATNs which affect the re-

ceiver. The ATN is described by an amplification that comes from the components

of the receiver hardware, including the low noise amplifiers and mixers as well

as leakages from other frequency bands, and is expressed by an increase in the

thermal noise variance at the receiver [135]. The overall ATN impact is modelled

as a Gaussian distribution, i.e, ξ ∼ (0, ξzINR
), where ξz ≥ σ2

z , and σ2
z is the

parameter representing the actual thermal noise.

Remark 6.1. The ideal model, which does not account for the unavoidable hard-

ware impairments, is obtained if σψi
= κT = κR = 0 and ξz = σ2

z .

6.3.4 Transmission with RTHIs

After incorporating the aforementioned transceiver impairments into the system

model, the received signal becomes

ys(n) = WH
BB (Ω(n))H WH

RFH (VRFΨ(n)VBBs(n) + ηT(n))

+WH
BB (Ω(n))H WH

RF (ηR(n) + ξ(n)) . (6.11)

Within this context, the spectral efficiency is given by

R=log2

(∣∣∣∣INs +
ρ

Ns

R−1WH
ΩHVΨV

H
ΨH

HWΩ

∣∣∣∣) , (6.12)

where WΩ = WRFΩnWBB, VΨ = VRFΨVBB and the noise covariance matrix is

given by

R =

(
κ2T

ρ

Ns

+ κ2R
ρ

Ns

VΨV
H
Ψ

)
WH

ΩHHHWΩ + ξzW
H
ΩWΩ. (6.13)
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6.4 Hybrid Beamforming Design for a mmWave

Channel with RTHIs

The focus of this section concerns the maximization of the SE expression given

by equation (6.12), and the appropriate design of the hybrid mmWave precoders,

(VRF,VBB), and the hybrid mmWave combiners (WRF,WBB). Hence, the SE

maximization problem is formulated as

max
VRF,VBB,WRF,WBB

R(VRF,VBB,WRF,WBB) (6.14a)

s.t. WRF ∈ WRF (6.14b)

VRF ∈ VRF (6.14c)

∥VΨ∥2F = Ns. (6.14d)

Note that this optimisation problem (6.14a)–(6.14d) requires the joint optimisa-

tion of four matrix variables concerning the mmWave precoders and combiners

with non-convex constraints on VRF and WRF. Unfortunately, an exact solution

is unlikely and the corresponding problem is intractable [153]. For this reason,

we follow a similar design to [28] and decouple the joint precoder–combiner opti-

misation problem.

6.4.1 Hybrid precoder design

With the objective of optimising the SE, we engage in the design of the hybrid

precoders (VRF,VBB) maximizing the mutual information by means of Gaussian

signalling over a practical mmWave MIMO channel with transceiver hardware

impairments. Hence, the mutual information, dependent only on the transmitter

operation, is given by

I(VΨ) = log2(|INs +
ρ

Ns

R−1
p HVΨV

H
ΨH

H |), (6.15)

where Rp = βHHH + ξINR
with β =

(
κ2t

ρ
Ns

+ κ2r
ρ
Ns
VΨV

H
Ψ

)
.
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The optimisation problem, providing the precoders VRF,VBB, takes the form

max
Vopt

RF ,V
opt
BB

I(VΨ) (6.16a)

s.t. VRF ∈ VRF (6.16b)

∥VΨ∥2F = Ns, (6.16c)

with VRF denoting the set of NT × NRF
T matrices that describe the feasible RF

precoders having constant-magnitude entries. The problem (6.16a)–(6.16c) is

very challenging due to the non-convexity of the constraint on VRF in equation

(6.16b). Moreover, the solution to the optimal precoder even without the con-

straints is unknown[80]. In such case, we propose an approximation of equations

(6.16a)–(6.16c) that will allow us to find near-optimal precoders, which can be

implemented in practice.

First, we apply SVD to the channel matrix H in equation (6.15), i.e., we set

H = SΣUH so that (6.15) can be rewritten as

I(VΨ) = log2(|INs +
(
βINs + ξΣ−2

)−1
UHVΨV

H
ΨU|). (6.17)

Then, we partition the matrices Σ and U as Σ =

[
Σ1 0

0 Σ2

]
and U =

[U1U2] and note that the optimal unconstrained unitary precoder for H is given

by V1. Since U1 cannot be expressed by means of VΨ, we are going to make VΨ

approach the optimal U1 so that the mutual information corresponding to U1

and VΨ is approximately equivalent. Hence, the mutual information of VΨ can

be approximated as

I(VΨ) ≈ log2
(∣∣INs +D1

∣∣)− tr
(
INs −UH

1 VΨV
H
ΨU1

)
. (6.18)

where D1 =
(
β∗INs + ξΣ−2

1

)−1
, with β∗ =

(
κ2t

ρ
Ns

+ κ2r
ρ
Ns

I
)
. Here, we assume

that VΨV
H
Ψ ≈ I, which follows from the fact that we are trying to minimise the

Euclidean distance between the optimal U1 and VΨ.

Remark 6.2. Note that the first term of (6.18) represents the mutual information

due to the optimal precoder in the presence of RATHIs, while the second term

describes the hybrid precoder impaired by the phase noise on the transmitter side.

Now, the precoder design problem to find the optimal hybrid precoders that

131



6.4. Hybrid Beamforming Design for a mmWave Channel with RTHIs

maximises the mutual information can be written as

min
Vopt

RF ,V
opt
BB

∥U1 −VΨ|∥F (6.19a)

s.t. VRF ∈ VRF (6.19b)

∥VΨ∥2F = Ns, (6.19c)

where equation (6.19a) follows since maximising tr
(
UH

1 VΨ

)
is equivalent to min-

imising ∥U1 − VΨ∥F . In other words, the objective is to find the projection of

U1 = Vopt on to the set of precoders having the form of VΨ = VRFΨVBB, with

VRF belonging to the set of VRF.

By exploiting the properties of the mmWave channel, we can obtain the near-

optimal solution of problem described by equations (6.19a)–(6.19c). The specific

properties to be employed are given as follows [28].

1. An orthonormal basis regarding the row space of the channel is formed by

the columns of the unitary matrix U.

2. A basis is formed for the same space by the linearly independent transmit

antenna array response vectors aT(ϕ, θ) when NclNp ≤ min(NT, NR)
2.

3. Combining properties 1 and 2, the optimal unitary precoder U1 can be

expressed as a linear combination of vectors aT(ϕ
l,k
T , θ

l,k
T ).

4. Given that aT(ϕ
l,k
T , θ

l,k
T ) are constant-magnitude phase-only vectors that can

be applied at RF using analog phase shifters, the mmWave transmitter can

employ NRF
T of the vectors aT(ϕ

l,k
T , θ

l,k
T ) and create arbitrary linear combi-

nations of aT(ϕ
l,k
T , θ

l,k
T ) by using the digital precoder VBB.

Accordingly, we can account for the restriction on the set VRF to aT(ϕ
l,k
T , θ

l,k
T ) and

the precoder problem (6.19a)–(6.19c) can be written as

min
Vopt

RF ,V
opt
BB

∥U1 −VΨ∥F (6.20a)

s.t. V
(l)
RF ∈ aT(ϕ

l,k
T , θ

l,k
T ), ∀l, k (6.20b)

∥VΨ∥2F = Ns, (6.20c)

2When NclNp ≤ NT, then the linear independence of aT(ϕ, θ) is guaranteed with probability
one
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Embedding V
(l)
RF into the optimisation objective (6.20a), we have

min
ṼBB

∥U1 −ATΨṼBB∥F (6.21a)

s.t.∥diag
(
ṼBBṼ

H
BB

)
∥0 = NRF

T (6.21b)

∥ATṼBB∥2F = Ns, (6.21c)

where AT =
[
aT(ϕ

1,1
T , θ1,1T ), . . . , aT(ϕ

Ncl,Np

T , θ
Ncl,Np

T )
]
is an NT×NclNp matrix con-

taining the array response vectors, while ṼBB is an NclNp × Ns matrix. The

roles of AT and ṼBB in obtaining Vopt
RF and Vopt

BB are auxiliary as far as the spar-

sity constraint ∥diag
(
ṼBBṼ

H
BB

)
∥0 = NRF

T is concerned. This implies that ṼBB

cannot have more than NRF
T non-zero rows.

The problem described by equations (6.21a)–(6.21c) is similar to the signal

recovery approximation problems with multiple measurement vectors [116, 117,

154]. Hence, we apply the orthogonal matching pursuit method 3 to solve the

problem as outlined in Algorithm 6.1. In particular, we begin by finding the vector

aT(ϕ
l,k
T , θ

l,k
T ) along which the optimal precoder, U1, has its maximum projection

in steps 3–6. Afterwards, the least-squares solution to VBB is obtained in step

7. In the next step, the algorithm finds the column for which the precoder has

the largest projection. This column results from the removal of the chosen vector

obtained from step 7. After NRF
T iterations, all the NRF

T beamforming vectors

will have been selected, i.e.,the precoding matrix VRF will have been constructed.

Also, the optimal baseband precoder VBB will have been found.

6.4.2 Hybrid combiner design

Given that the practical receivers will combine the received signals before de-

tection, we engage in the design of the hybrid combiners (WRF,WBB) in this

subsection to ensure that the MSE between the transmitted and received signals

is minimised over a practical mmWave channel with RTHIs.

In this context, the optimisation problem providing the combiners (WRF,WBB)

3The OMP method is most commonly in literature to design hybrid beamformers that
achieve spectral efficiency for constrained systems comparable to that of the optimal uncon-
strained beamformer due to its simple implementation and low complexity than other methods
such as the manifold optimisation [82] and the matrix decomposition [155].
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takes the form

min
Wopt

RF ,W
opt
BB

E
[
∥s−WH

Ω y∥22
]

(6.22a)

s.t. WRF ∈ WRF, (6.22b)

where y is the transmitted signal given in equation (6.2), WΩ = WRFΩWBB and

WRF denotes the set of NR×NRF
R matrices that describe the feasible RF combin-

ers and have constant-gain entries. Herein, we assume that the optimal precoders,

Algorithm 6.1: Orthogonal matching pursuit process to solve hybrid pre-
coder problem.

1 Require U1, Ψ
2 VRF = Empty Matrix
3 Vres = V1

4 for i ≤ NRF
T do

5 Π = ATΨVres

6 a = max
l=1,...,NclNp

(
ΠΠH

)
l,l

7 VRF =
[
VRF|A(a)

T

]
8 VBB =

(
VH

RFVRF

)−1
VH

RFU1

9 Vres =
U1−VΨ

∥U1−VΨ∥F
10 end

11 VBB =
√
Ns

VBB

||VRFVBB||F
12 Return VRF,VBB

(Vopt
RF , V

opt
BB), which have been determined by the transmitter, are fixed. Analo-

gous to the precoder design, no general solutions to equation (6.22a) are known,

due to the non-convexity of the constraint WRF ∈ WRF.
4 Hence, we provide

a transformation of the problem (4.51a)–(4.47b) which will allow us to find the

optimal hybrid combiners that minimise the MSE between the transmitted and

received signals. First, expanding the objective function of equation (6.22a) we

have

E
[
∥s−WH

Ω y∥22
]
= tr

(
E
[
ssH
])
−2R{tr

(
E
[
syH

]
WΩ

)
}+tr

(
WH

ΩE
[
yyH

]
WΩ

)
.

(6.23)

4Interestingly, an exact solution to the MSE optimisation problem in equation (6.22a) with-
out hardware impairments would have been possible with the implementation of the matrix
inversion lemma [28, 156].
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The optimisation problem described by equation (4.47a)–(4.47b) is conditioned

only on WRF and WBB. This implies that the addition of any constant which

is independent of WRF and WBB to the objective function would not change

the solution of equations (4.47a)–(4.47b). Accordingly, equation (6.23) can be

rewritten as

E
[
∥s−WH

Ω y∥22
]

= tr
(
WH

ME
[
yyH

]
WM

)
− tr

(
E
[
ssH
])

+ tr
(
E
[
ssH
])

− 2R{tr(E
[
syH

]
WΩ)}+ tr(WH

ΩE
[
yyH

]
WΩ). (6.24)

Here, we have introduced the term tr
(
WH

ME
[
yyH

]
WM

)
− tr

(
E
[
ssH
])
, where

WM is the common conventional solution to the unconstrained minimum MSE

problems given by

WH
M = E

[
syH

]
E
[
yyH

]−1

=
1
√
ρ

(
VH

ΨH
HHVΨ +

σ2Ns

ρ
INs

)−1

VH
ΨH

H . (6.25)

Substituting E
[
syH

]
= WH

ME
[
yyH

]
into equation (6.24), we have

E
[
∥s−WH

Ω y∥22
]

= tr
(
WH

ME
[
yyH

]
WM

)
− 2R{tr

(
E
[
WH

ME
[
yyH

]
WΩ

])
}

+ tr
(
WH

ΩE
[
yyH

]
WΩ

)
= tr

(
(WH

M −WH
Ω )E

[
yyH

]
(WH

M −WH
Ω )

H
)

(6.26)

(a)
= ∥E

[
yyH

]1/2
(WM −WΩ)∥F ,

where (a) follows from ∥A∥F =
√

tr(AAH). Due to equation (6.26), the optimi-

sation problem to find the optimal hybrid combiners becomes

min
Wopt

RF ,W
opt
BB

∥E
[
yyH

]1/2
(WM −WΩ)∥F (6.27a)

s.t. WRF ∈ WRF, , (6.27b)

In other words, we aim to find the projection of the unconstrained combiner

WM , weighted by E
[
yyH

]
, on to the set of combiners having the form WΩ =

WRFΩWBB. Comparable to the design of the optimal precoders in section 6.4.1,

it is algorithmically intractable to find this projection in closed form due to the

non-convexity of the set WRF. Accordingly, we exploit the aforementioned prop-

erties of the mmWave channel to result in a near-optimal solution to (6.27a).
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Specifically, an orthonormal basis is formed for the columns of WRF by the lin-

early independent array response vectors, aR(ϕ
l,k
R , θ

l,k
R ), so that the receiver utilises

NRF
R of the vectors aR(ϕ

l,k
R , θ

l,k
R ) at the RF using analog phase shifters. For this

reason, we can rewrite the optimisation problem (6.27a)–(6.27b) by restricting

the columns of WRF to have the form of aR(ϕ
l,k
R , θ

l,k
R ), as follows:

min
Wopt

RF ,W
opt
BB

∥E
[
yyH

]1/2
(WM −WΩ)∥F (6.28a)

s.t. W
(l)
RF ∈ aR(ϕ

l,k
R , θ

l,k
R ), ∀l, k. (6.28b)

Herein, the task is to find the optimal combiner in terms of the optimal basis

formed by aR(ϕ
l,k
R , θ

l,k
R ). Moreover, inserting W

(l)
RF into the objective function

(6.28a) results in equations (6.29a)–(6.29b) which use AR and W̃BB as auxiliary

matrices to obtain Wopt
BB:

min
W̃BB

∥E
[
yyH

] 1
2 WM − E

[
yyH

] 1
2 ARΩW̃BB∥F (6.29a)

s.t.∥diag
(
W̃BBW̃

H
BB

)
∥0 = NRF

R , (6.29b)

where AR =
[
aR(ϕ

1,1
R , θ1,1R ), . . . , aR(ϕ

Ncl,Np

R , θ
Ncl,Np

R )
]
is an NR×NclNp matrix con-

taining the array response vectors, while W̃B is an NclNp ×Ns matrix.

Algorithm 6.2: OMP-based algorithm for hybrid combiners.

1 Require WM , Ω
2 WRF = Empty Matrix
3 Wres = WM

4 for i ≤ NRF
R do

5 Π = AH
r ΩE

[
yyH

]
Wres

6 a = max
l=1,...,NclNp

(
ΠΠH

)
l,l

7 WRF =
[
WRF|A(a)

R

]
8 WBB =

(
WH

RFE
[
yyH

]
WRF

)−1
WH

RFE
[
yyH

]
WM

9 Wres =
WM−WΩ

∥WM−WΩ∥F
10 end
11 Return WRF,WBB

The optimisation problem described by equations (6.29b)–(6.29b) can also be

solved by using the orthogonal matching pursuit method as outlined in Algo-

rithm 6.2.
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Remark 6.3. Note that the design of the combiners relies on the decoupling of the

precoding and combining processes. Despite the fact that the decoupling process

decreases the complexity involved in the design of hybrid precoders and combiners

in mmWave systems with RTHIs, the process simplifies the transceiver design.

Hence, care must be taken to avoid an oversimplification of the process which can

lead to received power losses. In particular, to avoid this, it becomes pertinent

to start the design with the more constrained side of the mmWave system, i.e.,

either the transmitter or receiver side with the lowest number of RF chains.

6.5 Numerical Results

Our simulations verify the analytical transceiver design results provided by Algo-

rithms 6.1 and 6.2 and illustrate the impact of the various hardware impairments

on the spectral efficiency of the mmWave system. We consider a simulation

set-up where the transmitter communicates by means of a single stream to the

receiver with 8 clusters and 10 rays per cluster. Throughout the simulations,

the azimuth and elevation AoAs and AoDs are Laplacian-distributed with an

angular spread of 7.5◦ and the transmit power ρ is dependent on the signal to

Table 6.1: Parameter settings for simulation.

Notation Parameter Value
NT Number of transmit anten-

nas
64

NR Number of receive antennas 16
fc Carrier frequency 30 GHz
cn Oscillator constant 10−17

σ2 Thermal noise variance -174 dbm/Hz
Ns Number of transmit streams 1
NRF

T Number of transmit RF
chains

4

NRF
R Number of receive RF chains 4

BW Bandwidth 100 MHz
κ2R RATHI constant at the re-

ceiver
0.0156

κ2T RATHI constant at the
transmitter

0.0156
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Figure 6.2: Spectral efficiency versus the SNR achieved by a 16 × 64 mmWave
MIMO system showing the impact of PN with different number of RF chains.

noise ratio i.e., SNR =
ρ

σ2
z

. We assume equal power allocation in all precoding

and combining solutions. The PN is simulated as a discrete Wiener process, and

the ATN is Gaussian-distributed. A set of the parameters, inspired by related

studies on non-ideal hardware and mmWave communications [28, 135], with their

corresponding values are presented in Table 6.1. The objective of this section is

to compare the results obtained by ideal and non-ideal hardware (each separate

hardware impairment) in order to understand which impairments have a greater

impact and what conditions can provide improved system performance.

6.5.1 Multiplicative impairments (PN)

In Figs. 6.2 and 6.3, we investigate only the impact of PN on the spectral efficiency

achieved by means of hybrid precoding and combining on a 16 × 64 mmWave

MIMO system. As stated earlier in section 2.3.2, the attractiveness of hybrid

precoding in mmWave communications comes from the fact that it provides a

balance between hardware complexity and system performance. Given that in

hybrid precoding the number of RF chains can vary from one to the maximum

number of antennas (as in full digital precoding), in Fig. 6.2 we investigate the

impact of PN on the spectral efficiency when the number of RF chains is increased.
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Figure 6.3: Spectral Efficiency versus the SNR achieved by a 16 × 64 mmWave
MIMO system showing the impact of PN under different mmWave carrier fre-
quencies with NRF

T = NRF
R = 4 RF chains.

From this figure, it can be seen that the PN degrades the spectral efficiency much

more when 4 RF chains are used in spatial hybrid precoding than when 8 RF

chains are employed in the design. This can be explained by the fact that when the

LOs share a common oscillator, they experience the same PN, thus increasing the

number of RF chains moves the SE closer to that obtained in the fully digital case.

The result is striking because while the RF chains could be reduced to decrease the

complexity and communication costs, especially in mmWave systems with large

antenna arrays, we observe a degradation on the spectral efficiency performance

due to PN. Hence, this implies a remarkable design consideration. However, we

note that the results may differ when the LOs do not share a common oscillator

and have different PNs.

Fig. 6.3 provides a comparison of the spectral efficiency versus the SNR for dif-

ferent carrier frequencies. It can be observed from the figure that the degradation

of the spectral efficiency increases due to the PN as the communication moves to

higher mmWave frequencies. This result is important and implies that in practi-

cal scenarios the PN must be considered during the choice of the mmWave band

for the achievement of communication.
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6.5.2 RATHIs

Next, in Figs 6.4 and 6.5, we investigate how the RATHIs affect the spectral

efficiency. In other words, we assume the absence of phase and amplified thermal

noises. Specifically, in Fig. 6.4, we present the spectral efficiency against SNR

under varying values of transmit and receive RATHI constants (κ2T and κ2R),

respectively. These values are not arbitrary since they have been adopted from

system measurements in [135]. It can be observed that the impact of the RATHIs

is negligible at low SNR values, under 0 dB, as indicated by the saturation of the

spectral efficiency performance with respect to the ideal case. However, for SNR

values above 0 dB, the degradation of spectral efficiency grows with increasing

values of κ2T and κ2T. This result is particularly useful for mmWave systems be-

cause the mmWave transmissions are characterised by low signal-to-noise ratios,

implying that the distortion noises will have little impact on the system’s perfor-

mance. Another important observation is depicted in Fig. 6.5, which shows that

the transmit and receive distortion impairments contribute the same amount of

degradation to the spectral efficiency. As illustrated in the figure, when we set

κ2R = 0 and κ2T = 0.05 or κ2T = 0 and κ2R = 0.05, the spectral efficiency does

not change. This observation is quite interesting and useful. It suggests that in

the case of communication at the high SNR regime, in order to achieve a desired

spectral efficiency, a design scheme can be chosen by keeping κ2R constant and

varying κ2T, which determines the quality of transmitting hardware i.e, how prone

the transmitter is to impairments.
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Figure 6.4: Spectral efficiency versus the SNR achieved in a 16 × 64 mmWave
MIMO system showing the impact of the RATHIs.
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Figure 6.5: Spectral efficiency versus the SNR achieved in a 16 × 64 mmWave
MIMO system showing the impact of the RATHIs.

6.5.3 ATN

In order to demonstrate the effect of ATN on the system’s performance, we assume

that the rest of the impairments, i.e., the additive distortion and phase noises, are
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Figure 6.6: Spectral efficiency versus the SNR achieved in a 16 × 64 mmWave
MIMO system showing the impact of ATN.
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Figure 6.7: BER performance achieved in a 16 × 64 mmWave MIMO system
showing the impact of ATN under 4 QAM signalling.

considered to have no effect. Herein, we plot the spectral efficiency and bit error

rate versus the SNR for different values of ξ taken from circuit measurements
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Figure 6.8: Comparison of the spectral efficiency versus SNR achieved in a 16×64
mmWave MIMO system showing the impact of hardware imperfections (PN,
RATHI and ATN).

[135]. Specifically, in Fig. 6.6, it is shown that there is a steady degradation in

spectral efficiency performance across all SNR values and that this degradation

worsens with an increment in the value of ξ.

In Fig. 6.7, the variance of the ATN is set to ξ = 3σ2. It can be observed that

the error rate performance under the ideal hardware assumption decreases with

the improved channel conditions. In other words, the wider the angular spread

of the angles (AoAs and AoDs) used in transmission, the higher the probability

of error occurrence in the received signal. To quantify, to achieve a BER of

10−2, transmission with an angular spread of 7.5◦ achieves an approximate 6-dB

gain when compared with the error rate performance obtained by transmitting

with an angular spread of 180◦. Nevertheless, it can be noted that the amplified

thermal noise still degrades the performance at a steady rate. These results imply

that the amplified thermal noise must be considered in the planning of mmWave

communication systems.

Next, Figs 6.8 and 6.9 present a comparison of the spectral efficiency by

using ideal hardware and using imperfect hardware. In Fig. 6.8, the imperfect

hardware parameters are set to κ2T = κ2R = 0.0156, ξ = 1.58σ2, δ = 1.58 ×
10−4 and κ2T = κ2R = 0.03, ξ = 3σ2, δ = 3 × 10−4. These baseline hardware
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Figure 6.9: Comparison of the BER performance versus SNR achieved in a 16×64
mmWave MIMO system showing the impact of hardware imperfections (PN,
RATHI and ATN) under 4 QAM signalling.

imperfection values differ by the same ratio; in other words, the two values of

PN, ATN and RATHI have the same ratio of
13

25
. It can be observed that the

PN and the ATN increase monotonically with the SNR. Evidently, multiplicative

PN has the greatest impact, causing the most degradation in spectral efficiency

when compared with the performance using ideal hardware. Notably, however,

when comparing the degradation between each separate impairment for the given

specific ratio, ATN performs the worst. To quantify, at 5 dB, we observe a 2.45%,

10.22% and 0.99% decrease in spectral efficiency performance from the impact

of the PN, the ATN and the RATHI, respectively. Thus, the impact of ATN is

increasingly critical for higher values of ξ.

Finally, from Fig. 6.9, which illustrates both the bit error rate performance of

each separate impairment and the combined effects of all noises together, it can

be observed that RATHI have the same error performance as the ideal hardware

in low SNR regions and only affect the system in high SNR regimes. This result

validates the findings from Figs 6.4 and 6.5 which suggest that RATHIs can

be neglected in mmWave system design with hybrid precoding as their effect

is negligible. For the ATN-only effect, it can be observed that an increase in
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the number of errors is steady at all SNR values. It is apparent from the error

floor resulting from the effect of PN only that this multiplicative noise is highly

critical in mmWave systems and must not be neglected in the system design. In

addition, the combined effect of all noises on the error performance also results in

an error floor indicating the dominance of the PN. This result further highlights

the significance of PN and provides an opportunity to be explored for future work,

i.e., the design of the mmWave systems that are robust to multiplicative noise in

the transceiver hardware.

6.6 Conclusion

Hybrid precoding beamforming solutions are prominent in mmWave MIMO com-

munications as they provide a balance between complexity and spectral efficiency

of the systems. Even though hardware imperfections are residual in the compo-

nents that make up a communication system, their effects have not been taken

into account as most prior studies have assumed perfect hardware while study-

ing the performance of mmWave networks. The objective of this chapter was

to shed light on the impact of transceiver hardware impairments on mmWave

massive MIMO systems with hybrid precoding. Specifically, we designed hybrid

precoding and combining solutions which account for the three major hardware

impairments: the ATN, the RATHIs and the multiplicative PN. Simulation re-

sults which considered the impact of each impairment separately on the spectral

efficiency performance of the system show that the multiplicative PN causes the

highest degradation to the system’s performance. The RATHIs degrade the sys-

tem only at the high SNR regime, and the ATN causes a steady degradation to

the spectral efficiency. After examining how varying the number of RF chains

affects the impact of RATHIs, we noted that increasing the number of RF chains

reduces the impact of PN, which is the most critical of the three hardware im-

pairments on mmWave MIMO systems. This can be considered as a design choice

to improve the spectral efficiency performance of mmWave MIMO systems with

hybrid precoding in the presence of hardware transceiver impairments.
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Chapter 7

Conclusions

7.1 Summary of Contributions

Mobile communication systems are experiencing a steady period of exponential

growth in traffic, with smart wireless devices becoming ubiquitous, and the rapid

proliferation of social media. This fast-paced growth is straining the existing

digital wireless networks, and is pushing for new technologies that can support

the expectations of ever-increasing data rates.

While improvements in spectral efficiencies can be achieved using physical

layer techniques such as channel coding, MIMO and network densification, the

spectrum crunch in today’s cellular networks is a major obstacle to significant

capacity increase and flexibility in spectrum management and usage, leading to

a reduction in the scope of achievable improvements. Thus, it is imperative to

shift the communication paradigm by investigating bands of the spectrum that

have not been previously utilised for mobile communications.

To this end, the research in this thesis has addressed this pressing issue by

studying mobile communication at millimeter wave (mmWave) frequencies in

order to exploit the large amounts of unused bandwidth available within these

bands. We began by investigating the peculiarities of communication at higher

bands of the radio spectrum, and provided a tractable network architecture for

the deployment of mmWave systems in Chapter 3. Specifically, we analysed the

downlink performance of a multi-user mmWave CRAN system which employed

hybrid beamforming in both fronthaul and access links. Stochastic geometry was

used to characterise the spatially distributed RRHs and users in the system. We

derived analytical expressions of the outage probability, average data latency and
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throughput for two scenarios – when a typical user is served by the best RRH in

the network, and when the nearest RRH to the typical user is employed in trans-

mission. Additionally, we considered both noise-limited and interference-limited

settings to model different practical deployments of mmWave CRAN systems.

Results from that chapter have shown that although there exists a trade-off be-

tween density of RRHs and inter-cluster interference, the deployment of larger

antenna arrays can compensate for the degradation of communication in terms of

delivery latencies, throughput and outage probabilites with higher RRH deploy-

ment. This information could be used by engineers to make intelligent decisions

about maintaining a high-performance network.

In Chapter 4, to show that mmWave systems have the potential to provide the

device connectivity requirement of future generation communication networks,

we studied the energy-efficient hybrid transceiver design of mmWave interference

channels involving IoT devices. The system under consideration accounted for

the limited dynamic range at the transmitters and receivers. Since the joint

hybrid transceiver design problems are known to be non-convex, we transformed

them into their corresponding univariate maximisation problems and proposed

WMMSE alternating algorithms that are guaranteed to converge. Then, using

the concept of orthogonal matching pursuit, we proposed a hybrid transceiver

design algorithm that maximises the energy efficiency (EE) of the IoT network.

Furthermore, the design was extended to account for imperfect CSI scenarios.

Simulation results showed that the EE performance of the proposed algorithms is

comparable to results obtained by unconstrained digital beamforming with lower

complexity, indicating that mmWave systems can support IoT communication for

both perfect and imperfect CSI considerations, and give a more environmentally

friendly, energy-efficient system with lower complexity and high data rates.

Moreover, in consideration of real-life practical constraints such as transmit

power restrictions, hardware imperfections and limited feedback overhead, we

considered the impact of hardware impairments on the performance of mmWave

systems in Chapter 6, and investigated the rate-splitting (RS) transmission strat-

egy for multi-user mmWave systems with hybrid beamforming under imperfect

CSI in Chapter 5. The goal of Chapter 5 was to alleviate the adverse effects of

multi-user interference (MUI) resulting from imperfect CSI. The inherent sparsity

of mmWave channels was exploited to estimate the dominant paths of the channel

for each user. Based on this transmission strategy, the transmitted signal was

divided into a common message and a private message, then the transmit power
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was dynamically split between the private and common parts of the transmitted

signal. In addition, we proposed an alternating maximization algorithm to pro-

vide an optimal RS precoder that guarantees interference-free transmission for the

common message. Results show that the residual MUI in the system resulting

from channel estimation errors is tackled by RS as evidenced by the improve-

ment in sum-rate performance over conventional linear transmission techniques.

In Chapter 6, we developed a framework for modelling three main categories

of hardware imperfections, namely multiplicative phase noise, additive distortion

noise and amplified thermal noise, and analysed the impact of each noise category

on the achievable spectral efficiency of the system. It is evident from our analysis

that phase noise is the most critical of the three noise categories, and it was found

that an increase in the number of RF chains can reduce some of the detrimental

effects of phase noise on the system. This observation provides information that

can be used in the design of hybrid beamforming solutions which are prominent

in mmWave communication systems.

Overall, across Chapters 3 to 6 of this thesis, we have contributed an improve-

ment to the understanding of how the mmWave spectrum can be used to achieve

mobile communications, and we have shown that it is possible to deploy environ-

mentally friendly and energy-efficient mmWave systems with low complexity that

provide very low latencies and ultra-high data rates. In other words, mmWave

communications will be used to satisfy the requirements of the next-generation

communication networks.

7.2 Limitations and Scope for Further Work

The work presented in this thesis provides fundamental insights to the workings of

mmWave communications and brings to light several interesting areas for future

research. In this section, we present some of the possible extensions to this work.

7.2.1 Fronthaul interface analysis

As mentioned earlier in section 3.2, the interface of the fronthaul is constrained by

strict requirements of the CPRI standards which split functionally between the

BBU and RRHs in the network. While the analysis presented in Chapter 3 gives

an overview of the functionality split, it focuses on the access link transmissions
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between the RRHs and UEs. Therefore, specific studies providing performance

analysis that looks into the different functional splits of the fronthaul interface will

be of great interest. More recently, a new radio interface specification for 5G has

been released (eCPRI [157]) which allows a hardware and a software component

for the BBU, implying that physical-layer functionality can be split between the

BBU and RRHs, reducing the complexity of the RRHs and decreasing the data

rate demands in the fronthaul interface. Such studies would be worthwhile to

provide further insights into mmWave CRAN systems.

7.2.2 Hybrid beamforming architectures

• The hybrid beamforming framework employed in this thesis (Chapters 4–

6) focused on the phase shifters’ antenna configuration. This framework

was chosen as it is well established in literature for advanced analog beam-

forming. However, there are other recently-proposed analog strategies that

can be applied to hybrid beamforming, as mentioned in Chapter 2. There-

fore, the analysis in Chapter 5, and the hybrid beamforming solutions in

Chapters 4 and 6, can be extended for different antenna configurations,

i.e., switches and lenses. In addition, comparing these hybrid antenna con-

figurations would be worthwhile in finding relative advantages of different

hybrid beamforming solutions.

• Another restriction of the phase shifters hybrid beamforming framework

utilised in Chapters 4–6 is the assumption of phase-only control in the

analog domain. This assumption while valid for downlink scenarios when

the number of antennas at the receiver-end is small compared to the number

of transmit antennas, neglects amplitude-control which is necessary for the

management of side lobes and out-of-band-emissions. Therefore channel -

reconstruction-based hybrid beamforming frameworks which consider both

amplitude and phase control of the individual antennas in the RF domain

will be of great interest and provide more generalised results, complementing

the studies of Chapters 4–6.

• A related area worth exploring is the use of low-precision receivers as a

solution to the power consumption bottleneck of the MIMO operation in

mmWave systems. These low-precision receivers can also be employed in

conjunction with a hybrid beamforming framework to further minimise the
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power costs. Hence, the work of Chapters 4–6 can be extended using low-bit

ADC receivers.

7.2.3 Imperfect CSI considerations

• The mmWave CRAN study in Chapter 3 provides analytical expressions

to measure the outage probability, throughput and average latency of the

system. However, the derivations were based on the idealistic assumption of

the availability of perfect channel state at the BBU. Incorporating channel

uncertainty into the analysis, where imperfect CSI is available at the BBU,

will be of great interest and wider application.

• The EE study in Chapter 4 shows that energy-efficient hybrid beamformers

can be robustly designed for mmWave systems with low complexity by

incorporating channel uncertainty into the hybrid beamforming design, and

the derivations were based on the assumption of the stochastic error model.

In practice, however, the error model will vary based on the error type.

For instance, if quantisation errors are dominant in the available CSI, then

the deterministic norm bounded error model should be considered. In this

case, the optimisation problem to maximise the EE maximisation problem

is formulated as

max
VRF,VBB,WRF,WBB

min
∆

EE(VRF,VBB,WRF,WBB) (7.1a)

s.t.WRF ∈ WRF (7.1b)

VRF ∈ VRF (7.1c)

∥Vj,RFVj,BB∥2F ≤ Pj, ∀ j (7.1d)

{∆k,j : ∥∆k,j∥F ≤ εk,j}, ∀k, j, (7.1e)

where δ represents the error in channel measurements and ε denotes the

upper limit on the Frobenius norm of the channel error. Solving the prob-

lem described by equations (7.1a)–(7.1d) is not trivial as it involves solving

a multi-layered max–min problem when EE(VRF,VBB,WRF,WBB) is ex-

panded as in Lemma 4.1. The analytical difficulties involved in solving the

above problem is an important research direction for practical mmWave

beamforming designs.

• The RS study in Chapter 5 designs private and common hybrid precoders
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applicable to imperfect CSI scenarios of the mmWave system and shows

that the RS transmission strategy can result in spectral efficiency gains

over conventional linear transmission schemes in mmWave communications.

However, it does not provide a complete set of expressions to quantify the

achievable gains. Therefore, a theoretical study that provides derivations

which quantify the rate and DoF gains will be complementary to the results

presented in Chapter 5.

• The study of chapter 4 utilises the stochastic error model to describe the

imperfect channel scenario while the study of 5 relies on the compressed

sensing techniques for the estimated channel. However, it is also possible

to develop enhanced channel estimation schemes. Work in this direction

can focus on applying beamspace multiple signal classification method to

achieve high resolution estimates of the angles of arrival and departure or

exploiting the mmWave channel sparsity and developing codebook designs.

7.2.4 Interference Cancellation Techniques

• The study in Chapter 5 proposes the RS transmission as the strategy for

application in multi-user mmWave systems transmissions with imperfect

CSI scenarios to boost the achievable spectral efficiency. However, it relies

on successive interference cancellation at the receiver which is sensitive in

terms of the processing complexity and hardware requirements which scale

with the number of antennas. Therefore, it will be of interest to extend the

work of Chapter 5 by investigating less complex interference cancellation

techniques.

7.2.5 Quality of service considerations

The study in Chapter 4 focused on the EE maximisation hybrid transceiver design

and highlighted how efficiently the mmWave spectrum can be utilised. Further

work which considers the issue of quality of service will be of great interest as it

will ensure that each user is guaranteed their desired rate with minimum transmit

power. This can be achieved by solving a sum-power minimisation problem.

For the system model considered in Chapter 4, the sum-power minimization
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problem is formulated as

min
F

∑K

j=1
tr{FjF

H
j } (7.2a)

s.t.Ij(F) ≥ Rj, ∀ j, (7.2b)

where Rj is the desired rate at receive device j and Ij denotes the corresponding
achievable rate given as

Ij = log
∣∣INR

+Σ−1
j Hj,jFjF

H
j H

H
j,j

∣∣. (7.3)

Similar to the EE maximization problem, we can establish a relationship be-

tween the WSR and WMMSE, and reformulate the sum-power minimization

problem under individual MSE weights as follows

min
F,W,Q

∑K

j=1
tr{FjF

H
j } (7.4a)

s.t. tr {QjMj} − log
∣∣ln2Qj

∣∣− Ns

ln2
≤ −Rj, ∀ j, (7.4b)

where Qj represents the weight matrix associated with device j, and Mj denotes

the MSE matrix of the jth transmitter–receiver pair as defined in equation (4.36).

Solving the sum-power minimisation problem will be worthwhile and complemen-

tary to the results presented in Chapter 4.

7.2.6 Hardware impairment characterisation

• The work on hardware impairments in Chapter 6 offers a practical stand-

point for the design of hybrid beamformers for mmWAve systems. How-

ever, our analysis is restricted to a single-user MIMO configuration, giving

fundamental insights into the effect of the inevitable transceiver hardware

impairments. Consequently, it will be of interest to extend the work of

this chapter to a more general multi-user scenario for a wider application.

Considering K users with the transceiver impairments in equation (6.12),

we can adapt it as

R=
K∑
k=1

log2

(∣∣∣∣INs +
ρ

σ2Ns

R−1
k WH

Ωk
HkVΨk

VH
Ψk
HH
k WΩk

∣∣∣∣) , (7.5)
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where Rk is the interference plus noise covariance matrix, given as

Rk =
K∑

i=1,i ̸=k

WH
Ωk
HkVΨi

VH
Ψi
HH
k WΩk

+

(
κ2T
ρK

Ns

+ κ2k,RρVΨk
VH

Ψk

)
×WH

Ωk
HkH

H
k WΩk

+ ξzW
H
Ωk
WΩk

, (7.6)

and the remaining variables are defined as in equation (6.12). To design the

hybrid beamformers that maximise the sum rate in equation (7.5) is not

trivial, as the generalised interference-cancellation methods such as zero-

forcing will not sufficiently deal with the hardware impairments from other

users. Hence, this additional interference source needs to be characterised

with appropriate models. Investigations into this modelling and the re-

sulting optimisation problem will be a welcome extension to the work of

Chapter 6.

• For the rate-maximisation problem in equations (6.16a)–(6.16c), we pro-

vided an algorithm with a relaxed condition that assumes VΨV
H
Ψ ≈ I.

This approximation is valid for our approach of minimising the Euclidean

distance between the optimal unconstrained precoder and the hybrid pre-

coder VΨ. Further work on more generalised hybrid precoder designs has

the potential to further improve the results of Chapter 6 and provide more

insights. In such cases, we need to solve

max
Vopt

RF ,V
opt
BB

log2

(∣∣∣INs +
ρ

σ2Ns

HVΨV
H
ΨH

H(
κ2T

ρ

Ns

+ κ2RρVΨVH
Ψ

)
HHH

∣∣∣) (7.7a)

s.t. VRF ∈ VRF (7.7b)

∥VΨ∥2F = Ns, (7.7c)

where VΨ = VRFΨVBB, which is non-trivial since VΨ appears both in the

numerator and denominator of the objective function and has a non-convex

constraint.
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