
BURAK TEKE
REAL–TIME TARGET TRACKING AND FOLLOWING
WITH UR5 COLLABORATIVE ROBOT ARM

Master of Science thesis

Examiners: Assoc. Prof. Minna Lanz,
Assoc. Prof. Joni–Kristian Kämäräinen
Examiners and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 2nd May 2018

I

ABSTRACT

BURAK TEKE: Real–time Target Tracking and Following
with UR5 Collaborative Robot Arm
Tampere University of Technology
Master of Science thesis, 70 pages, 6 Appendix pages
May 2018
Master’s Degree Programme in Signal Processing
Major: Robotics
Examiners: Assoc. Prof. Minna Lanz, Assoc. Prof. Joni–Kristian Kämäräinen
Keywords: Universal Robot–5, Target tracking, Human–robot interaction, Collaborative
robots, Trajectory planning, ROS, Microsoft Kinect

The rise of the camera usage and their availability give opportunities for developing

robotics applications and computer vision applications. Especially, recent develop-

ment in depth sensing (e.g., Microsoft Kinect) allows development of new methods

for Human Robot Interaction (HRI) field. Moreover, Collaborative robots (co–bots)

are adapted for the manufacturing industry.

This thesis focuses on HRI using the capabilities of Microsoft Kinect, Universal

Robot–5 (UR5) and Robot Operating System (ROS). In this particular study, the

movement of a fingertip is perceived and the same movement is repeated on the robot

side. Seamless cooperation, accurate trajectory and safety during the collaboration

are the most important parts of the HRI. The study aims to recognize and track the

fingertip accurately and to transform it as the motion of UR5. It also aims to improve

the motion performance of UR5 and interaction efficiency during collaboration.

In the experimental part, nearest–point approach is used via Kinect sensor’s depth

image (RGB–D). The approach is based on the Euclidean distance which has robust

properties against different environments. Moreover, Point Cloud Library (PCL)

and its built–in filters are used for processing the depth data. After the depth data

provided via Microsoft Kinect have been processed, the difference of the nearest

points is transmitted to the robot via ROS. On the robot side, MoveIt! motion

planner is used for the smooth trajectory. Once the data has been processed suc-

cessfully and the motion code has been implemented without bugs, 84.18% total

accuracy was achieved. After the improvements in motion planning and data pro-

cessing, the total accuracy was increased to 94.14%. Lastly, the latency was reduced

from 3–4 seconds to 0.14 seconds.

II

PREFACE

The study presented in this thesis has been carried out with the UNITY team at

the Mechanical Engineering and Industrial Systems (MEI) department of Tampere

University of Technology (TUT), Finland from October 2017 to May 2018.

First and foremost, I would like to express my deepest gratitude to my supervisors

Assoc. Prof. Minna Lanz and Assoc. Prof. Joni–Kristian Kämäräinen for their end-

less support and help in all kinds of issues I encountered throughout this project.

Secondly, I would like to thank Asst. Prof. Roel Pieters, Antti Hietanen, Alireza

Changizi, Jussi Halme and Jyrki Latokartano for their guidance during the study. I

would also like to thank Jane & Aatos Erkko Foundation and Technology Industries

of Finland Centennial Foundation for the support of UNITY (2016-2019) project.

Lastly, but definitely not least, I would like to express my deepest gratitude and

love to my family, who taught me the value of lifelong learning and critical thinking,

and to whom this work is dedicated.

Tampere, 5 April 2018

Burak Teke

III

CONTENTS

1. INTRODUCTION . 1

1.1 Objectives and Outline of the Thesis 3

1.2 Limitations . 3

1.3 Research Questions and Research Methodology 4

1.4 Publications and Author’s Contribution 5

2. BACKGROUND . 6

2.1 Mathematical Overview of Robots . 6

2.1.1 Robotic Systems . 7

2.1.2 Kinematic Manipulators . 7

2.1.3 Modeling of Robots . 9

2.1.4 Rigid Motions and Homogeneous Transformation 11

2.1.5 Direct Kinematics . 16

2.1.6 Inverse Kinematics . 19

2.1.7 Velocity Kinematics . 22

2.1.8 Trajectory Planning . 26

2.2 Human Robot Interaction . 29

2.2.1 Practices in HRI . 30

2.2.2 Challenges in HRI . 30

2.3 Related Work . 31

2.4 Chapter Summary . 32

3. SYSTEM OVERVIEW . 33

3.1 Development Environments and Equipments 33

3.1.1 Robot Operating System (ROS) 33

3.1.2 Point Cloud Library (PCL) . 34

3.1.3 Gazebo Simulation Tool (GST) and ROS visualization (rviz) . . . 34

3.1.4 Universal Robot–5 (UR5) . 36

3.1.5 Microsoft Kinect v2 . 36

IV

3.1.6 libfreenect2 and IAI Kinect2 . 37

3.2 Motion Planners . 38

3.2.1 Moveit! Motion Planner . 39

3.2.2 The Open Motion Planning Library (OMPL) 43

3.3 Chapter Summary . 44

4. IMPLEMENTATION . 45

4.1 Execution and Filtering Process . 45

4.1.1 Mapping . 45

4.1.2 Pre–Processing of Point Cloud 46

4.1.3 Data Acquisition . 46

4.1.4 Euclidean Distance . 47

4.1.5 k–Nearest Neighbors (k–NN) . 48

4.1.6 Point Cloud Environment without Filter 49

4.1.7 Voxel Grid (VG) Filter . 49

4.1.8 Radius Outlier Removal (ROR) Filter 50

4.1.9 Statistical Outlier Removal (SOR) Filter 52

4.1.10 Performance Measures . 54

4.2 Chapter Summary . 54

5. RESULTS AND DISCUSSION . 56

5.1 Results . 56

5.2 Discussion . 59

5.3 Chapter Summary . 60

6. TROUBLESHOOTING . 61

6.1 Problems and Solutions . 61

7. CONCLUSIONS . 62

Bibliography . 64

Appendices . 71

A. SKEW SYMMETRIC MATRIX . 72

V

B. UNIVERSAL ROBOT–5 SPECIFICATIONS 74

B.1 Universal Robot–5 Technical Specifications 74

B.2 Universal Robot–5 MDH Parameters 75

VI

LIST OF FIGURES

1.1 Taxonomy of HRI metrics based on [43]. 2

2.1 Symbolic representations of robot joints. 6

2.2 Components of a robotic system. 7

2.3 Structure of the articulated manipulator (RRR). 8

2.4 Structure of the spherical manipulator (RRP). 8

2.5 Structure of the SCARA. 9

2.6 Structure of the cylindrical manipulator. 9

2.7 Structure of the cartesian manipulator. 10

2.8 Structure of the Universal Robot–5. 10

2.9 Modified Denavit–Hartenberg convention parameters. 11

2.10 UR5 coordinate frames with respect to the MDH convention. 19

2.11 Spherical wrist vs. Non-spherical wrist configuration. 21

2.12 Inverse kinematics solutions for UR5. 22

3.1 An overview of the operation of the system. 33

3.2 Point cloud environment. 34

3.3 Nearest point in the PCL. 35

3.4 Start state of Gazebo Simulation Tool (GST) and ROS visualization

(rviz). 35

3.5 Final state of Gazebo Simulation Tool (GST) and ROS visualization

(rviz). 36

3.6 MDH parameters of UR5. 37

LIST OF FIGURES VII

3.7 Microsoft Kinect v2 right–handed coordinate system and its compo-

nents. 38

3.8 An example setup for Microsoft Kinect v2 calibration [75]. 38

3.9 MoveIt! Setup Assistant. 40

3.10 Moveit! structure. 41

3.11 Motion planner request. 42

3.12 World Geometry Monitor. 43

3.13 The Open Motion Planning Library (OMPL) structure. 44

4.1 Point cloud environment before downsampling. 45

4.2 Point cloud environment after downsampling. 46

4.3 Environment of system. 47

4.4 Comparision of filters. 48

4.5 The first frame without any filters applied. 49

4.6 The second frame without any filters applied. 50

4.7 The third frame without any filters applied. 50

4.8 Nearest point calculation at the starting time after applying VG filter. 51

4.9 Nearest point calculation at the final time after applying VG filter. . 51

4.10 Radius Outlier Removal (ROR) filter. 52

4.11 The initial state of point cloud environment after applying SOR and

VG filter. 53

4.12 The final state of point cloud environment after applying SOR and

VG filter. 54

5.1 The test trajectory of UR5 . 57

5.2 Accuracy of the trajectory after applying VG, ROR and SOR filters. 57

VIII

5.3 Accuracy of the trajectory after applying VG and SOR filters 58

IX

LIST OF TABLES

5.1 ACCURACY OF THE TRAJECTORY USING CARTESIAN PATH

PLANNING METHOD WITH VG, ROR AND SOR FILTERS . . . 58

5.2 ACCURACY OF THE TRAJECTORY USING TIME PARAME-

TERIZATION METHOD WITH VG AND SOR FILTERS 59

B.1 UR5 MDH PARAMETERS . 75

X

LIST OF PROGRAMS

3.1 MoveIt! Cartesian path planning example code 41

6.1 UR driver permission error . 61

XI

LIST OF ABBREVIATIONS AND SYMBOLS

AI Artificial Intelligence

CHOMP Covariant Hamiltonian Optimization for Motion Planning

CPU Central Processing Unit

C++ Programming language

D Dimension

DH Denavit–Hartenberg convention

DOF Degrees of Freedom

FEMD Finger–Earth Mover’s Distance

GPU Graphics Processing Unit

GST Gazebo Simulation Tool

HRI Human Robot Interaction

IK Inverse Kinematics

IR Infrared

ISO International Organization for Standardization

k–NN k–Nearest Neighbors

LTS Long Term Support

MAPE Mean Absolute Percentage Error

MDH Modified Denavit–Hartenberg

OMPL Open Motion Planning Library

P Prismatic joint

PCL Point Cloud Library

PERMIS Performance Metrics for Intelligent Systems

R Revolute joint

RGB–D Red Green Blue and Depth data

ROR Radius Outlier Removal

ROS Robot Operating System

RPY Roll–Pitch–Yaw angle

rviz Robot Operating System visualization tool

R&D Research and Development

SBPL Search Based Planning Library

SCARA Selective Compliant Articulated Robot for Assembly

SOR Statistical Outlier Removal

SRDF Semantic Robot Description Format

STOMP Stochastic Trajectory Optimization for Motion Planning

TCP Tool Center Point

TOF Time of Flight

XII

TS Technical Specification

UAV Unmanned Aerial Vehicles

URDF Unified Robot Description Format

UR5 Universal Robot–5

USAR Urban Search and Rescue

VG Voxel Grid

zi Axis of rotation or axis of translation

θ Joint variable for rotational joint

d Joint variable for linear joint

R Rotation matrix

SO(n) Special Orthogonal group of order n

oixiyizi Cartesian coordinate frame i, attached to link i

ϕ First Euler angle

ϑ Second Euler angle

ψ Third Euler angle

φ Orientation vector based on Euler angles

RZY Z ZYZ Euler angle transformation

o0x0y0z0 Base coordinate frame

rij Elements of a rotation matrix

r A unit vector that defines an axis for angle/axis representation

H Homogeneous transformation matrix

n Number of joints

ji Joint i

li Link i

q Joint position variables vector

0 Row vector (0,0,0)

Ai Homogeneous transformation matrix of each link

T ij Homogeneous transformation matrix that gives position and orien-

tation of frame j with respect to frame i

oij Translation vector pointing from the origin of coordinate frame i to

the origin of coordinate frame j

θi MDH parameter, joint angle of link i

ai MDH parameter, link length of link i

di MDH parameter, link offset of link i

αi MDH parameter, link twist of link i

Rot.,. Basic homogeneous transformation matrix describing a pure rota-

tion about a given axis with a given angle

XIII

Trans.,. Basic homogeneous transformation matrix describing a pure trans-

lation in direction of a given axis with a given distance

hij Elements of a desired homogeneous transformation matrix

J Manipulator Jacobian

Ja Analytical Jacobian

Jg Geometric Jacobian

q̇ Joint velocity variables vector

F End–effector forces

τ Joint torque vector

X End–effector pose based on a minimal representation for the orien-

tation of the end–effector frame with respect to the base frame

Ẋ End–effector velocity e based on a minimal representation for the

orientation of the end–effector frame with respect to the base frame

Ẍ End–effector acceleration e based on a minimal representation for

the orientation of the end–effector frame with respect to the base

frame

ωij Angular velocity vector of link j, expressed in coordinate frame i

vij Linear velocity vector of link j, expressed in coordinate frame i

S Skew symmetric matrix

Jv Linear part of geometric Jacobian

Jω Angular part of geometric Jacobian

ξ Vector of body velocities (Not the derivation of a position variable)

β Minimal representation of the the end effector frame’s orientation

with regard to the fixed frame.

B Transformation matrix between the non–minimalistic angular veloc-

ity ω and the minimalistic angular velocity β̇

Q Configuration space

q0 Initial position for trajectory planning

qf Final position for trajectory planning

v0 Initial velocity for trajectory planning

vf Final velocity for trajectory planning

α0 Initial acceleration for trajectory planning

αf Final acceleration for trajectory planning

L2 Euclidean norm

p A point in Cartesian space

q A point in Cartesian space

An Current value of the reference trajectory

Fn Current value of the test trajectory

j Jump threshold factor parameter for MoveIt! motion planner

XIV

LIST OF PUBLICATIONS

[P1] B. Teke, M. Lanz, J. Kämäräinen, and A. Hietanen, “Real–time and Robust

Collaborative Robot Motion Control with Microsoft Kinect v2,” in 2018 14th

IEEE/ASME International Conference on Mechatronic and Embedded Sys-

tems and Applications (MESA), Oulu, Finland, Jul. 2018.

1

1. INTRODUCTION

In the new industrial revolution age, one of the most challenging fields of robotics

is Human–Robot Interaction (HRI). Robots are designed to coexist and cooperate

with humans in tasks like collaborative assembly, assisted industrial manipulation,

hand guiding etc. [12, 14]. Clearly, in these collaborative tasks, the usage of camera

is significant, especially the cameras that provide depth information. However, the

classic 3D cameras like stereo cameras and Time–of–Flight (TOF) cameras are quite

expensive [20]. At this point, Microsoft Kinect provides considerable advantages

with its wide availability and lower cost than other traditional 3D cameras. Many

researchers in computer science and robotics are leveraging the sensing technology

to develop new ways in terms of interaction with machines and robots [24, 79]. Due

to these reasons, Kinect is used in this work.

A trajectory is the path that a robot follows through as a function of time. Tra-

jectory planning is sometimes referred to as motion planning and erroneously as

path planning. Trajectory planning is distinct from path planning in that it is

parametrized by time. Essentially, trajectory planning encompasses path planning

in addition to planning how to move based on velocity, time and kinematics. In

robotics there are inherent limitations to calculate the trajectory, especially for

non–spherical wrist robots such as Universal Robot–5 (UR5). The computation

time of a trajectory and data processing must be in milliseconds in tracking for

seamless and safe HRI. On the other hand, human, robot and system categories

should be considered first to understand HRI clearly. Taxonomy of HRI metrics

were presented in [43] which identified 42 distinct metrics with 9 branches. Sum-

marized metrics can be seen in Figure 1.1. From the consideration of these metrics,

smooth robot movement is considered more trustworthy than jerky movements that

is explained in Section 2.1.8. Besides that, if the movements are not recognized or

planned movements, safety is endangered and comfort will be lower.

In this thesis, recognizing and tracking the target and following with UR5 and

interaction efficiency are examined. In order to achieve these, the computation time

of processing the depth data provided by Kinect is reduced via using downsampled

filters in Point Cloud Library (PCL), after that outliers and noise in the data are

Chapter 1. INTRODUCTION 2

removed using statistical filters for accurate positioning. Next, the trajectory is

calculated via MoveIt! motion planner. “Cartesian Path Planning” method is used

for it and it has only the positions (waypoints) as inputs. After that,“Iterative

Parabolic Time Parameterization” method is used. It allows us to add timestamps

and velocity/acceleration values as inputs to MoveIt!. This method works better

for creating smooth trajectories since we have a chance to control velocity and

acceleration. For testing the methods, a trajectory is created that contained a

change on the X, Y, and Z coordinate, and the data is recorded with the rosbag

extension. As a result, robot follows the trajectory X,Y and Z with 85.79%, 87.14%

and 79.63% by using “Cartesian Path Planning”, respectively. For the “Iterative

Parabolic Time Parameterization” method, robot follows the trajectory X,Y and

Z with 97.32%, 93.34% and 91.77%, respectively. Percentage errors are calculated

using Mean Absolute Percentage Error (MEPA) that is explained in Section 4.1.10.

Figure 1.1 Taxonomy of HRI metrics based on [43].

1.1. Objectives and Outline of the Thesis 3

1.1 Objectives and Outline of the Thesis

In this thesis, recognizing and tracking of the fingertip and transforming of this

movement as UR5 motion are investigated. Thus, one can see the objectives of the

thesis below:

- Recognizing and tracking fingertip based on robust approach by using Mi-

crosoft Kinect depth (RGB–D) data and transforming the movement of the

fingertip to the Universal Robot–5.

- Develop and implement algorithms on real–time environment for smooth tra-

jectory and select the proper trajectory planner according to accuracy.

- Test and improve different trajectory planner methods for collaborative robots

and compare each other with regard to accuracy.

The thesis includes following chapters and sections. In Chapter 2, an overview of the

robotics and HRI is explained. This background chapter includes principles of math-

ematical model of robots that are subjects of interest to this thesis in Section 2.1.

HRI in Section 2.2 and related work in Section 2.3. Next, development environments

and equipments as well as motion planners are mentioned in Chapter 3. In Chap-

ter 4, data acquisition, Euclidean distance, k–Nearest Neighbors (k–NN) approach,

filters in PCL environment are explained. One can see the visualization of trajecto-

ries and their accuracy in Chapter 5. Finally, problems and possible solutions are

given during the implementation besides installing the libraries in Chapter 6.

1.2 Limitations

The limitations can be listed as follows:

• At the time of this study, ROS has been only running on Linux based operating

systems. Therefore, it is necessary to use external libraries such as libfreenect2

and IAI Kinect2 for acquiring data from Kinect.

• Inverse kinematics calculation takes more time for non–spherical wrist robots

such as UR5 and there are disconnections between trajectories. This leads to

difficulties to plan smooth trajectories.

• MoveIt! motion planner has only two different types of trajectory calculation

methods. And that’s why there is not much choice.

1.3. Research Questions and Research Methodology 4

• According to this project, Microsoft Kinect v2 can not detect the point differ-

ences below 1mm resolution.

• Point cloud environment has only support to C++.

1.3 Research Questions and Research Methodology

The research questions of the thesis can be listed as follows:

1. How is the fingertip location tracked in real–time environment using Kinect,

point cloud, robot operating system and their tools?

2. How is Universal Robot–5 moved according to the followed fingertip in real–

time environment?

3. How is the smooth robot trajectory for seamless collaboration planned by using

ROS, MoveIt! and their tools?

By going out of the way of these research questions, various methods have been

tested. If we elaborate on these;

• Firstly, it is focused on computation time from the first and second research

questions, Voxel Grid (VG) filter is used for implementation and execution

time is reduced in the real–time. And consequently, one of the sub–results,

quick response to the target changes, is achieved.

• Secondly, from the second research question, nearest–point approach based

on Euclidean distance is used for the aim of seamless interaction instead of

using hand detection or gesture recognition. Because these detections would

add extras to the calculation time. As a result of this, one of the sub–results,

transforming the fingertip movement to UR5 as a motion, is achieved.

• Next, from the last research question, MoveIt! motion planner, Gazebo Sim-

ulation Tool (GST), rviz visualization tool and various libraries are used for

implementation. Cartesian and parabolic time parameterization are compared

to each other. It is shown that time parameterization method is working bet-

ter for trajectory planning as well as for smooth path. Along with that, one

of the sub–results, smooth robot trajectory for seamless collaboration using

MoveIt! and ROS, is reached.

1.4. Publications and Author’s Contribution 5

• During the application, testing and observation phase, it is determined that

the nearest point is incorrectly calculated because of the noise in the depth

data. In order to remove the noise, statistical and radius outlier filters are

used. It is observed that statistical one is working better because it removes

the outlier points with statistical information. In spite of the fact that it

has considerable computation time, it is used together with VG filter. After

this improvement, the nearest point is determined more accurately, and this

provides us a more efficient interaction.

As a consequence of all these, with the following sub–results (quick response to

the target changes, transforming the fingertip movement to UR5 as a motion and

smooth robot trajectory for seamless collaboration using MoveIt! and ROS), main

result (recognizing and tracking of the fingertip and transforming of this movement

as UR5 motion) is achieved.

1.4 Publications and Author’s Contribution

In [P1], the study related to this thesis and previous work are examined. Next,

MoveIt! motion planner is used and tested in the real–time system. It is shown that

the trajectory can be calculated via time parameterization method more accurately

than the conventional Cartesian calculation method. In addition, the Microsoft

Kinect sensor’s 3D depth data can be processed in real–time by comparing the filters

in the point cloud environment in terms of computation time and by observing the

output in the way of using each other. As a result, while the most optimal tools

and methods are used, it is shown how the trajectory is followed by UR5 [69].

6

2. BACKGROUND

In this chapter, what the robot means mathematically and the mathematical infras-

tructure needed to plan the trajectory will be given. Next, the practicalities and

challenges of HRI will be addressed, and finally, the work related to this thesis will

be explained.

2.1 Mathematical Overview of Robots

The robot can be considered as a mechanical system, therefore, by using mechanical

inferences and conventions such as Denavit–Hartenberg (DH) convention [15], it will

be addressed the principles of working of robots. Firstly, mathematical models that

are used for developing and manipulating of robots are considered. It is necessary to

understand how these mechanical systems work in order to plan smooth trajectory

and control the position, speed and acceleration of the robot. The mathematical

model is a key to achieving these kind of goals [66, 63].

Figure 2.1 Symbolic representations of robot joints adapted from [66].

Robot manipulators consist of links and links are connected to a kinematic chain by

joints. There are two types of joints such as revolute (rotary) joint and prismatic

2.1. Mathematical Overview of Robots 7

(linear) joint. A revolute joint is able to rotate between two links, whereas a pris-

matic joint is able to move linearly between two links. The notation (R) represents

revolute joints and the notation (P) represents prismatic joints that are shown in

Figure 2.1 [18, 6, 48, 66].

Robotic joints are the connection between two links. If the connection of a joint is

between the links i and i + 1, then zi is defined as the axis of rotation or axis of

translation that depends on the joint types. The joint variables are θ and d for a

rotational joint and for a linear joint, respectively [16, 66].

2.1.1 Robotic Systems

A robot manipulator is a series of mechanical links. A general robotic system’s com-

ponents are mechanical arm, external and internal sensors, power supply, computer

interface, and controller. Components are shown in Figure 2.2.

Figure 2.2 Components of a robotic system adapted from [66].

2.1.2 Kinematic Manipulators

One can create such a different kinematic chain by using prismatic and revolute

joints, however, in practice only a few are commonly used. In this section, a few

common manipulators will be shown, after that structure of the UR5 is considered.

• Articulated manipulator (RRR):

All of the joints of articulated manipulator are revolute. It can also be called

a revolute or an anthropomorphic manipulator [11, 29, 39, 66]. The structure

and terminology are shown in Figure 2.3.

2.1. Mathematical Overview of Robots 8

Figure 2.3 Structure of the articulated manipulator (RRR) adapted from [66].

• Spherical Manipulator (RRP):

The first two joints of spherical manipulator are revolute and last one is pris-

matic [11, 29, 39, 66]. The structure and terminology are shown in Figure 2.4.

Figure 2.4 Structure of the spherical manipulator (RRP) adapted from [66].

• SCARA Manipulator (RRP):

The SCARA arm has an RRP structure. The name of SCARA is abbreviation

of Selective Compliant Articulated Robot for Assembly. In spite of the fact

that its structure is an RRP, it is not similar to the spherical manipulator in

terms of appearance and range [11, 29, 39, 66]. It is shown in Figure 2.5.

• Cylindrical Manipulator (RPP):

The cylindrical manipulator has an RPP structure. Its axes’ form is a cylin-

drical coordinate system [66, 63]. It is shown in Figure 2.6.

• Cartesian manipulator (PPP):

All of the joints of cartesian manipulator are prismatic [11, 29, 39, 66]. It can

be seen in Figure 2.7.

2.1. Mathematical Overview of Robots 9

Figure 2.5 Structure of the SCARA adapted from [66].

Figure 2.6 Structure of the cylindrical manipulator adapted from [66].

• Universal Robot 5 (UR5):

All of the joints of UR5 are revolute; hence it is revolute manipulator. The

structure and terminology are shown in Figure 2.8.

2.1.3 Modeling of Robots

The acquisition of direct kinematics, inverse kinematics and velocity kinematics

have been clearly defined in literature for robots, especially for industrial robots

[9, 63, 66, 30]. Their acquisition is based on the step–by–step procedure. Firstly, it is

needed to assign the coordinate frames to the joints. To do this, it is used the method

called the DH convention [15]. In this thesis, the Modified Denavit-Hartenberg

(MDH) convention will be used to describe the basic kinematic calculations. MDH

and DH differ from each other in terms of the coordinate system attachment to

the links and the order of the performed transformations. To make it clear, one

can see the details in Figure 2.9. The aim of the DH convention is to simplify

and to standardize the assignment of the coordinate frames as well as to create

homogeneous transformation matrices. The positions, orientations, rotations and

translations between assigned coordinate frames are represented by rigid motions

2.1. Mathematical Overview of Robots 10

Figure 2.7 Structure of the cartesian manipulator adapted from [66].

Figure 2.8 Structure of the Universal Robot 5 adapted from [42].

and homogeneous transformations [66, 30]. By using homogeneous transformation

matrices, it is easy to obtain the direct kinematics. Moreover, the manipulator

Jacobian is defined to derive the velocity kinematics.

When UR5 is considered with the all of these informations, the end–effector structure

of it is different from other common industrial robots. Thus, this difference cause

limitation for calculating the inverse kinematics in real–time. As a result of this

limitation, it takes more time to create smooth trajectory planning. The details are

explained in Section 2.1.6.

2.1. Mathematical Overview of Robots 11

Figure 2.9 Modified Denavit–Hartenberg convention parameters. Using this parameters,
one can calculate the rotation and orientation of the robot with respect to the base frame.
It helps us to derive velocity and acceleration of the robot for trajectory planning.

2.1.4 Rigid Motions and Homogeneous Transformation

As mentioned in the previous section, robot has prismatic and/or revolute joints.

These joints are connected to each other with rigid bodies (links). If one wanted

to define the robot kinematics in a very simple way, the answer would be “relations

between the sequential coordinate frames that are assigned to the joints of robot”.

The positions and orientations of rigid objects are calculated with the help of the

rigid motions and homogeneous transformation approach. 3D space geometry and

rigid motion geometry are the key in all kind of robotic manipulation [8, 63, 66, 59].

The first frame of the robot is called the base, the inertial or the fixed frame, and

the last frame of the robot is called the end–effector. To manipulate the robot in

3D space, it is required to calculate the end–effector position and orientation with

relative to the inertial frame. The motion relationship between these two frames is

obtained by combining the homogeneous transformation matrices of all links accord-

ing to the previous link. Rigid motions and homogeneous transformations are the

2.1. Mathematical Overview of Robots 12

key to define the relationship. One can simplify the operations of translation and

rotation of a manipulator into a single matrix multiplication by using homogeneous

transformations [53, 65, 22, 34, 66].

(d,R) means that a rigid motion is an ordered pair such as d ∈ R3 and R ∈ SO(3).

A translation vector denoted as d and a rotation matrix denoted as R [66, 63].

SO(3) is used to define the 3D rotation group and it is the abbreviation of the

Special Orthogonal group of order three. All of the rotation group are under the

operation of 3D Euclidean space (R3). For any R ∈ SO(n), the rotation matrix has

the following properties [66, 34, 77, 19, 61].

• RT = R−1 means that rotation matrix is an orthogonal matrix,

• detR = 1 means a geometric interpretation would be that the area does not

change.

The orientation of one coordinate frame according to the another and the coordi-

nates transforming from one to the another are represented by rotation matrices.

Sequential rotations like a rotational transformation of the frame oixiyizi to the

frame ojxjyjzj and further to the frame okxkykzk are obtained by Equation (2.1)

[66, 63, 30].

Ri
k = Ri

jR
j
k (2.1)

Euler–angle representation, the roll–pitch–yaw representation, and the axis/angle

representation are common rotation representations [66, 5]. They are explained in

the following section.

Euler Angle

The orientation of a frame ojxjyjzj according to a frame oixiyizi is derived by using

φ = [ϕ, ϑ, ψ]T that is called Euler angles, it is a vector of three angles [8, 63, 66].

After three successive rotations, a rotation matrix is obtained:

1. ϕ represents rotation of z-axis,

2. ϑ represents rotation of y′-axis,

3. ψ represents rotation of z′′-axis.

2.1. Mathematical Overview of Robots 13

Result of the rotation matrix is generated via multiplication of the matrices of

elementary rotation1. The matrix RZY Z is called in literature as a ZYZ–Euler

angle transformation. The following Equation (2.2) shows the connection between

the Euler angles and the rotation matrix R [8, 63, 66].

RZY Z = R(φ) =Rz(ϕ)Ry′(ϑ)Rz′′(ψ)

=

cϕ −sϕ 0

sϕ cϕ 0

0 0 1

 cϑ 0 sϑ

0 1 0

−sϑ 0 cϑ

cψ −sψ 0

sψ cψ 0

0 0 1

=

cϕcϑcψ − sϕsψ −cϕcϑsψ − sϕcψ cϕsϑ

sϕcϑcψ + cϕsψ −sϕcϑsψ + cϕcψ sϕsϑ

−sϑcψ sϑsψ cϑ

(2.2)

Deriving the Euler angle (ϕ, ϑ, ψ) is crucial to solve the inverse kinematics that is

shown in Equation (2.2). Next, the general rotation matrix can be seen in Equa-

tion (2.3) [8, 63, 66].

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.3)

In addition, the arctangent function is used to find the Euler angles. Atan2 is a

function that consists of fragmented functions which are written by each quadrant

using the arctangent. Notation of Atan2(y, x) means the arctangent function of two

variables2.

To summarize, the solution can be seen in Equation (2.4) [66, 63].

ϕ = Atan2(r23, r13)

ϑ = Atan2
(√

r2
13 + r2

23, r33

)
ψ = Atan2(r32,−r31)

(2.4)

Equation (2.5) [66, 63] shows another solution that can be derived by choosing ϕ in

1In Equation (2.2); cϕ is the abbreviations for cosϕ and sϕ is the abbreviations for sinϕ etc.
2Atan2(y, x) computes the arctangent of y/x. It uses the sign of the variables to identify which

region the output angle belongs to. Therefore, the correct determination of an angle is obtained
in the interval [0, 2π].

2.1. Mathematical Overview of Robots 14

[−π, 0].

ϕ = Atan2(−r23,−r13)

ϑ = Atan2
(
−
√
r2

13 + r2
23, r33

)
ψ = Atan2(−r32, r31)

(2.5)

Roll–Pitch–Yaw (RPY) Angles

One of the another method to derive the rotation matrix as a product of consecutive

rotations about the fixed frame (o0x0y0z0) is roll, pitch and yaw angles [8, 63, 66].

1. ψ represents a yaw through x0,

2. ϑ represents a pitch through y0,

3. ϕ represents a roll through z0.

The sequential rotations are respect to the principal axis. The result transformation

matrix can be seen in Equation (2.6) [8, 63, 66].

RZY X = R(φ) =Rz(ϕ)Ry(ϑ)Rx(ψ)

=

cϕ −sϕ 0

sϕ cϕ 0

0 0 1

 cϑ 0 sϑ

0 1 0

−sϑ 0 cϑ

1 0 0

0 cψ −sψ
0 sψ cψ

=

cϕcϑ cϕsϑsψ − sϕcψ cϕsϑcψ + sϕsψ

sϕcϑ sϕsϑsψ + cϕcψ sϕsϑcψ − cϕsψ
−sϑ cϑsψ cϑcψ

(2.6)

For the inverse extraction to obtain the ϕ, ϑ, ψ angles, the method in Section 2.1.4

can be used.

Angle and Axis

Not all of the rotation cases are related to the fixed frame. It is usually interested

in a rotation according to an arbitrary axis in space. It has numerous advantageous

especially in the problem of trajectory planning as well as the derivation for the

end–effector orientation [66, 63].

2.1. Mathematical Overview of Robots 15

A unit vector that defines an axis (r = [rx ry rz]
T) is expressed in the frame oixiyizi

with a rotation of an angle ϑ. The rotation matrix related to a given angle and axis

R(ϑ, r) is derived by Equation (2.7) [8, 63, 66].

R(ϑ, r) =

 r2
x(1− cϑ) + cϑ rxry(1− cϑ)− rzsϑ rxrz(1− cϑ) + rysϑ

rxry(1− cϑ) + rzsϑ r2
y(1− cϑ) + cϑ ryrz(1− cϑ)− rxsϑ

rxrz(1− cϑ)− rysϑ ryrz(1− cϑ) + rxsϑ r2
z(1− cϑ) + cϑ

 (2.7)

The inverse extraction to obtain the axis r and angle ϑ can be seen in Equations (2.8)

and (2.9).

ϑ = arccos
(r11 + r22 + r33 − 1

2

)
(2.8)

r =
1

2 sinϑ

r32 − r23

r13 − r31

r21 − r12

 (2.9)

Homogeneous Transformation

It has been shown that how to denote positions and orientations of a manipulator in

Section 2.1.4. To define homogeneous transformations, these are combined in this

section. Homogeneous transformations reduce the composition of rigid motions to

matrix multiplication. In Equation (2.10), H ∈ R4×4 is a homogeneous transforma-

tion matrix, R denotes the rotation matrix, a translation vector denoted as d and

0 denotes the row vector (0, 0, 0) [8, 63, 66].

H =

[
R d

0 1

]
, R ∈ SO(3), d ∈ R3 (2.10)

Inverse of the homogeneous transformation matrix can be seen in Equation (2.11)

[66, 63].

H−1 =

[
RT −RTd

0 1

]
(2.11)

In Equation (2.12) to calculate subsequent transformations, the homogeneous trans-

formation matrices must be multiplied [66, 63].

H i
j = H i

i+1 · · ·H
j−1
j (2.12)

2.1. Mathematical Overview of Robots 16

Rotation matrix and translation vector are shown in Equations (2.13) and (2.14),

respectively.

Ri
j = Ri

i+1 · · ·R
j−1
j (2.13)

dij = dij−1 +Ri
j−1d

j−1
j (2.14)

2.1.5 Direct Kinematics

Before going through the direct kinematics, it is necessary to mention the meaning

of the operational space (also called task space) and configuration space.

• Task space is the cartesian space where the operation of robot is required. It

has X,Y,Z, ortho and normal axes and Roll, Pitch and Yaw (RPY) rotations

about each axes. In other words, it is the space in which we live.

• Configuration space is the description of a particular configuration of robot or

also called “posture”. These postures are defined by individual and indepen-

dent actuation of the joints. That means, it is those joints (revolute, prismatic,

spherical, cylindrical etc.) which do not depend on any other joint. The other

name of the number that signifies the independency which describes the pos-

ture of the robot in concrete terms is called Degrees of Freedom (DOF). Now,

the configuration space is the nth dimensional space where the robot is rep-

resented as a point3. This has enormous advantages, especially in trajectory

planning problems.

In order to obtain the position and orientation of the end–effector, direct kinematics

are used to derive in terms of the joint variables. Firstly, it is necessary to assign the

coordinate frames to the joint. MDH convention [15] helps to assign the coordinate

frames in a simplified way that is explained the section below.

Modified Denavit–Hartenberg Convention

If MDH is considered, n joints robot manipulator has n+ 1 links:

1. ji : i ∈ {1, · · · , n} is for the joints,

2. li : i ∈ {0, · · · , n} is for the links.

3n denotes number of the Degree of Freedom.

2.1. Mathematical Overview of Robots 17

As one can see from the Figure 2.9 that joint ji connects link li−1 to link li. It is

considered to be fixed for the location of joint ji with regard to link li−1. Moreover,

a coordinate frame oixiyizi is rigidly attached to link li. Link li and its attached

frame oixiyizi move, if joint ji is actuated. A joint variable qi = θi is denoted with

the ith joint. The frame o0x0y0z0 attached to the robot base is called as the base

frame, the inertial frame or the fixed frame.

As mentioned earlier, homogeneous transformations are significant to derive the

direct kinematics. Homogeneous transformation matrix of each link is denoted as Ai

and it gives the position and orientation of oixiyizi with relative to oi−1xi−1yi−1zi−1

and is shown in Equation (2.15) [66].

Ai =

[
Ri−1
i oi−1

i

0 1

]
(2.15)

T i
j is a homogeneous transformation matrix that expresses the position and ori-

entation of ojxjyjzj according to oixiyizi. T i
j is derived by multiplication of the

transformation matrices Ai, also can be seen in Equation (2.16) [8, 63, 66].

T i
j =

Ai+1Ai+2 · · ·Aj−1Aj, if i < j

(T i
j)
−1, if i > j

I, otherwise

(2.16)

In Equation (2.17), the position and orientation of the end–effector according to the

inertial frame are seen and o0
n is a translation vector4.

T 0
n = A1(q1) · · ·An(qn) =

[
R0
n o0

n

0 1

]
(2.17)

Commonly, six parameters are necessary to define a rigid motion; defining the ro-

tation is related to the first three parameters and defining the translation is related

to the last three parameters. On the other hand, the MDH decreases the number of

parameters needed to define a homogeneous transformation. It reduces the param-

eters from six to four by using the common manipulator geometry that is defined in

Section 2.1.2.

In the MDH, the homogeneous transformation of each link (Ai) is a product of four

basic transformations, is seen in Equation (2.18) [8, 63, 66]. It has four variables:

4If the transformation matrices affect coordinate systems rather then general objects, o0n is
often used instead of d0n.

2.1. Mathematical Overview of Robots 18

• The joint angle is represented by θi,

• The link length is represented by ai,

• The link offset is represented by di,

• The link twist of joint ji and link li is represented by αi.

Moreover, Ai is a function of θi, the others are constant.

Ai =Rotz,θiTransz,diTransx,aiRotx,αi

=

cθi −sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1

1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 cαi
−sαi

0

0 sαi
cαi

0

0 0 0 1

=

cθi −sθicαi

sθisαi
aicθi

sθi cθicαi
−cθisαi

aisθi
0 sαi

cαi
di

0 0 0 1

(2.18)

The following properties must be considered while assigning the coordinate frames

oixiyizi to the joint ji and link li according to the MDH convention:

• The axis of rotation of joint ji+1 is represented via zi,

• The axis xi is perpendicular to the axis zi−1 and zi,

• The axis xi intersects the axis zi−1,

• All frames are assigned with right–hand rule.

After the coordinate frames have been setting up according to the MDH convention,

the following definitions are considered to establish the parameters:

• ai = distance along xi from the intersection of the xi and zi−1 axes to oi,

• di = distance along zi−1 from oi−1 to the intersection of the xi and zi−1 axes,

• αi = the angle from zi−1 to zi measured along xi,

• θi = the angle from xi−1 to xi measured along zi−1.

2.1. Mathematical Overview of Robots 19

Figure 2.10 UR5 coordinate frames with respect to the MDH convention.

Without the MDH reduction, more than four parameters would have been required,

if the link reference frames had been assigned in arbitrarily. The MDH gives us an

opportunity to assign the frames by the carefully specified rules. As a consequence,

the final transformation matrix describes the transformation from the fixed frame

to the end–effector of the robot as a joint variable function (qi). As all the joints in

the UR5 used in this study are revolute, θi is a variable. The coordinate frames of

UR5 that are assigned to the joints with respect to the MDH convention are seen

in Figure 2.10. Firstly, the homogeneous transformation matrix Ai is calculated

using the MDH parameters in Equation (2.18), and then the transformation matrix

in Equation (2.17) is derived.

The following sections will focus on inverse kinematics.

2.1.6 Inverse Kinematics

Direct kinematic is about how to identify the end–effector’s position and orienta-

tion whereas inverse kinematic is about finding such joint variables in terms of the

desired end–effector position and orientation. Finding the joint variables for given

end–effector positions is crucial for smooth trajectory planning. Inverse kinematics

problem is more difficult than the direct kinematics problem [8, 63, 66]. In this

section, a briefly explanation of the inverse kinematics problem is considered and

then how the kinematic decoupling simplifies the inverse kinematic problem is men-

tioned. Using kinematic decoupling, it can be addressed the position and orientation

problem separately with the help of Euler angle that is explained in Section 2.1.4.

2.1. Mathematical Overview of Robots 20

Lastly, it is mentioned that why kinematic decoupling could not be applied to the

UR5 robot and it is one of the limitations of this project.

Given a 4 × 4 homogeneous transformation, H is defined for the desired position

and orientation of the end–effector that is shown in Equation (2.19).

H =

[
R d

0 1

]
, R ∈ SO(3), d ∈ R3 (2.19)

The purpose of the inverse kinematics is to find the values with the help of closed

form solutions for the joint variables (q1, · · · , qn).

T 0
n = A1(q1) · · ·An(qn) (2.20)

T 0
n = H (2.21)

Equations (2.20) and (2.21) result in twelve nonlinear equations with n unknown

variables are shown in Equation (2.22). T ij , hij represent the twelve significant

entries of T 0
n and H , respectively [66, 63].

T ij(q1, · · · , qn) = hij (2.22)

In real–time application, a closed form solution is preferred over a numerical so-

lution for solving the inverse kinematics problem. The advantages of closed form

solutions can be examined in two different perspectives. Firstly, when this project

is addressed, it is about tracking a fingertip that its location is provided by Mi-

crosoft Kinect, therefore, the inverse kinematic equations of robot must be solved at

a rapid rate. It is a practical requirement to have a closed form solution rather than

an iterative search. Secondly, there can be more than one solution for the kinematic

equations. If we have closed form solutions, it allows us to develop rules for selecting

a particular solution between them [8, 63, 66].

On the other hand, the inverse kinematic problem can be solved faster by limiting

the joint constraint. Depending on the application, the motion of the joints can

be limited for example less than 360 degrees. Thus, it is not necessary to consider

all mathematical solutions of the kinematic equations. In other respects, solutions

to the kinematic equations are required to check that whether or not they satisfy

all constraints on the ranges of possible joint motions. One of the advantages of

the given homogeneous matrix (H) is that it ensures the obtained mathematical

solutions have achievable configurations features [66, 63].

2.1. Mathematical Overview of Robots 21

Kinematic Decoupling

The aim of the kinematic decoupling is considering the manipulator joints sepa-

rately. For example, the first three joints and the last three joints can be considered

independently for six–DOF robots. For common six–DOF manipulator, it is prob-

able to derive the inverse kinematics problem into two simpler problems such as

inverse position kinematics and inverse orientation kinematics [8, 63, 66]. In other

words, if it is desired to divide into two simpler problem, the six joints robot must

have a spherical wrist structure. As far as the calculation part is concerned, it is

being found the position of the intersection of the wrist axes and it is called the

wrist center. Next, the orientation of the wrist is being found [66].

Figure 2.11 The robot to the left of the figure has spherical wrist and right one (Universal
Robot 5) has non-spherical wrist adapted from [17].

UR5 which is used for this study has an uncommon servo specification called non-

spherical wrist configuration. The common spherical axis configuration for robot

manipulators have the three wrist axes of rotations intersect at one point, on the

other hand, the non-spherical configuration have a shifted wrist axis that can be

shown in Figure 2.11. The main distinction between the two configurations is about

calculating the Inverse Kinematics (IK). Whereas the robots with spherical wrist

have a simpler IK solution, non-spherical wrist one has complex IK solution since

it is not able to divide into two simpler problems. Moreover, at any point in the

most of operational space of UR5 there are nine solutions that can be achieved

with nine different configurations [17], shown in Figure 2.12. It has more solutions

than common manipulators, hence, solutions must be further checked that whether

or not they satisfy all constraints for possible joint motions. Because of this, more

2.1. Mathematical Overview of Robots 22

calculation time is needed for checking process. As a result, it is one of the limitations

for real–time application with using UR5.

Figure 2.12 Inverse kinematics solutions for UR5 adapted from [17].

2.1.7 Velocity Kinematics

Velocity kinematics are related to the end–effector’s linear and angular velocities

with regard to the joint velocities. As mentioned in the previous section, direct

kinematic is about how to identify the end–effector position and orientation. After

the derivation of the function, the velocity relationships derived via Jacobian. The

manipulator Jacobian (J ∈ R6×n) is either used for the derivation of the velocity

kinematics, and also in many tasks in robotic manipulation (e.g., planning and

execution of smooth trajectories, determination of singular configurations, derivation

of the dynamic equations of motion) [8, 63, 66, 59, 30].

The transformation between the joint velocities (q̇ ∈ Rn) and the end–effector’s

angular and linear velocities is given by the manipulator Jacobian. There are two

types of Jacobian such as the geometric Jacobian Jg ∈ R6×n and analytical Jaco-

bian Ja ∈ R6×n. The geometric Jacobian Jg and the analytical Jacobian Ja, are

computed separately and are used for particular objectives [8, 63, 66, 59].

The geometric technique is used for the derivation of the geometric Jacobian (Jg).

It maps the effect of each joint velocity to the linear and angular velocity of the

end–effector. In addition, if the end–effector pose can be specified as the Euler

angle, the axis/angle or roll–pitch–yaw angle representation in the task space, a

direct calculation of the Jacobian by differentiating the direct kinematics function is

preferred. One can see the explanation of it in the analytical Jacobian (Ja) section.

As far as the calculation of them is concerned, geometric Jacobian (Jg) is used to

derive the manipulator dynamics and to relate end–effector forces (F ∈ R6) with

2.1. Mathematical Overview of Robots 23

joint torques (τ ∈ R6) whereas the analytical Jacobian (Ja) is often used to describe

end–effector velocities (Ẋ) and accelerations (Ẍ) [8, 63, 66, 59].

Manipulator Jacobian

In short, if one wants to explain the meaning of Jacobian in a simple way, it is the

matrix of all first–order partial derivatives of a vector–valued function according

to vector calculus. As far as the matrix is a square matrix, the matrix and its

determinant are defined as the Jacobian in literature [21, 64, 76].

The transformation from the inertial frame to the end–effector frame for an n–link

manipulator can be seen in Equation (2.23) [66, 63]. The joint variables vector can

be shown as q = [q1, · · · , qn]T .

T 0
n(q) =

[
R0
n(q) o0

n(q)

0 1

]
(2.23)

The concept of skew symmetric matrices simplifies many of the computations in-

volved [66]. Its definition and properties are described in Appendix A. ω0
n de-

notes the angular velocity of the end–effector, v0
n denotes the linear velocity of the

end–effector and S denotes the skew symmetric matrices, that are seen in Equa-

tions (2.24) and (2.25).

S(ω0
n) = Ṙ

0

n(R0
n)T (2.24)

v0
n = ȯ0

n (2.25)

The Jacobian (J ∈ R6×n) includes both the angular and linear velocity of the end–

effector that are shown in Equations (2.26) and (2.27)

v0
n = Jvq̇ (2.26)

ω0
n = Jωq̇ (2.27)

The Jocabian consists of Jω ∈ R3×n and Jv ∈ R3×n. ξ is vector of body velocities

that is seen in Equation (2.28).

ξ = Jq̇ where ξ =

[
v0
n

ω0
n

]
and J =

[
Jv

Jω

]
(2.28)

One of the important things to note is that the velocity vector (ξ) does not mean the

derivation of a position variable, because the angular velocity vector (ω0
n) does not

2.1. Mathematical Overview of Robots 24

mean the derivation of any particular time varying quantity [8, 63, 66, 59, 30]. The

following sections will explain the calculation of geometric and analytical Jacobian.

Geometric Jacobian

The geometric Jacobian (Jg(q)) is derived via the homogeneous transformation that

has already been mentioned in Section 2.1.4. In order to calculate Jacobian, direct

kinematics must first be calculated with regard to the MDH convention. For n–

link manipulator, the calculation of angular part of the Jacobian (Jg,ω) is shown in

Equations (2.29) and (2.30) [66, 63, 50, 30].

Jg,ω =
[
z0

0, · · · , z0
n−1

]
(2.29)

z0
i−1 = R0

i−1k, k =
[
0 0 1

]T

(2.30)

In Equation (2.31) the calculation of linear part of the Jacobian (Jg,v) is shown5.

Jg,vi
=
∂o0

n

∂qi

= z0
i−1 ×

(
o0
n − o0

i−1

)
Jg,v =

[
Jg,v1 , · · · ,Jg,vn

] (2.31)

Therefore, geometric Jocabian is acquired by using Equation (2.28).

Analytical Jacobian

The analytical Jacobian (Ja(q)) is depend on a minimal representation for the

orientation of the end–effector frame such as Euler angle, axis/angle or roll–pitch-

yaw angle representation. Using minimal representations are the common way for

description of the end–effector’s position and orientation. It is necessary to derive it

for especially smooth trajectory planning that is one of the goals of the thesis. The

analytical Jacobian is used for deriving the end–effector’s velocity and acceleration.

The calculation of the end–effector pose is shown in Equation (2.32) [8, 63, 66, 59].

X =

[
o0
n(q)

β0
n(q)

]
(2.32)

5The meaning of the sign “×” in Equation (2.31) is cross product. For further reading, see [76].

2.1. Mathematical Overview of Robots 25

o0
n(q) is the fixed frame’s origin relative to the end–effector frame’s origin and β0

n(q)

is a minimal representation of the the end–effector frame’s orientation with regard

to the fixed frame. According to the Euler angles, one can define the orientation

vector as β = φ = [ϕ, ϑ, ψ]T . The analytical Jacobian is shown in Equation (2.33)

[66, 63].

Ẋ =

[
v0
n

β̇
0

n

]
= Ja(q)q̇

(2.33)

Considering the R = RZY Z Euler angle transformation and the skew symmetric

matrix in Equation (2.34) [66, 63],

ṘZY Z = S(ω)RZY Z (2.34)

the angular velocity (ω) is given by Equation (2.35) [66].

ω =

cψsϑϕ̇− sψϑ̇sψsϑϕ̇+ cψϑ̇

ψ̇ + cϑϕ̇

=

cψsϑ −sψ 0

sψsϑ cψ 0

cϑ 0 1

ϕ̇ϑ̇
ψ̇

 = B(φ)φ̇

(2.35)

Hereby, the analytical Jacobian (Ja(q)) can be calculated from the geometric Jaco-

bian (Jg(q)) that is shown in Equation (2.36) under the condition of detB(φ) 6= 0.

Ja(q) =

[
I 0

0 B−1(φ)

]
Jg(q) (2.36)

The acceleration of the end–effector according to the fixed frame is shown in Equa-

tion (2.37) [66, 63].

Ẍ = Ja(q)q̈ +
(d
dt
Ja(q)

)
q̇ (2.37)

The inverse velocity and acceleration of 6–DOF manipulators are obtained in Equa-

tions (2.38) and (2.39) under the condition of detJa(q) 6= 0 [66].

q̇ =
[
Ja(q)

]−1
Ẋ (2.38)

q̈ =
[
Ja(q)

]−1

[
Ẍ −

(d
dt
Ja(q)

)
q̇

]
(2.39)

2.1. Mathematical Overview of Robots 26

In this section, Jacobian is computed via differentiation of the direct kinematics

function relative to the joint variables. Jacobian is important for smooth trajectory

planning because the speed and acceleration parameters are obtained through it.

By controlling the acceleration and velocity parameters, a much smoother and safer

robot trajectory can be derived.

2.1.8 Trajectory Planning

How the trajectory planning problem relates to path planning are explained in this

section, after that the basic case of planning a trajectory between two configurations

are mentioned.

The path planning problem can be described as finding a path from a starting

configuration qinit to an ending configuration qfinal. A path from qinit to qfinal is a

continuous map, τ : [0, 1]→ Q, where τ(0) = qinit and τ(1) = qfinal. A trajectory is

a function of time q(t) where q(t0) = qinit and q(tf) = qfinal [63, 66].

Here on, it is considered to plan the trajectory for a single joint, since the trajectories

for the remaining joints can be created independently and in exactly the same way.

Before moving on to the Cubic Polynomial Trajectories and the Quintic Polynomial

Trajectories, it is needed to determine the variables in Equations (2.40) to (2.45)

[66, 63].

At time t0 joint variables are,

q(t0) = q0 (2.40)

q̇(t0) = v0 (2.41)

Variables required to reach at tf are,

q(tf) = qf (2.42)

q̇(tf) = vf (2.43)

In addition, determinations of the constraints on initial and final accelerations are,

q̈(t0) = α0 (2.44)

q̈(tf) = αf (2.45)

2.1. Mathematical Overview of Robots 27

Cubic Polynomial Trajectories

In order to to generate smooth trajectory between two configurations, it is necessary

to specify the start and end velocities of it. One can derive a smooth curve via a

polynomial function of t. Since we have four constraints (q0,v0, qf ,vf) to satisfy in

Equations (2.40) to (2.43), it is required four independent coefficients that can be

chosen to satisfy these constraints. Thus, in Equation (2.46) it is considered as a

cubic trajectory of the form [8, 63, 66, 59].

q(t) = a0 + a1t+ a2t
2 + a3t

3 (2.46)

Equation (2.47) shows the desired velocity.

q̇(t) = a1 + 2a2t+ 3a3t
2 (2.47)

Merging Equations (2.46) and (2.47) with the four constraints leads to four equations

with four unknowns that are shown in following Equations (2.48) to (2.51).

q0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 (2.48)

v0 = a1 + 2a2t0 + 3a3t
2
0 (2.49)

qf = a0 + a1tf + a2t
2
f + a3t

3
f (2.50)

vf = a1 + 2a2tf + 3a3t
2
f (2.51)

Next, one can write these four equations as a single matrix equation.
1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 1 2tf 3t2f

a0

a1

a2

a3

 =

q0

v0

qf
vf

 (2.52)

(tf − t0)4 is the determinant of the coefficient matrix in Equation (2.52) and if a

nonzero time interval is considered, it always has a exclusive solution. This solution

is allowed for executing the trajectory. A sequence of moves can be planned using

Equation (2.52) by setting the end conditions qf , vf of the (i)th move as initial

conditions for the (i+ 1)th move.

2.1. Mathematical Overview of Robots 28

Quintic Polynomial Trajectories

Using multiple cubic trajectories for planning trajectories gives us an opportunity to

create continuous positions and velocities at the blend times, whereas discontinuities

in the acceleration. For overcoming this discontinuities, the trajectories can be

created as a quintic polynomial trajectory. In addition to this, Jerk is the rate of

change of acceleration; that is, the derivative of acceleration with respect to time. A

discontinuity in acceleration leads to an impulsive Jerk, which is one of the reasons

of vibrational modes in the manipulator and reduce tracking accuracy and safety.

These problems reduces the safety and efficiency in HRI. One can specify constraints

on the acceleration as well as on the position and velocity with quintic polynomial.

Apart from the cubic polynomial trajectories, quintic has six constraints (e.g., initial

and final of the configurations,velocities and accelerations). Therefore, it is required

a fifth order polynomial which is shown in Equation (2.53) [8, 63, 66, 59].

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (2.53)

The six constraints yield six equations in six unknowns that are shown in following

Equations (2.54) to (2.59).

q0 = a0 + a1t0 + a2t
2
0 + a3t

3
0 + a4t

4
0 + a5t

5
0 (2.54)

v0 = a1 + 2a2t0 + 3a3t
2
0 + 4a4t

3
0 + 5a5t

4
0 (2.55)

α0 = 2a2 + 6a3t0 + 12a4t
2
0 + 20a5t

3
0 (2.56)

qf = a0 + a1tf + a2t
2
f + a3t

3
f + a4t

4
f + a5t

5
f (2.57)

vf = a1 + 2a2tf + 3a3t
2
f + 4a4t

3
f + 5a5t

4
f (2.58)

αf = 2a2 + 6a3tf + 12a4t
2
f + 20a5t

3
f (2.59)

Next, one can combine these six equations into a single matrix equation.

1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f

a0

a1

a2

a3

a4

a5

=

q0

v0

α0

qf
vf

αf

(2.60)

In the same way as in the cubic polynomial, the determinant of the coefficient matrix

in Equation (2.60) is not equal to zero in a nonzero time interval. This means that

2.2. Human Robot Interaction 29

it always has a unique solution for the execution of the trajectory.

The following section will focus on HRI.

2.2 Human Robot Interaction

In our new era, modern industries are expanding day by day and running with

continuous production cycles. In addition to the expansion, robots have begun to

appear in almost every task. An inevitable consequence of the frequent use of robots

is that there will be HRI in future. On the other hand, in near future intelligent

machines and robots are awaited to bring business–level services by collaborating

independently in teams with humans as a crucial part of a multi–company business

process [58, 73].

Collaborative robots need to meet different requirements from traditional robots

used in the industry. Although there is a standard for traditional robots that is

published in [26], there is only technical specification for collaborative robots can

be seen in [27]. If a HRI study is to be applied, this technical specification must be

considered. Performing a complicated task with human interaction and coordination

is defined as a collaboration [12]. It can be specified that there are two different

types of collaboration, one is physical collaboration and another one is contactless

collaboration. Physical collaboration means that there is an explicit and intentional

contact between human and robot and the robot can predict human motion intention

and react accordingly by measuring or estimating the exchange of force [28, 37]

whereas contactless collaboration means there is no physical interaction. It is being

done with gestures and/or voice commands [55] as well as indirect communication,

by recognizing intentions [45] or attention [36].

Apart from these definitions, metrics of HRI must be considered, concordantly,

taxonomy of HRI metrics were presented in [43] can be seen in Figure 1.1. When

we consider these metrics, If collaboration with the robot happens properly and

instantly, efficiency in interaction will also be high. On the other hand, if the

robot’s trajectory is not planned, the robot may go undesirable position and it may

also make vibrational movements. This leads to risk to human. As a result, the

trajectory must be planned in advance.

Practices and challenges in HRI will be examined in the following sections.

2.2. Human Robot Interaction 30

2.2.1 Practices in HRI

Although there are plenty of acknowledged practices that are appearing in HRI, it is

possible to separate them under five categories. First of all, including professionals

from multiple disciplines on research efforts is a key practice. Robotics, cognitive sci-

ence, human–computer interaction, electrical and mechanical engineering, computer

science can be given examples of these disciplines [12, 14]. Creating real systems

(robot autonomy, interaction modes, and etc.) and then evaluate these systems us-

ing experiments with human subjects are the second emerging practice. It is more

useful to elaborate the psychological principles that are underlying expressive in-

teraction phenomena eye toward harnessing. Therefore, modeling, evaluation and

engineering can be given as key aspects of HRI [12, 14].

Running experiments that also include a detailed results from physical and simulated

robot is the third significant practice. It is often strenuous to carry out cautiously

controlled experiments with physical robots due to cost and reliability issues [12, 14].

Moreover, it is not always possible to expect same results with simulation robots

because the physical environment has own unique challenges and details that are

not existed in numerous simulations. Establishing standards and accepted metrics

can be counted as a fourth emerging area. One of the most detailed surveys of

metrics can be seen [67], other metrics exists in the literature and one can also

see in the proceedings of the annual Performance Metrics for Intelligent Systems

(PERMIS) workshops. The fields of Urban Search and Rescue (USAR) domain

[44, 72], space applications and Unmanned Aerial Vehicles (UAVs) [70, 71] have the

strongest standardization efforts.

Long term studies are the fifth emerging practice. It has been made such studies

possible with the availability of reliable service robots and personal home robots in

public areas [25]. Long–term studies shift research methodologies from small–scale

experiments that are carefully controlled and questioned to other methodologies

such as ethnography.

2.2.2 Challenges in HRI

In this section, it is specified a collection of problems that are likely to shape HRI in

the near future. For each problem, it is discussed those aspects of the problem that

make it particularly challenging and useful. One of the high profile challenge problem

in HRI is USAR. The highly unstructured nature of USAR environments makes

it a challenge problem. This forces strict challenges on map–building, situation

2.3. Related Work 31

awareness, robot mobility and communications. Another high profile challenge area

in HRI is developing military and combat robots. Its environments tend to be

unstructured, on the other hand, most importantly operators are required to operate

under extreme stress.

Space robotics is another area and it has unstructured environment as well as it is

often challenging due to the presence of dust, the vacuum of space, temperature and

radiation. Another noteworthy characteristics of space robotics is that operators

can be highly trained for observation. Assistive robotics is a challenge area, the

proximity and vulnerability of the human in the interaction are the challenges rather

than the unstructured environment. Humanoid robotics is a challenging field both

in terms of engineering of human movements and expressions and the difficulties

that arise when a robot receives human form. With such a form, the social and

emotional aspects of interaction become more important than anything else.

2.3 Related Work

Due to the lack of highly skilled robotics programmers, programming should be as

simple as telling a colleague to perform a specific task. For this reason, future robot

instruction schemes require human communication channels, multimodal interfaces

and the use of intuition together with these developments, tasks can be done by

using speech and gestures along with human and accompanied by safe robots ma-

nipulation in the same work area without any fences. Identification and localization

of workpieces are also required for autonomous robots in order to minimize the ef-

fort of automatic production or adaptation to programming, program parameters

and process parameters. In a possible robotic collaboration with human, the use of

sensors and 3D cameras is indispensable. After the Kinect was launched in 2010, a

great deal of research has been done. Significant number of researches investigate

gesture recognition and hand tracking. However, there is a lack of research about

the use of 3D cameras together with collaborative robots on HRI directly.

First of all, methods will be explained briefly; see [68] for more complete review.

As one can see in [51], it proposes a method for tracking fingertips and palm cen-

ter using depth data from Kinect. A big circle filter is applied for detecting palm

center and following that fingertip detection is achieved. On the other hand, in

[54] a different method is presented called Finger–Earth Mover’s Distance (FEMD).

It uses both color and depth data provided by Kinect to enhance robustness and

efficiency. In addition to these, [35] uses K–means clustering for hand detection,

eight point neighborhood for finger identification to recognize the gestures. A novel

2.4. Chapter Summary 32

technique proposed by [32] which based on action graphs and its steps are segmen-

tation of Kinect depth data, tracking, filtering, normalization and feature extraction

to achieve the recognized gestures.

Apart from these methods, there are considerable amount of works using both Kinect

and robots. Real–time hand guiding of UR5 worked in [41]. Kinect data were used

to generate hand position and a smartphone was used for hand orientation. Both

data are being sent to UR5 via a client. Robot navigation with the capabilities

of the ROS and Kinect that relies on the fuzzy logic approach was proposed in

[60]. Moreover, visual guidance systems are examined in [31], [62], [52]. Collision

avoidance can be shown as a reflection of industry application in [40] and [74]. Both

of them are using predictive methods to estimate collision–free UR5 robot trajectory.

In this particular HRI study, it is shown an efficient HRI with the planned trajectory

based on nearest–point approach by using UR5, Microsoft Kinect and the power of

ROS and its tools.

2.4 Chapter Summary

In this chapter, theoretical background of robot is explained by giving the funda-

mental robot kinematics that are necessary to calculate trajectory. In addition to

this, the trajectory planning methods used during the implementation of the the-

sis such as cubic and quintic polynomial trajectories are specified. Moreover, HRI,

its challenges and practices are emphasized. Finally, one can see the related works

about the thesis, too.

33

3. SYSTEM OVERVIEW

In this chapter, development environments and equipments are explained and UR5

specifications with regard to MDH, Microsoft Kinect and motion planners are dis-

cussed. System overview can be seen in Figure 3.1.

Figure 3.1 An overview of the operation of the system.

3.1 Development Environments and Equipments

One can see that there are plenty of tools and environments for robotics as well as

computer vision systems. In this thesis, ROS, PCL, MoveIt! motion planner, the

Open Motion Planning Library (OMPL) and libraries for connecting and commu-

nicating between computer vision equipment and ROS are used for implementation

(e.g., libfreenect2, IAI Kinect2). On the other hand, Microsoft Kinect v2 and Uni-

versal Robot 5 are used as equipments for real–time experiment. In this particular

research case one can see libraries and tools in the following sections.

3.1.1 Robot Operating System (ROS)

ROS is a set of software libraries and tools that help someone build robot applica-

tions. From drivers to state–of–the–art algorithms, ROS has capabilities for different

3.1. Development Environments and Equipments 34

tasks with the power of peer–to–peer communication. ROS is an open source pack-

age [1, 49]. In this project, Kinetic Kame version of ROS was used with Ubuntu

16.04 Long Term Support (LTS) installed computer.

3.1.2 Point Cloud Library (PCL)

A point cloud is a data structure, which is used to represent a collection of multi–

dimensional points. It is usually used to represent 3D data. In a 3D point cloud,

the points ordinarily represent the X, Y, and Z geometric coordinates. When color

information is present, the point cloud becomes 4D [56]. Point clouds can be acquired

from hardware sensors such as stereo cameras, 3D scanners, or TOF cameras [2].

PCL also supports the 3D interfaces, therefore, it can acquire and process data from

devices such as the PrimeSensor 3D cameras, the Microsoft Kinect, or the Asus

XTionPRO. The environment of the PCL as well as the state before and after the

filter is applied can be seen in Figure 3.2.

Figure 3.2 Point cloud environment, left one is the state before applying a filter and it
has outliers, right one is after applying the filter, adapted from [56].

3.1.3 Gazebo Simulation Tool (GST) and ROS visualization (rviz)

GST is a well-designed simulator that makes it possible to test algorithms rapidly,

design robots, perform regression testing, and train Artificial Intelligence (AI) sys-

tem using realistic scenarios [46]. It also offers to simulate populations of robots in

indoor and outdoor environments accurately and efficiently. It has a robust engine,

3.1. Development Environments and Equipments 35

Figure 3.3 Visualization of the nearest point in the PCL using rviz.

high-quality graphics and easy to use graphical interfaces. On the other hand, rviz

is a 3D visualizer for displaying sensor data and state information from ROS. Using

rviz, one can visualize the current configuration on a virtual model of the robot. It is

also possible to display live representations of sensor values coming over ROS topics

including camera data, infrared distance measurements, sonar data, and more. It is

visualized that whether or not the position difference is being sent to the simulation

environment. Test and visualization environment can be seen in Figure 3.3. For

Figure 3.4 Start state of Gazebo Simulation Tool (GST) and ROS visualization (rviz).

initial test, only Z–coordinate difference is created after that it is being sent to the

GST via ROS topics. Initial and final state of the robot can be seen in Figure 3.4

3.1. Development Environments and Equipments 36

and Figure 3.5, respectively.

Figure 3.5 Final state of Gazebo Simulation Tool (GST) and ROS visualization (rviz).

3.1.4 Universal Robot–5 (UR5)

It is important that the robotic system should be reliable and safe. There is a ISO

specification that is named ISO/TS 15066 [27] and it is supplement to ISO 10218 [26]

“Safety Requirements for Industrial Robots” standards. ISO/TS 15066 describes

the different collaborative concepts and details the requirements to achieve. It also

presents a research study on pain thresholds, robot speed, pressure and impact for

specific body parts. The Universal Robots has eight adjustable safety functions such

as joint positions and speeds, Tool Center Point (TCP) positions, orientation, speed

and force, momentum and power of the robot [38]. For these reasons, the six–DOF

UR5 from Universal Robots has been chosen to use in this study. The sketch of

the coordinate frames according to the MDH convention is shown in Figure 3.6.

Kinematic equations of UR5 with respect to the MDH can be seen in Appendix B.

The robot is lightweight (18kg), its reach is 850mm and its payload is 5kg.

3.1.5 Microsoft Kinect v2

Kinect is an RGB–D sensor that provides synchronized color and depth images.

With its wide availability and lower cost than other traditional 3D cameras such

as stereo cameras and TOF cameras [20], many researchers in computer science

and robotics are leveraging the sensing technology to develop new ways in terms

3.1. Development Environments and Equipments 37

Figure 3.6 Left of the figure shows sketch of the UR5 manipulator’s coordinate frames
according to the DH convention and right shows the MDH parameters adapted from [30].

of interaction with machines [24, 79]. Kinect v2 has an RGB camera, infrared

(IR) camera, IR emitter and multi-array microphone. In addition, right–handed

coordinate system is also shown in Figure 3.7.

3.1.6 libfreenect2 and IAI Kinect2

libfreenect2 is an open source driver for Kinect v2 devices created by the OpenKinect

community. Its features are color image processing, IR image and depth image

processing, registration of color and depth images [33, 78]. IAI Kinect2 is a collection

of tools and libraries for a ROS Interface to the Kinect v2 [75]. For accurate detection

3.2. Motion Planners 38

Figure 3.7 Microsoft Kinect v2 right–handed coordinate system and its components.

of the points, it is better to calibrate the Kinect. Figure 3.8 shows an example setup

for calibration1.

Figure 3.8 An example setup for Microsoft Kinect v2 calibration [75].

3.2 Motion Planners

Robots are increasingly in co–operation with humans and industrial robotic appli-

cations are starting to examine the possibility of robots and humans as coworkers,

1For further details about calibration and drivers can be found at https://github.com/

code-iai/iai_kinect2 and https://github.com/OpenKinect/libfreenect2.

https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2
https://github.com/OpenKinect/libfreenect2

3.2. Motion Planners 39

sharing tasks and workspace. As a consequence of these, the planning of the tra-

jectory in the task of the robot is significant for safety. As a use case scenario,

when one would like to motion a robot from one point to another, the robot can do

this with multiple solutions. However, some of these solutions are not feasible due

to singularities and obstacles. The singularity and obstacle will lead to a security

weakness without the planned trajectory. If the trajectory is computed and planned,

the security weakness will not occur and it will be a safer interaction.

In this study, it is expected that the movement of the detected nearest points will

also be observed on the robot, so this real–time changes must be planned on the

robot side. For this, the motion planners are used. These motion planners take

the position, velocity and acceleration variables as inputs, depending on their so-

lution methods, and give the feasible trajectory as output. OMPL and MoveIt!

motion planners have been used in this project. OMPL consists of state–of–the–art

sampling–based motion planning algorithms running under MoveIt!. The OMPL it-

self does not contain any code related to collision checking or visualization. MoveIt!

consists collision checking, visualization, obstacle avoidance features based on ROS.

Another reason for its use is that it supports UR5. The following sections will ex-

plain you what is needed to use its structure and planner. In short, it is necessary

to create a configuration file before using the planner. This configuration file is a

file that contains the relevant robot parameters and it is used by MoveIt! during

the calculation and planning the feasible trajectory.

3.2.1 Moveit! Motion Planner

MoveIt! Motion Planner is a set of software packages integrated with the ROS and

designed specifically to provide such capabilities, especially for the manipulators.

MoveIt! will allow robots to build up a representation of their environment using

data fused from 3D and other sensors, generate motion plans that effectively and

safely move the robot around in the environment, and execute the motion plans while

constantly monitoring the environment for changes. It is state–of–the–art software

for mobile manipulation and it provides the latest advances in motion planning,

manipulation, 3D perception, robot kinematics and control. There are several plan-

ners such as Stochastic Trajectory Optimization for Motion Planning (STOMP),

Search–Based Planning Library (SBPL) and Covariant Hamiltonian Optimization

for Motion Planning (CHOMP). More details can be found in [47]. It also provides

an easy–to–use platform for developing advanced robotics applications, evaluating

new robot designs and building integrated robotics products for industrial, commer-

cial, R&D and other domains [7]. Due to its strength and simplicity, the MoveIt!

3.2. Motion Planners 40

Figure 3.9 MoveIt! Setup Assistant [47].

motion planner was used in this project. On the other hand, there is a user interface

for creating configuration files for robots that can be seen in Figure 3.9. For UR5,

it is not necessary for using the interface, there is a ready–made driver2 published

in [3].

ROS users can easily use MoveIt! motion planner. It contains ROS messages and

topics, therefore, one can subscribe a topic for a specific purpose (eg, saving the

data of current joints values). For advanced users, without being dependent on a

large part of ROS, they can make changes and developments at the core level. New

features can be built in MoveIt! using the ROS message generation infrastructure.

In this direction, MoveIt! provides numerous flexibilities. General structure of the

Moveit! can be seen in Figure 3.10.

In MoveIt!, there are configuration files to extract all the needed information for

calculating trajectories, detecting collision etc. The Unified Robot Description For-

mat (URDF) is existing configuration file and newly defined is Semantic Robot

Description Format (SRDF). These files are an advantage for getting rid of being

dependent on specific robots. Robot joints, links information and their relationship

2The details of driver can be found at https://github.com/ThomasTimm/ur_modern_driver.

https://github.com/ThomasTimm/ur_modern_driver

3.2. Motion Planners 41

Figure 3.10 Moveit! structure [47].

to each other are stored via these files. By specifying these information, any robot

can be controlled via MoveIt!.

1 double moveit : : p l a n n i n g i n t e r f a c e : : MoveGroup : : computeCartesianPath

2 (

3 const std : : vector<geometry msgs : : Pose>&

4 waypoints , // Robot paths

5 double e e f s t e p , // set to 0.01 (1cm steps)

6 double jump threshold , //parameter "j"

7 moveit msgs : : RobotTrajectory& t r a j e c t o r y , //Trajectory request

8 bool a v o i d c o l l i s i o n s = false // There is no need for collision check

for this project. It is set to "false" for faster calculation.

9)

Program 3.1 MoveIt! Cartesian path planning example code

The parameter “j ” shown in Program 3.1 is “jump threshold factor parameter”. It

is determined in order to limit the joint change momentarily while the robot is being

motioned. If it is set to zero, there is no threshold and it leads to undesired and

unsafe motion while executing the trajectories. The value of zero can be used in

simulation environment not for real task. Planning request adapters that are seen in

Figure 3.11 include the complete motion planning pipeline chains together a motion

planner with other components such as pre–processing motion plan requests and

3.2. Motion Planners 42

post–processing motion plan responses. Pre–processing is useful in several situations

(e.g., when a start state for the robot is slightly outside the specified joint limits for

the robot.); post–processing is needed for several other operations (e.g., to convert

paths generated for a robot into time–parameterized trajectories.). MoveIt! provides

a set of default motion planning adapters that each perform a very specific function.

Figure 3.11 Motion planner request [47].

move_group is a ROS node. It uses the ROS parameter server to get three kinds of

information:

1. URDF: move_group looks for the robot_description parameter on the ROS

parameter server to get the URDF for the robot.

2. SRDF: move_group looks for the robot_description_semantic parameter

on the ROS parameter server to get the SRDF for the robot. The SRDF is

typically created once by a user using the MoveIt! Setup Assistant.

3. MoveIt! configuration: move_group will look on the ROS parameter server

for other configuration specific to MoveIt! including joint limits, kinematics,

motion planning, perception and other information. Config files for these

components are automatically generated by the MoveIt! setup assistant and

3.2. Motion Planners 43

stored in the config directory of the corresponding MoveIt! config package for

the robot.

Figure 3.12 World Geometry Monitor [47].

An interactive graphical user interface allows users to specify motion–plan requests

for their new robots, with a minimal amount of interface implementation required

from the user on the robot side. This allows non–motion planning experts to easily

configure the motion planning and associated components in ROS for their own

robots. World geometry monitor of the Moveit! is shown in Figure 3.12. The

world geometry monitor builds world geometry using information from the sensors

on the robot and from user input. It uses the occupancy map monitor to build a

3D representation of the environment around the robot. By using the data on the

planning_scene topic, object information can be added according it.

3.2.2 The Open Motion Planning Library (OMPL)

OMPL is an open–source motion planning library that primarily implements motion

planners. MoveIt! integrates directly with OMPL and uses the motion planners

from that library as its primary or default set of planners. The planners in OMPL

are abstract; i.e. OMPL has no concept of a robot. Instead, MoveIt! configures

OMPL and provides the back–end for OMPL to work with problems in robotics.

The structure of OMPL can be seen in Figure 3.13.

3.3. Chapter Summary 44

Figure 3.13 The Open Motion Planning Library (OMPL) structure [47].

3.3 Chapter Summary

In this chapter, detailed description of system such as ROS, PCL, GST, rviz and

motion planners such as MoveIt! and OMPL are examined.

45

4. IMPLEMENTATION

In this chapter, a data acquisition method, filters, their features and their imple-

mentation on C++ are explained.

4.1 Execution and Filtering Process

A point cloud without any downsampling can be seen in Figure 4.1 whereas after the

Figure 4.1 Point cloud environment before downsampling.

downsampling is shown in Figure 4.2. As one can see that after the downsampling,

the resolution of the point cloud environment is reduced. Although reducing the

number of points means gain in terms of speed, it reduces accuracy in finding the

nearest point.

4.1.1 Mapping

Cartesian coordinates need to be mapped as shown in Figure 4.3. According to the

setting of our system, no change is made on the X–axis. The Kinect’s Y–axis is

4.1. Execution and Filtering Process 46

Figure 4.2 Point cloud environment after downsampling.

mapped to the Z–axis of UR5 and finally the Z–axis of Kinect is mapped inversely

to the Y–axis of UR5.

4.1.2 Pre–Processing of Point Cloud

The point cloud is processed using VG, Radius Outlier Removal (ROR) and Sta-

tistical Outlier Removal (SOR) filters. Performance of filters based on processing

time can be shown in Figure 4.4. According to the results, although VG has best

execution time, it is not enough to use only it due to the outliers. ROR or SOR

filters have to be used to estimate the nearest point accurately. After the implemen-

tation, it is figured out that SOR filter worked better because it is using statistical

information from points. Our system has got 200 thousand points approximately.

Figure 4.4 also gives information about the latency. It is observed from visualization

tool that nearest point is calculated incorrectly. Therefore, pre–processing was done

to recognize the fingertip accurately.

4.1.3 Data Acquisition

Data are acquired from Kinect using PCL, libfreenect2 and IAI Kinect2 libraries.

Data are the point representation of the environment in which it is located. For

testing the system, raw depth data are saved as a rosbag extension using ROS. It

means that it is possible to play data via the rosplay function. It allows us to send

4.1. Execution and Filtering Process 47

Figure 4.3 Environment of system and Cartesian coordinate system mapping between
UR5 and Kinect.

the saved 3D depth data to the system like the data came from Kinect. On the

other hand, this point representation enables efficient algorithms and filters to be

applied to our system. Output of data and results can be seen in Chapter 5.

4.1.4 Euclidean Distance

The Euclidean distance or Euclidean metric is the “ordinary” straight–line distance

between two points in Cartesian space. With this distance, Euclidean space becomes

a metric space. The associated norm is called the Euclidean norm. A generalized

term for the Euclidean norm is the L2 norm or L2 distance. In general, for an

n–dimensional space, the distance can be generalized in Equation (4.1). p and q

represent two points in Cartesian space.

4.1. Execution and Filtering Process 48

Figure 4.4 Compare of three of filters such as Voxel Grid, Radius Outlier Removal and
Statistical Outlier Removal based on execution time in second. A test program was run
and it was measured by setting max depth and min depth parameters of Kinect in PCL.

d(p, q) =
√

(p1 − q2)2 + (p1 − q2)2 + . . .+ (pi − qi)2 + . . .+ (pn − qn)2 (4.1)

Euclidean distance was used to calculate the difference between nearest points.

Points has X,Y and Z dimensions. In order to calculate the Euclidean distance,

Eigen tool was used for matrix calculation [23]. Moreover, this distance is used for

filtering process in PCL, too.

4.1.5 k–Nearest Neighbors (k–NN)

In pattern recognition, the k–Nearest Neighbors (k–NN) is a non-parametric method

used for classification and regression. In both cases, the input consists of the “k”

closest training examples in the feature space. The output depends on whether k–

NN is used for classification or regression [10]. It is used in the SOR filter, “k” can

be specified by using setMeanK function. For the implementation of filters in PCL,

k–NN is used to determine how many neighbor points will participate for calculation

during the removal of noise and outlier points.

4.1. Execution and Filtering Process 49

4.1.6 Point Cloud Environment without Filter

Before the explanation of the filters, in Figures 4.5 to 4.7 green square represents

the true nearest point and red circle represents the calculated nearest point. One

Figure 4.5 The first frame without any filters applied. At the first instantaneous moment,
it can be seen that the nearest point is calculated correctly. But it does not mean that the
filter is worked properly.

can see the initial state of the point cloud in Figure 4.5. The situation without

any hand movements in the PCL can be seen in Figure 4.6. Finally, one more

wrong calculation of nearest point is shown in Figure 4.7. The nearest point is

miscalculated because of the noise in the point cloud.

4.1.7 Voxel Grid (VG) Filter

A voxel grid is a set of tiny 3D boxes in space. VG filter aims to downsample

the point cloud. In each voxel (3D box), all the points downsampled with their

centroid [56]. Nearest point calculation at the starting time after applying VG filter

is shown in Figure 4.8. Nearest point calculation at the final time after applying

VG filter is shown in Figure 4.9. One can see that when the fingertip is moved, the

nearest point calculation is done incorrectly. This means that the VG filter is not

enough and additional filtering is necessary. C++ implementation of it can be seen

in Algorithm 1.

4.1. Execution and Filtering Process 50

Figure 4.6 The second frame without any filters applied. Although the fingertip is not
moved, it can be seen that the nearest point is miscalculated.

Figure 4.7 The third frame without any filters applied. When the fingertip is moved at
the first time, the location of the nearest point changes. But it is still miscalculated.

4.1.8 Radius Outlier Removal (ROR) Filter

ROR filter removes all indices in its input cloud that do not have at least some

number of neighbors within a certain range [56]. The user specifies a number of

neighbors which every indice must have within a specified radius to remain in the

PCL. This kind of approach can be useful because when the data are acquired as

points representation of the environment, there are outlier points on the corners and

4.1. Execution and Filtering Process 51

Figure 4.8 Nearest point calculation at the starting time after applying VG filter. At
the first instantaneous moment, it can be seen that the nearest point is calculated almost
correctly with VG filter.

Figure 4.9 Nearest point calculation at the final time after applying VG filter. When
the fingertip is moved at the first time, the location of the nearest point changes. But the
error is lower than the situation of no filters is applied.

in the space of environment. The nearest point is calculated incorrectly due to these

points. ROR filter is tested in this study because it allows us to set a specific radius

and also to set how many points will be in the radius. Figure 4.10 helps to visualize

what the ROR filter object does. For example if 1 neighbor is specified, only the

yellow point will be removed from the PCL. If 2 neighbors are specified then both

4.1. Execution and Filtering Process 52

Algorithm 1 Voxel Grid Filter

1: pcl::VoxelGrid <pcl::PointXYZRGB>vg;
2: vg.setInputCloud (input cloud);
3: vg.setLeafSize(0.01f, 0.01f, 0.01f);
4: vg.filter (filtered cloud);

the yellow and green points will be removed from the PCL. C++ implementation can

be seen in Algorithm 2.

Figure 4.10 Radius Outlier Removal (ROR) filter.

Algorithm 2 Radius Outlier Removal Filter

1: pcl::RadiusOutlierRemoval <pcl::PointXYZRGB>ror;
2: ror.setInputCloud (input cloud);
3: ror.setRadiusSearch (0.5);
4: ror.setMinNeighborsInRadius (80);
5: ror.filter (filtered cloud);

4.1.9 Statistical Outlier Removal (SOR) Filter

SOR filter is based on the computation of the distribution of distances in points

in comparison with its neighbors in the input cloud. For each point, the mean

distance from all its neighbors is being computed. By assuming that the resulted

distribution is Gaussian with a mean and a standard deviation, all points whose

mean distances are outside an interval defined by the global distances mean and

standard deviation can be considered as outliers and trimmed from the dataset [56].

Similar to ROR filter, this kind of approach can be useful because when the data

are acquired as points representation of the environment, there are outlier points on

4.1. Execution and Filtering Process 53

Figure 4.11 The initial state of point cloud environment after applying SOR and VG
filter.

the corners and in the space of environment. During the outlier and noise removal

process, SOR filter is approaching to the points statistically and it removes them by

using the correlation with each other. Assuming that these points are distributed in

Gauss, it does not remove the important points for calculation. In order not to in-

crease the calculation time, VG downsampling filter was applied before applying this

filter. Figure 4.11 shows the initial frame of point cloud environment after applying

SOR and VG filter together and Figure 4.12 shows the final frame of point cloud

environment after applying SOR and VG filter together. SOR uses point neigh-

borhood statistics to filter outlier data. The algorithm iterates through the entire

input twice. During the first iteration it will compute the average distance that each

point has to its nearest k neighbors. The value of k can be set using setMeanK().

Next, the mean and standard deviation of all these distances are computed in or-

der to determine a distance threshold. The distance threshold will be equal to:

mean + stddev_mult * stddev. The multiplier for the standard deviation can be

Algorithm 3 Statistical Outlier Removal

1: pcl::StatisticalOutlierRemoval <pcl::PointXYZRGB>sor;
2: sor.setInputCloud (input cloud);
3: sor.setMeanK (25);
4: sor.setStddevMulThresh (1.0);
5: sor.filter (filtered cloud);

set using setStddevMulThresh(). During the next iteration the points will be clas-

sified as inlier or outlier if their average neighbor distance is below or above this

4.2. Chapter Summary 54

threshold, respectively. The neighbors found for each query point will be found

Figure 4.12 The final state of point cloud environment after applying SOR and VG
filter.

amongst all points of setInputCloud(), not just those indexed by setIndices().

The setIndices() method only indexes the points that will be iterated through as

search query points [57]. Algorithm 3 represents C++ implementation of the filter.

4.1.10 Performance Measures

Mean Absolute Percentage Error (MAPE) is used to measure the performance of

the methods [13, 4]. MAPE equation is

MAPE =
100%

N

N∑
n=1

{∣∣∣∣An − FnAn

∣∣∣∣
}

(4.2)

where N is the number of the sample points with regard to trajectories, An is the

current value of the reference trajectory and Fn is the current value of the test

trajectory. It is a measure of accuracy of a method for constructing fitted time

series values in statistics. This measure is easy to understand because it provides

the error in terms of percentages.

4.2 Chapter Summary

In this chapter, the coordinate systems mapping between UR5 and Kinect are given.

Following that, the comparison of filters such as SOR, ROR and VG with regard to

4.2. Chapter Summary 55

execution time as well as in terms of the effect on point cloud are explained. Lastly,

the performance measurement criterion is mentioned.

56

5. RESULTS AND DISCUSSION

In this chapter, the raw RGB–D data are sent to the system for testing the trajectory

and results are obtained. The accuracy of trajectories can be seen in the following

sections.

5.1 Results

In order to test the system under difficult conditions, a test trajectory is created

with the help of teach pendant of UR5 that is shown in Figure 5.1. Kinect turned to

the robot and the test trajectory is run. Following that the RGB–D data are saved

as “rosbag” extension using rosbag record function during the first cycle of the

trajectory and the robot is brought to the starting position. This time, the system

is run with the recorded data using rosbag play function without using Kinect

and the motion of the robot is observed. The main idea of the test is that how

the algorithm follows the fingertip accurately. First test, “Cartesian path planning

method” with VG, ROR and SOR filters is used and X with 85.79%, Y with 87.14%

and Z with 79.63% are obtained. One can see the results in Table 5.1. Second

test, “Time parameterization method” with VG and SOR filters is used and X with

97.32%, Y with 93.34% and Z with 91.77% are obtained. One can see the results in

Table 5.2.

Secondly, since the jump threshold factor (j) mentioned in Section 3.2.1 is chosen

as non–optimal, the feasible trajectory calculation time is between 3 and 4 seconds.

Even, the total latency of existing system is more than 5 seconds. In order to

reduce the latency and pre–processing execution time, Using the tests and observa-

tions, the j parameter is set to the optimal value (j = 1.7). Next, the number of

points is reduced either using VG filter and by setting max_depth and min_depth

in kinect_bridge. At the start time, the system has 200 thousand points and

SOR and ROR filters are applied to it. Pre–processing time is 1.9 seconds now. As

you can see in Figure 4.4, VG filter is quite fast and it has had no effect on time.

The points are downsampled to 55–60 thousand with VG filter and the maximum

and minimum depth parameters on the Kinect side are set to their optimal values.

5.1. Results 57

(a) View of the test script which used for
implementation

(b) View of the test script from a different
angle

Figure 5.1 The test trajectory of UR5

Figure 5.2 VG, ROR and SOR filters are applied. Cartesian path planning method is
used. Red straight line represents the trajectory which robot should follow and blue dash
line represents the trajectory which robot actually follows.

After that, ROR and SOR filters are applied. The result trajectories can be seen

5.1. Results 58

Table 5.1 ACCURACY OF THE TRAJECTORY USING CARTESIAN PATH PLAN-
NING METHOD WITH VG, ROR AND SOR FILTERS

Coordinates Accuracy (Cartesian method)

X 85.79%

Y 87.14%

Z 79.63%

in Figure 5.2. The pre–processing time is reduced to 0.55 seconds. It is observed

that it is not adequate for efficient interaction. Following that, the ROR filter is not

used in the last stage because it has too much execution time and the capability of

removing outlier points is worse than the SOR filter. Finally, VG filter, SOR filter

and optimal j parameter are used, the total latency is reduced to 0.14 seconds. This

is an acceptable level for efficient collaboration. The result trajectories can be seen

in Figure 5.3.

Figure 5.3 VG and SOR filters are applied. Time parameterization method is used.
Red straight line represents the trajectory which robot should follow and blue dash line
represents the trajectory which robot actually follows.

5.2. Discussion 59

Table 5.2 ACCURACY OF THE TRAJECTORY USING TIME PARAMETERIZA-
TION METHOD WITH VG AND SOR FILTERS

Coordinates Accuracy (Iterative Time Parameterization method)

X 97.32%

Y 93.34%

Z 91.77%

5.2 Discussion

In this study, fingertip is recognized and tracked, same motion is observed on UR5. A

real–time algorithm is developed and implemented for smooth trajectory. Moreover,

different trajectory planners are tested and compared each other with respect to

accuracy. Using the methods, faster response is received. Researchers who want to

increase the HRI and trajectory’s efficiency can develop their systems by using the

PCL library and various filters as it is done in this thesis.

There are limitations during the implementation part. If the points in the PCL is

downsampled under 50K points, the resolution of nearest points will be lost. To solve

this, Kinect’s area is restricted via min_depth and max_depth. Next, If someone

wants to make a computer vision application, the robot manufacturers’ software

can not be used for acquiring data. For this reason, using open source libraries and

softwares becomes a necessity. Several libraries with ROS are used in this project.

On the other hand, Microsoft Kinect v2 can not detect the point differences below

1mm. If less than 1mm resolution is required for the project, Intel RealSense1

3D camera can be used. At this time, MoveIt! has only search based trajectory

planning methods. In order to reach in miliseconds order to plan trajectory, low–

level programming (e.g, movej, servoj) can be used via the ur_modern_driver

and additional drivers2. Lastly, it is difficult to test the real–time application such

as recognizing and tracking fingertip and transforming same motion on the robot.

Because one can not move his/her hand in the same way accurately. In order to

overcome this problem, data can be saved by using ”rosbag” file format and then

this data can be used for all tests as it is done in this study.

The ROS and its tools have a wide range of capabilities. In the near future, these

tools will be used much more. Moreover, robotic companies tend to use open source

trajectory planners to reduce the outsourcing costs of trajectory planning. At this

1See Intel RealSense.
2See hrl kdl and pykdl utils.

https://realsense.intel.com
https://github.com/gt-ros-pkg/hrl-kdl
http://wiki.ros.org/pykdl_utils

5.3. Chapter Summary 60

point, MoveIt! motion planner is a very useful tool for this purpose. By using this

work and all these tools, this study pioneers the future works.

5.3 Chapter Summary

In this chapter, the results obtained related to this thesis are shown with figures

and tables. According to the results, fingertip was recognized and tracked, same

movement of it was observed on UR5. Moreover, it is shown that the parabolic

solution is working better than the classic Cartesian solution for smooth trajectory

in this particular study.

61

6. TROUBLESHOOTING

In this chapter, it is explained the problems encountered and its possible solutions

during the thesis study.

6.1 Problems and Solutions

All dependencies must be installed to avoid errors. The dependencies can be checked

via libfreenect2 and IAI Kinect2. ROS must be installed with full package and all

dependencies must be checked beforehand. In this thesis Kinetic Kame version of

ROS is used. Microsoft Kinect v2 is working only with Universal Serial Bus 3.0

(USB 3.0). Robot IP must be defined for the real application, following that, the

connection of the UR5 can be established by using ur_modern_driver.

• If you get permission error for UR driver, invoke Program 6.1.

• If you get the error related to iai_kinect2/kinect2_registration/CMakeLists.txt,

open this file as a superuser and add this line add_definitions(-fexceptions)

to it.

• Error related to beignet. If you are using beignet-1.1.1 version, it must be

updated to newer version1.

1 chmod +x /home/<username>/catk in ws / s r c / u n i v e r s a l r o b o t / u r d r i v e r / c f g /URDriver . c f g

Program 6.1 UR driver permission error

1See https://launchpad.net/ubuntu/+source/beignet/1.3.1-1.

https://launchpad.net/ubuntu/+source/beignet/1.3.1-1.

62

7. CONCLUSIONS

Firstly, during this work, Microsoft Kinect v2 and Universal Robot 5 were used.

As the software and library, ROS, PCL, libfreenect2, IAI Kinect2, OpenCV, Eigen,

ur_modern_driver, MoveIt!, OMPL and rviz were used. The data generated by

Microsoft Kinect v2 that contain RGB and depth information were received via IAI

Kinect2 (bridge between ROS and libfreenect2) and libfreenect2 (driver required to

receive data from Kinect). Next, This data were represented as points through the

PCL. VG, ROR and SOR filters were applied to remove the outliers and noises in

these points. The nearest point (fingertip) was calculated in real–time using the

data purified from outliers and noise with the help of Eigen matrix calculation tool.

On every 1cm change the calculation was restarted and the nearest point updated.

The updated nearest point was published continuously on a ros_topic. Following

that, it was visualized with PCL and rviz visualization tools.

On the robot side, with the help of ur_modern_driver, UR5 was controlled via ROS.

In this work, Kinetic Kame version of ROS was run on a computer with Ubuntu 16.04

LTS version installed. The nearest point was subscribed by the relevant ros_topic.

Then these fingertip differences were sent as a request for trajectory planning to

MoveIt!. Next, UR5 was motioned if there was a reasonable solution in these cal-

culations. One thing needs to be mentioned about MoveIt! is the parameter ”j”

which is used to calculate the feasible trajectory. It can be defined as ”joint jump

threshold factor” and when the value is set to a value other than zero, it is possible

to control how much instantaneous change will occur during motion of the robot

joints. It should not be set to zero in real–time test because this causes the robot

to motion to an undesirable target. It took 1.9 seconds to execute 1 cycle without

setting the parameter ”j” and without applying any filter to the system. After that,

VG, SOR and ROR filters were applied to the system to recognize the nearest point

accurately. In the last case, VG and SOR filters were used. Despite being filtered

and performing more calculations, the latency was reduced to 0.14 seconds. Setting

the optimal value of the ”j” parameter as the result of experiment and observation

is a significant step for latency and safety.

Secondly, the limitations can be listed as follows. ROS only works on Linux based

7. CONCLUSIONS 63

operating systems, so the built–in functions of Kinect can not be used and the

external library must be used to get the data (e.g., libfreenect2 and IAI Kinect2

for this project). Next, when the downsampling is done with the VG filter, the

resolution is lost in point cloud and the point is calculated incorrectly if the points

go below 50K. On the other hand, in order to use built–in filters in PCL, only C++

development and programming can be used at this time. Moreover, in MoveIt!,

since the search–based calculation method is used, milliseconds can not be reached

for the trajectory planning.

As a consequence, the lower the delay is, the better the interaction will be. For

future work, one can focus on closed form trajectory planning method to reduce

the trajectory calculation time in milliseconds order. In order to achieve this, low–

level programming (e.g, movej, servoj) can be used via the ur_modern_driver and

related drivers. For the pre–processing delay, Graphics Processing Unit (GPU) can

be used instead of using Central Processing Unit (CPU). Besides, the efficiency can

be enhanced by using different kind of filters in the PCL.

64

BIBLIOGRAPHY

[1] “Robot Operating System ROS,” accessed: 29-01-2018. [Online]. Available:

http://www.ros.org/

[2] A. Aldoma, Z. C. Marton, F. Tombari, W. Wohlkinger, C. Potthast, B. Zeisl,

R. B. Rusu, S. Gedikli, and M. Vincze, “Tutorial: Point Cloud Library: Three-

Dimensional Object Recognition and 6 DOF Pose Estimation,” IEEE Robotics

Automation Magazine, vol. 19, no. 3, pp. 80–91, 2012.

[3] T. Andersen, Optimizing the Universal Robots ROS driver. Technical Univer-

sity of Denmark, Department of Electrical Engineering, 2015.

[4] J. S. Armstrong and F. Collopy, “Error measures for generalizing about fore-

casting methods: Empirical comparisons,” International journal of forecasting,

vol. 8, no. 1, pp. 69–80, 1992.

[5] H. Asada and J.-J. E. Slotine, “Robot analysis and control,” Automatica,

vol. 24, no. 2, p. 289, 1988. [Online]. Available: http://linkinghub.elsevier.

com/retrieve/pii/0005109888900428

[6] M. Brady, Robot motion: Planning and control. MIT press, 1982.

[7] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ROS topics],” IEEE Robotics &

Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[8] H. M. Choset, Principles of robot motion: theory, algorithms, and implementa-

tion. MIT press, 2005.

[9] P. Corke, Robotics, Vision and Control: Fundamental Algorithms In

MATLAB R© Second, Completely Revised. Springer, 2017, vol. 118.

[10] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE trans-

actions on information theory, vol. 13, no. 1, pp. 21–27, 1967.

[11] A. J. Critchlow, Introduction to robotics. Macmillan New York, 1985.

[12] A. De Luca and F. Flacco, “Integrated control for phri: Collision avoidance,

detection, reaction and collaboration,” in Biomedical Robotics and Biomecha-

tronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on.

IEEE, 2012, pp. 288–295.

http://www.ros.org/
http://linkinghub.elsevier.com/retrieve/pii/0005109888900428
http://linkinghub.elsevier.com/retrieve/pii/0005109888900428

BIBLIOGRAPHY 65

[13] A. De Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean absolute

percentage error for regression models,” Neurocomputing, vol. 192, pp. 38–48,

2016.

[14] A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi, “An atlas of physical

human–robot interaction,” Mechanism and Machine Theory, vol. 43, no. 3, pp.

253–270, 2008.

[15] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-

pair mechanisms based on matrices.” Trans. of the ASME. Journal

of Applied Mechanics, vol. 22, pp. 215–221, 1955. [Online]. Available:

http://ci.nii.ac.jp/naid/10008019314/en/

[16] R. C. Dorf, Robotics and automated manufacturing. Reston Publishing Com-

pany, 1983.

[17] K. Elashry and R. Glynn, “An approach to automated construction using adap-

tive programing,” in Robotic Fabrication in Architecture, Art and Design 2014.

Springer, 2014, pp. 51–66.

[18] J. F. Engelberger, “Robotics in Practice’Kogan Page,” 1980.

[19] K. S. Fu, R. C. Gonzales, and C. Lee, “Robotics: Control, Sensing, Vision, and

Intelligence. McGrawHill,” Inc., Singapore, 1987.

[20] S. B. Gokturk, H. Yalcin, and C. Bamji, “A Time-Of-Flight Depth Sensor -

System Description, Issues and Solutions,” in 2004 Conference on Computer

Vision and Pattern Recognition Workshop, 2004, p. 35.

[21] I. Gradshteyn and I. Ryzhik, “Jacobian determinant,” Proceeding of Tables of

Integrals, Series, and Products, 6th ed. San Diego, pp. 1068–1069, 2000.

[22] M. P. Groover, M. Weiss, R. N. Nagel, and N. G. Odrey, Industrial robotics:

Technology, programming, and applications. McGraw-Hill New York, 1986.

[23] G. Guennebaud, B. Jacob, and Others, “Eigen v3,” http://eigen.tuxfamily.org,

2010.

[24] J. Han, L. Shao, D. Xu, and J. Shotton, “Enhanced Computer Vision With Mi-

crosoft Kinect Sensor: A Review,” IEEE Transactions on Cybernetics, vol. 43,

no. 5, pp. 1318–1334, 2013.

[25] T. Hoeniger, “Dynamically shared control in human-robot teams through phys-

ical interactions,” in Intelligent Robots and Systems, 1998. Proceedings., 1998

IEEE/RSJ International Conference on, vol. 2. IEEE, 1998, pp. 744–749.

http://ci.nii.ac.jp/naid/10008019314/en/

BIBLIOGRAPHY 66

[26] Robots and robotic devices – Safety requirements for industrial robots, ISO Std.

10 218, 2011.

[27] Robots and robotic devices – Collaborative robots, ISO/TS Std. 15 006, 2016.

[28] O. Khatib, K. Yokoi, O. Brock, K. Chang, and A. Casal, “Robots in human

environments: Basic autonomous capabilities,” The International Journal of

Robotics Research, vol. 18, no. 7, pp. 684–696, 1999.

[29] Y. Koren and Y. Koren, Robotics for engineers. McGraw-Hill New York et al,

1985, vol. 168.

[30] K. Kufieta, “Force Estimation in Robotic Manipulators: Modeling, Simulation

and Experiments,” M. Eng. thesis, Trondheim, Norway, 2014.

[31] N. B. Kumbla, J. A. Marvel, and S. K. Gupta, “Using Sensor Feedback to

Accurately Estimate Part Pose in a Gripper.”

[32] A. Kurakin, Z. Zhang, and Z. Liu, “A real time system for dynamic hand gesture

recognition with a depth sensor,” in Signal Processing Conference (EUSIPCO),

2012 Proceedings of the 20th European. IEEE, 2012, pp. 1975–1979.

[33] F. J. Lawin, P.-E. Forssén, and H. Ovrén, “Efficient multi-frequency phase

unwrapping using kernel density estimation,” in European Conference on Com-

puter Vision. Springer, 2016, pp. 170–185.

[34] C. S. G. Lee, R. C. Gonzalez, and K. S. Fu, “Tutorial on robotics,” 1986.

[35] Y. Li, “Hand gesture recognition using Kinect,” in 2012 IEEE International

Conference on Computer Science and Automation Engineering, 2012, pp. 196–

199.

[36] J. Mainprice, E. A. Sisbot, T. Siméon, and R. Alami, “Planning safe and legible

hand-over motions for human-robot interaction,” in IARP workshop on techni-

cal challenges for dependable robots in human environments, vol. 2, no. 6, 2010,

p. 7.

[37] N. Mansard, O. Khatib, and A. Kheddar, “A unified approach to integrate

unilateral constraints in the stack of tasks,” IEEE Transactions on Robotics,

vol. 25, no. 3, pp. 670–685, 2009.

[38] K. Mathiassen, J. E. Fjellin, K. Glette, P. K. Hol, and O. J. Elle,

“An Ultrasound Robotic System Using the Commercial Robot UR5,”

Frontiers in Robotics and AI, vol. 3, p. 1, 2016. [Online]. Available:

https://www.frontiersin.org/article/10.3389/frobt.2016.00001

https://www.frontiersin.org/article/10.3389/frobt.2016.00001

BIBLIOGRAPHY 67

[39] M. L. Minsky, Robotics. Doubleday, 1985.

[40] J. Mǐseikis, K. Glette, O. J. Elle, and J. Torresen, “Multi 3D camera mapping

for predictive and reflexive robot manipulator trajectory estimation,” in 2016

IEEE Symposium Series on Computational Intelligence (SSCI), 2016, pp. 1–8.

[41] S. Moe and I. Schjølberg, “Real-time hand guiding of industrial manipulator

in 5 DOF using Microsoft Kinect and accelerometer,” in 2013 IEEE RO-MAN,

2013, pp. 644–649.

[42] S. Moe, G. Antonelli, A. R. Teel, K. Y. Pettersen, and J. Schrimpf, “Set-

based tasks within the singularity-robust multiple task-priority inverse kine-

matics framework: General formulation, stability analysis, and experimental

results,” Frontiers in Robotics and AI, vol. 3, p. 16, 2016.

[43] R. R. Murphy and D. Schreckenghost, “Survey of metrics for human-robot in-

teraction,” ACM/IEEE International Conference on Human-Robot Interaction,

pp. 197–198, 2013.

[44] Y. Nakauchi and R. Simmons, “A social robot that stands in line,” Autonomous

Robots, vol. 12, no. 3, pp. 313–324, 2002.

[45] C. L. Nehaniv, K. Dautenhahn, J. Kubacki, M. Haegele, C. Parlitz, and

R. Alami, “A methodological approach relating the classification of gesture

to identification of human intent in the context of human-robot interaction,”

in Robot and Human Interactive Communication, 2005. ROMAN 2005. IEEE

International Workshop on. IEEE, 2005, pp. 371–377.

[46] “Gazebo Robot Simulation Tool,” Open Source Robotics Foundation OSRF,

accessed: 29-01-2018. [Online]. Available: http://gazebosim.org/

[47] “MoveIt! Motion Planning Framework,” Open Source Robotics Foundation

(OSRF), accessed: 29-01-2018. [Online]. Available: http://moveit.ros.org/

[48] R. P. Paul, Robot Manipulators: Mathematics, Programming, and Control,

1st ed. Cambridge, MA, USA: MIT Press, 1982.

[49] M. Quigley, J. Faust, T. Foote, and J. Leibs, “ROS: an open-source Robot

Operating System.”

[50] M. R. P. Ragazzon, “TTK4550 Specialization Project Robot Manipulator Colli-

sion Handling in Unknown Environment without using External Sensors,” p. 90,

2012.

http://gazebosim.org/
http://moveit.ros.org/

BIBLIOGRAPHY 68

[51] J. L. Raheja, A. Chaudhary, and K. Singal, “Tracking of fingertips and centers

of palm using kinect,” in Computational intelligence, modelling and simulation

(CIMSiM), 2011 third international conference on. IEEE, 2011, pp. 248–252.

[52] R. Raja and S. Kumar, “A Hybrid Image Based Visual Servoing for a Manipu-

lator using Kinect,” in Proceedings of the Advances in Robotics. ACM, 2017,

p. 52.

[53] J. A. Rehg, Introduction to robotics : a systems approach. Englewood Cliffs,

N.J. : Prentice-Hall, 1985.

[54] Z. Ren, J. Meng, and J. Yuan, “Depth camera based hand gesture recognition

and its applications in Human-Computer-Interaction,” in 2011 8th Interna-

tional Conference on Information, Communications Signal Processing, 2011,

pp. 1–5.

[55] O. Rogalla, M. Ehrenmann, R. Zollner, R. Becher, and R. Dillmann, “Using

gesture and speech control for commanding a robot assistant,” in Robot and Hu-

man Interactive Communication, 2002. Proceedings. 11th IEEE International

Workshop on. IEEE, 2002, pp. 454–459.

[56] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in

IEEE International Conference on Robotics and Automation (ICRA), Shang-

hai, China, may 2011.

[57] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards

3d point cloud based object maps for household environments,” Robotics and

Autonomous Systems, vol. 56, no. 11, pp. 927–941, 2008.

[58] J. Saarinen, J. Suomela, and A. Halme, “The Concept of Future Worksite–

Towards Teamwork-centered Field Robotic Systems,” IFAC Proceedings Vol-

umes, vol. 44, no. 1, pp. 14 952–14 957, 2011.

[59] P. Sanz, Robotics: Modeling, Planning, and Control, 2009, vol. 16, no. 4.

[60] D. G. Schneider, L. L. d. Silva, P. Diehl, A. H. R. Leite, and G. S. Bastos,

“Robot Navigation by Gesture Recognition with ROS and Kinect,” in 2015

12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium

on Robotics (LARS-SBR), 2015, pp. 145–150.

[61] M. Shahinpoor, A robot engineering textbook. Harper & Row Publishers, Inc.,

1987.

BIBLIOGRAPHY 69

[62] D. Shin, S. Shin, D. Kim, S. Kim, J. Hwang, and Y. Kim, “Visual guidance

system for remote-operation,” in 2016 13th International Conference on Ubiq-

uitous Robots and Ambient Intelligence (URAI), 2016, pp. 657–661.

[63] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics–Modelling, Plan-

ning and Control. Advanced Textbooks in Control and Signal Processing Series.

London, UK: Springer-Verlag, 2009.

[64] C. P. Simon and L. E. Blume, Mathematics for Economists. 500 Fifth Avenue,

New York, NY 10110. WW Norton & Company, Inc, 1994.

[65] W. E. Snyder, Industrial robots: computer interfacing and control. Prentice

Hall PTR, 1985.

[66] M. W. Spong, S. Hutchinson, M. Vidyasagar et al., Robot modeling and control.

Wiley New York, 2006, vol. 3.

[67] K. Stubbs, P. Hinds, and D. Wettergreen, “Challenges to grounding in human-

robot interaction,” in Proceedings of the 1st ACM SIGCHI/SIGART conference

on Human-robot interaction. ACM, 2006, pp. 357–358.

[68] J. Suarez and R. R. Murphy, “Hand gesture recognition with depth images: A

review,” in Ro-man, 2012 IEEE. IEEE, 2012, pp. 411–417.

[69] B. Teke, M. Lanz, J. Kämäräinen, and A. Hietanen, “Real-time robust collabo-

rative robot motion control with microsoft kinect,” in 2018 14th IEEE/ASME

International Conference on Mechatronic and Embedded Systems and Applica-

tions (MESA) (MESA2018), Oulu, Finland, Jul. 2018.

[70] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,

P. Fong, J. Gale, M. Halpenny, G. Hoffmann et al., “Stanley: The robot that

won the darpa grand challenge,” Journal of field Robotics, vol. 23, no. 9, pp.

661–692, 2006.

[71] S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson,

D. Hahnel, D. Montemerlo, A. Morris, Z. Omohundro et al., “Autonomous

exploration and mapping of abandoned mines,” IEEE Robotics & Automation

Magazine, vol. 11, no. 4, pp. 79–91, 2004.

[72] J. G. Trafton, A. C. Schultz, D. Perznowski, M. D. Bugajska, W. Adams, N. L.

Cassimatis, and D. P. Brock, “Children and robots learning to play hide and

seek,” in Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-

robot interaction. ACM, 2006, pp. 242–249.

Bibliography 70

[73] M. R. Walter, M. Antone, E. Chuangsuwanich, A. Correa, R. Davis, L. Fletcher,

E. Frazzoli, Y. Friedman, J. Glass, J. P. How, and Others, “A Situationally

Aware Voice-commandable Robotic Forklift Working Alongside People in Un-

structured Outdoor Environments,” Journal of Field Robotics, vol. 32, no. 4,

pp. 590–628, 2015.

[74] Y. Wang, Y. Sheng, J. Wang, and W. Zhang, “Optimal Collision-Free Robot

Trajectory Generation Based on Time Series Prediction of Human Motion,”

IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 226–233, 2018.

[75] T. Wiedemeyer, “IAI Kinect2,” https://github.com/code-iai/iai kinect2, Insti-

tute for Artificial Intelligence, University Bremen, 2014 – 2015, accessed June

12, 2015.

[76] K. Wilfred, Advanced calculus. Addison-Wesley Longman, Boston, 2002.

[77] W. A. Wolovich, Robotics: basic analysis and design. Holt, Rinehart & Win-

ston, 1986.

[78] L. Xiang, F. Echtler, C. Kerl, T. Wiedemeyer, Lars, Hanyazou, R. Gordon,

F. Facioni, Laborer2008, R. Wareham, M. Goldhoorn, Alberth, Gaborpapp,

S. Fuchs, Jmtatsch, J. Blake, Federico, H. Jungkurth, Y. Mingze, Vinouz,

D. Coleman, B. Burns, R. Rawat, S. Mokhov, P. Reynolds, P. E. Viau,

M. Fraissinet-Tachet, Ludique, J. Billingham, and Alistair, “libfreenect2:

Release 0.2,” 2016. [Online]. Available: https://doi.org/10.5281/zenodo.50641

[79] Z. Zhang, “Microsoft Kinect Sensor and Its Effect,” IEEE MultiMedia, vol. 19,

no. 2, pp. 4–10, 2012.

https://github.com/code-iai/iai_kinect2
https://doi.org/10.5281/zenodo.50641

71

Appendices

72

A. SKEW SYMMETRIC MATRIX

Skew symmetric matrices simplify the calculation of the derivative of a rotation

matrix. A matrix is called skew symmetric if the transpose is equal to its negative.

It can be seen in Equation (A.1).

ST + S = 0 (A.1)

The set of 3 × 3 skew symmetric matrices can be denoted by SO(3). sij is the

elements of S that can be seen in Equation (A.2).

sij + sji = 0 i, j = 1, 2, 3 (A.2)

Equation (A.3) shows that S contains only three independent entries.

S =

0 −s3 s2

s3 0 −s1

−s2 s1 0

 (A.3)

i, j and k can be denoted as the three unit basis coordinate vectors. Definitions are

shown in Equation (A.4).

i =

1

0

0

 , j =

0

1

0

 , k =

0

0

1

 (A.4)

The skew symmetric matrices S(i), S(j) and S(k) are given by Equation (A.5).

S(i) =

0 0 0

0 0 −1

0 1 0

 , S(j) =

0 0 1

0 0 0

−1 0 0

 , S(k) =

0 0 0

0 0 −1

0 1 0

 (A.5)

Appendix A. SKEW SYMMETRIC MATRIX 73

Following that, the derivative of the basic rotation matrices can be seen in Equa-

tion (A.6).
d

dα
Rx,α = S(i)Rx,α

d

dβ
Ry,β = S(j)Ry,β

d

dγ
Rz,γ = S(k)Rz,γ

(A.6)

Time varying rotation matrix denoted as R = R(t).

S(ω(t)) =

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (A.7)

ω(t) is the angular velocity of the rotating frame with relative to the base frame at

time t. Therefore, S(t) can be represented as S(ω(t)). It is shown in Equation (A.7).

The time derivative Ṙ(t) is given by Equation (A.8).

Ṙ(t) = S(ω(t))R(t) (A.8)

74

B. UNIVERSAL ROBOT–5 SPECIFICATIONS

In this appendix, UR5 specifications and its MDH parameters are given.

B.1 Universal Robot–5 Technical Specifications

Weight: 18.4kg

Payload: 5kg

Reach: 850mm

Joint ranges: ±360◦

Speed: Joint: max. 180◦/sec. ; Tool: ≈ 1m/sec.

Repeatability: ±0.1mm

Degrees of freedom: 6 revolute joints

Controller size: 475× 423× 268mm

I/O ports: 10 Digital Input, 10 Digital Output;

4 Analog Input, 2 Analog Output

I/O power supply: 24V 1.2A in controller, 12V/24V 0.6A in tool

Communication: TCP/IP–Ethernet, Modbus TCP

Programming: URScript

Noise: Comparative noiseless

IP classification: IP54

Power consumption: ≈ 200 watts

Collaboration operation: EN ISO 13849 : 2008; EN ISO 10218 − 1 : 2011

Materials: Aluminum, PP plastic

Temperature: 0− 50◦C

Power supply: 100− 240 VAC, 50− 60 Hz

B.2. Universal Robot–5 MDH Parameters 75

B.2 Universal Robot–5 MDH Parameters

MDH parameters of UR5 can be seen in Table B.1. On the other hand, the ho-

mogeneous transformation of each link can be seen in Equations (B.1) to (B.6).

Table B.1 UR5 MDH PARAMETERS

(a) MDH parameters symbols

Link i θi di ai αi

1 θ1 d1 0 α1

2 θ2 0 a2 0

3 θ3 0 a3 0

4 θ4 d4 0 α4

5 θ5 d5 0 α5

6 θ6 d6 0 0

(b) MDH parameters values

Link i di[mm] ai[mm] αi[degree]

1 89.16 0 90◦

2 0 −425 0

3 0 −392.25 0

4 109.15 0 90◦

5 94.65 0 −90◦

6 82.3 0 0

A1 =

R0
1 o0

1

0 1

 =

cθ1 0 sθ1 0

sθ1 0 −cθ1 0

0 1 0 89.16

0 0 0 1

 (B.1)

A2 =

R1
2 o1

2

0 1

 =

cθ2 −sθ2 0 −425cθ2

sθ2 cθ2 0 −425sθ2

0 0 1 0

0 0 0 1

 (B.2)

A3 =

R2
3 o2

3

0 1

 =

cθ3 −sθ3 0 −392.25cθ3

sθ3 cθ3 0 −392.25sθ3

0 0 1 0

0 0 0 1

 (B.3)

A4 =

R3
4 o3

4

0 1

 =

cθ4 0 sθ4 0

sθ4 0 −cθ4 0

0 1 0 109.15

0 0 0 1

 (B.4)

B.2. Universal Robot–5 MDH Parameters 76

A5 =

R4
5 o4

5

0 1

 =

cθ5 0 −sθ5 0

sθ5 0 cθ5 0

0 −1 0 94.65

0 0 0 1

 (B.5)

A6 =

R5
6 o5

6

0 1

 =

cθ6 −sθ6 0 0

sθ6 cθ6 0 0

0 0 1 82.3

0 0 0 1

 (B.6)

Finally, the transformation matrix T 0
6 that describes the end–effector position and

orientation with respect to the base frame can be derived by using Equation (B.7).

T 0
6 = A1A2A3A4A5A6 =

R0
6 o0

6

0 1

 =

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

0 0 0 1

 (B.7)

	INTRODUCTION
	Objectives and Outline of the Thesis
	Limitations
	Research Questions and Research Methodology
	Publications and Author's Contribution

	BACKGROUND
	Mathematical Overview of Robots
	Robotic Systems
	Kinematic Manipulators
	Modeling of Robots
	Rigid Motions and Homogeneous Transformation
	Euler Angle
	Roll–Pitch–Yaw (RPY) Angles
	Angle and Axis
	Homogeneous Transformation

	Direct Kinematics
	Modified Denavit–Hartenberg Convention

	Inverse Kinematics
	Kinematic Decoupling

	Velocity Kinematics
	Manipulator Jacobian
	Geometric Jacobian
	Analytical Jacobian

	Trajectory Planning
	Cubic Polynomial Trajectories
	Quintic Polynomial Trajectories

	Human Robot Interaction
	Practices in HRI
	Challenges in HRI

	Related Work
	Chapter Summary

	SYSTEM OVERVIEW
	Development Environments and Equipments
	Robot Operating System (ROS)
	Point Cloud Library (PCL)
	Gazebo Simulation Tool (GST) and ROS visualization (rviz)
	Universal Robot–5 (UR5)
	Microsoft Kinect v2
	libfreenect2 and IAI Kinect2

	Motion Planners
	Moveit! Motion Planner
	The Open Motion Planning Library (OMPL)

	Chapter Summary

	IMPLEMENTATION
	Execution and Filtering Process
	Mapping
	Pre–Processing of Point Cloud
	Data Acquisition
	Euclidean Distance
	k–Nearest Neighbors (k–NN)
	Point Cloud Environment without Filter
	Voxel Grid (VG) Filter
	Radius Outlier Removal (ROR) Filter
	Statistical Outlier Removal (SOR) Filter
	Performance Measures

	Chapter Summary

	RESULTS AND DISCUSSION
	Results
	Discussion
	Chapter Summary

	TROUBLESHOOTING
	Problems and Solutions

	CONCLUSIONS
	Bibliography
	Appendices
	SKEW SYMMETRIC MATRIX
	UNIVERSAL ROBOT–5 SPECIFICATIONS
	Universal Robot–5 Technical Specifications
	Universal Robot–5 MDH Parameters

