142 research outputs found

    Intelligent Navigation Service Robot Working in a Flexible and Dynamic Environment

    Get PDF
    Numerous sensor fusion techniques have been reported in the literature for a number of robotics applications. These techniques involved the use of different sensors in different configurations. However, in the case of food driving, the possibility of the implementation has been overlooked. In restaurants and food delivery spots, enhancing the food transfer to the correct table is neatly required, without running into other robots or diners or toppling over. In this project, a particular algorithm module has been proposed and implemented to enhance the robot driving methodology and maximize robot functionality, accuracy, and the food transfer experience. The emphasis has been on enhancing movement accuracy to reach the targeted table from the start to the end. Four major elements have been designed to complete this project, including mechanical, electrical, electronics, and programming. Since the floor condition greatly affecting the wheels and turning angle selection, the movement accuracy was improved during the project. The robot was successfully able to receive the command from the restaurant and go to deliver the food to the customers\u27 tables, considering any obstacles on the way to avoid. The robot has equipped with two trays to mount the food with well-configured voices to welcome and greet the customer. The performance has been evaluated and undertaken using a routine robot movement tests. As part of this study, the designed service wheeled robot required to be with a high-performance real-time processor. As long as the processor was adequate, the experimental results showed a highly effective search robot methodology. Having concluded from the study that a minimum number of sensors are needed if they are placed appropriately and used effectively on a robot\u27s body, as navigation could be performed by using a small set of sensors. The Arduino Due has been used to provide a real-time operating system. It has provided a very successful data processing and transfer throughout any regular operation. Furthermore, an easy-to-use application has been developed to improve the user experience, so that the operator can interact directly with the robot via a special setting screen. It is possible, using this feature, to modify advanced settings such as voice commands or IP address without having to return back to the code

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Assisting Human Motion-Tasks with Minimal, Real-time Feedback

    Get PDF
    Teaching physical motions such as riding, exercising, swimming, etc. to human beings is hard. Coaches face difficulties in communicating their feedback verbally and cannot correct the student mid-action; teaching videos are two dimensional and suffer from perspective distortion. Systems that track a user and provide him real-time feedback have many potential applications: as an aid to the visually challenged, improving rehabilitation, improving exercise routines such as weight training or yoga, teaching new motion tasks, synchronizing motions of multiple actors, etc. It is not easy to deliver real-time feedback in a way that is easy to interpret, yet unobtrusive enough to not distract the user from the motion task. I have developed motion feedback systems that provide real-time feedback to achieve or improve human motion tasks. These systems track the user\u27s actions with simple sensors, and use tiny vibration motors as feedback devices. Vibration motors provide feedback that is both intuitive and minimally intrusive. My systems\u27 designs are simple, flexible, and extensible to large-scale, full-body motion tasks. The systems that I developed as part of this thesis address two classes of motion tasks: configuration tasks and trajectory tasks. Configuration tasks guide the user to a target configuration. My systems for configuration tasks use a motion-capture system to track the user. Configuration-task systems restrict the user\u27s motions to a set of motion primitives, and guide the user to the target configuration by executing a sequence of motion-primitives. Trajectory tasks assume that the user understands the motion task. The systems for trajectory tasks provide corrective feedback that assists the user in improving their performance. This thesis presents the design, implementation, and results of user experiments with the prototype systems I have developed

    Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology, Volume 1

    Get PDF
    These proceedings are organized in the same manner as the conference's contributed sessions, with the papers grouped by topic area. These areas are as follows: VE (virtual environment) training for Space Flight, Virtual Environment Hardware, Knowledge Aquisition for ICAT (Intelligent Computer-Aided Training) & VE, Multimedia in ICAT Systems, VE in Training & Education (1 & 2), Virtual Environment Software (1 & 2), Models in ICAT systems, ICAT Commercial Applications, ICAT Architectures & Authoring Systems, ICAT Education & Medical Applications, Assessing VE for Training, VE & Human Systems (1 & 2), ICAT Theory & Natural Language, ICAT Applications in the Military, VE Applications in Engineering, Knowledge Acquisition for ICAT, and ICAT Applications in Aerospace

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Real-time Target Tracking and Following with UR5 Collaborative Robot Arm

    Get PDF
    The rise of the camera usage and their availability give opportunities for developing robotics applications and computer vision applications. Especially, recent development in depth sensing (e.g., Microsoft Kinect) allows development of new methods for Human Robot Interaction (HRI) field. Moreover, Collaborative robots (co-bots) are adapted for the manufacturing industry. This thesis focuses on HRI using the capabilities of Microsoft Kinect, Universal Robot-5 (UR5) and Robot Operating System (ROS). In this particular study, the movement of a fingertip is perceived and the same movement is repeated on the robot side. Seamless cooperation, accurate trajectory and safety during the collaboration are the most important parts of the HRI. The study aims to recognize and track the fingertip accurately and to transform it as the motion of UR5. It also aims to improve the motion performance of UR5 and interaction efficiency during collaboration. In the experimental part, nearest-point approach is used via Kinect sensor's depth image (RGB-D). The approach is based on the Euclidean distance which has robust properties against different environments. Moreover, Point Cloud Library (PCL) and its built-in filters are used for processing the depth data. After the depth data provided via Microsoft Kinect have been processed, the difference of the nearest points is transmitted to the robot via ROS. On the robot side, MoveIt! motion planner is used for the smooth trajectory. Once the data has been processed successfully and the motion code has been implemented without bugs, 84.18% total accuracy was achieved. After the improvements in motion planning and data processing, the total accuracy was increased to 94.14%. Lastly, the latency was reduced from 3-4 seconds to 0.14 seconds
    • …
    corecore