34 research outputs found

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Simulation and Analysis of Walking on Compliant Surfaces

    Get PDF
    abstract: There are a large group of amputees living in the country and the number of them is supposed to increase a lot in the following years. Among them, lower-limb amputees are the majority. In order to improve the locomotion of lower-limb amputees, many prostheses have been developed. Most commercially available prostheses are passive. They can not actively provide pure torque as an intact human could do. Powered prostheses have been the focus during the past decades. Some advanced prostheses have been successful in walking on level ground as well as on inclined surface and climbing stairs. However, not much work has been done regarding walking on compliant surfaces. My preliminary studies on myoelectric signals of the lower limbs during walking showed that there exists difference in muscle activation when walking on compliant surfaces. However, the mapping of muscle activities to joint torques for a prosthesis that will be capable of providing the required control to walk on compliant surfaces is not straightforward. In order to explore the effects of surface compliance on leg joint torque, a dynamic model of the lower limb was built using Simscape. The simulated walker (android) was commanded to track the same kinematics data of intact human walking on solid surface. Multiple simulations were done while varying ground stiffness in order to see how the torque at the leg joints would change as a function of the ground compliance. The results of this study could be used for the control of powered prostheses for robust walking on compliant surfaces.Dissertation/ThesisMasters Thesis Aerospace Engineering 201

    Morphology independent dynamic locomotion control for virtual characters

    Get PDF
    Physically based animation of virtual characters is an attractive technology for computer games. It enables characters to dynamically react to interactions with the environment. Existing dynamic simulation controllers are often complex to understand and manipulate, and so are of limited use for animators. This paper presents an extended spline-based control strategy similar to splines used in standard keyframe animation techniques. Unlike existing dynamic control strategies, this allows animators to modify the control system parameters in a manner similar to traditional kinematic animation techniques. A genetic algorithm is employed to produce the initial control parameters for the desired gait, and extend the parameters to enable sensory feedback. The controllers are simulated in a 3D environment and demonstrated for bipedal, tripedal and snake-like characters

    From walking to running: robust and 3D humanoid gait generation via MPC

    Get PDF
    Humanoid robots are platforms that can succeed in tasks conceived for humans. From locomotion in unstructured environments, to driving cars, or working in industrial plants, these robots have a potential that is yet to be disclosed in systematic every-day-life applications. Such a perspective, however, is opposed by the need of solving complex engineering problems under the hardware and software point of view. In this thesis, we focus on the software side of the problem, and in particular on locomotion control. The operativity of a legged humanoid is subordinate to its capability of realizing a reliable locomotion. In many settings, perturbations may undermine the balance and make the robot fall. Moreover, complex and dynamic motions might be required by the context, as for instance it could be needed to start running or climbing stairs to achieve a certain location in the shortest time. We present gait generation schemes based on Model Predictive Control (MPC) that tackle both the problem of robustness and tridimensional dynamic motions. The proposed control schemes adopt the typical paradigm of centroidal MPC for reference motion generation, enforcing dynamic balance through the Zero Moment Point condition, plus a whole-body controller that maps the generated trajectories to joint commands. Each of the described predictive controllers also feature a so-called stability constraint, preventing the generation of diverging Center of Mass trajectories with respect to the Zero Moment Point. Robustness is addressed by modeling the humanoid as a Linear Inverted Pendulum and devising two types of strategies. For persistent perturbations, a way to use a disturbance observer and a technique for constraint tightening (to ensure robust constraint satisfaction) are presented. In the case of impulsive pushes instead, techniques for footstep and timing adaptation are introduced. The underlying approach is to interpret robustness as a MPC feasibility problem, thus aiming at ensuring the existence of a solution for the constrained optimization problem to be solved at each iteration in spite of the perturbations. This perspective allows to devise simple solutions to complex problems, favoring a reliable real-time implementation. For the tridimensional locomotion, on the other hand, the humanoid is modeled as a Variable Height Inverted Pendulum. Based on it, a two stage MPC is introduced with particular emphasis on the implementation of the stability constraint. The overall result is a gait generation scheme that allows the robot to overcome relatively complex environments constituted by a non-flat terrain, with also the capability of realizing running gaits. The proposed methods are validated in different settings: from conceptual simulations in Matlab to validations in the DART dynamic environment, up to experimental tests on the NAO and the OP3 platforms

    Implementation of a robot platform to study bipedal walking

    Get PDF
    On this project, a modi cation of an open source, 3D printed robot, was implemented, with the purpose to create a more a ordable bipedal platform proper for studying Bipedal Walking algorithms. The original robot is a part of an open-source platform, called Poppy, that is formed from an interdisciplinary community of beginners and experts. One of the robots of this platform, is the Poppy Humanoid. The rigid parts of the Poppy Humanoid (as well as the rest of the Poppy platform robots) are 3D printed, a key factor of lowering the cost of a robot. The actuators used though, are expensive commercial DC-motors that increase the total cost of the robot drastically. This high cost of the actuators of Poppy, led this project to modify cheaper actuators while maintaining the same performance of their predecessors. Taking apart the components of the cheaper actuator, only the motor, the gears and the case that host them were kept, and a new design was made to control the motor and to meet the requirements set from the commercial motors. This new design of the actuator include a 12-bit resolution magnetic encoder to read the position of the shaft of the motor, a driver to run the motor, and also an embedded Arduino micro-controller. This feature of an Arduino as part of the actuator, gives the advantage over the commercial motor, as the user has the freedom to upload his own codes and to implement his own motor controllers. The result is a fully programmable actuator hosted on the same motor case. The size of this actuator though, is di erent from the commercial one. In order to mount the new actuators to the platform, Joan Guasch designed proper 3D printed parts. Apart of these parts, Joan also modi ed the leg design, in order to add another joint on the ankle (roll) as this Degree of Freedom (DoF) is important for Bipedal Walking algorithms and was missing from the original Poppy Humanoid leg design. The modi ed robot, is called Poppy-UPC and is a 12 DoF biped platform. For the communication between the motors and the main computer unit, a serial communication protocol was implemented based to the RS-485 standard. Multiple receivers (motors and sensors) can be connected to such a network in a linear, multi-drop con guration. The main computer unit of Poppy-UPC is an Odroid-C1 board. Essentially, this board is a Quad-core Linux computer fully compatible to run ROS. Odroid is acting as the master of the network and is gathering all the informations of the connected nodes, in order to publish them in ROS-topics. That way, the Poppy-UPC is connected to the ROS environment and ROS packages can be used for any further implementation with this platform. Finally, following the open-source spirit of the Poppy platform, all the codes and information are available at https://github.com/dimitris-zervas

    Simulating a Flexible Robotic System based on Musculoskeletal Modeling

    Get PDF
    Humanoid robotics offers a unique research tool for understanding the human brain and body. The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research, with the recent advent of complex humanoid systems. This work presents the design and development of a new-generation bipedal robot. Its modeling and simulation has been realized by using an open-source software to create and analyze dynamic simulation of movement: OpenSim. Starting from a study by Fuben He, our model aims to be used as an innovative approach to the study of a such type of robot in which there are series elastic actuators represented by active and passive spring components in series with motors. It has provided of monoarticular and biarticular joint in a very similar manner to human musculoskeletal model. This thesis is only the starting point of a wide range of other possible future works: from the control structure completion and whole-body control application, to imitation learning and reinforcement learning for human locomotion, from motion test on at ground to motion test on rough ground, and obviously the transition from simulation to practice with a real elastic bipedal robot biologically-inspired that can move like a human bein

    Bipedal humanoid robot control by fuzzy adjustment of the reference walking plane

    Get PDF
    The two-legged humanoid structure has advantages for an assistive robot in the human living and working environment. A bipedal humanoid robot can avoid typical obstacles at homes and offices, reach consoles and appliances designed for human use and can be carried in human transport vehicles. Also, it is speculated that the absorption of robots in the human shape into the human society can be easier than that of other artificial forms. However, the control of bipedal walk is a challenge. Walking performance on solely even floor is not satisfactory. The complications of obtaining a balanced walk are dramatically more pronounced on uneven surfaces like inclined planes, which are quite commonly encountered in human surroundings. The difficulties lie in a variety of tasks ranging from sensor and data fusion to the design of adaptation systems which respond to changing surface conditions. This thesis presents a study on bipedal walk on inclined planes with changing slopes. A Zero Moment Point (ZMP) based gait synthesis technique is employed. The pitch angle reference for the foot sole plane −as expressed in a coordinate frame attached at the robot body − is adjusted online by a fuzzy logic system to adapt to different walking surface slopes. Average ankle pitch torques and the average value of the body pitch angle, computed over a history of a predetermined number of sampling instants, are used as the inputs to this system. The proposed control method is tested via walking experiments with the 29 degreesof- freedom (DOF) human-sized full-body humanoid robot SURALP (Sabanci University Robotics Research Laboratory Platform). Experiments are performed on even floor and inclined planes with different slopes. The results indicate that the approach presented is successful in enabling the robot to stably enter, ascend and leave inclined planes with 15 percent (8.5 degrees) grade. The thesis starts with a terminology section on bipedal walking and introduces a number of successful humanoid robot projects. A survey of control techniques for the walk on uneven surfaces is presented. The design and construction of the experimental robotic platform SURALP is discussed with the mechanical, electronic, walking reference generation and control aspects. The fuzzy reference adjustment system proposed for the walk on inclined planes is detailed and experimental results are presented
    corecore