511 research outputs found

    Human Leg Model Predicts Ankle Muscle-Tendon Morphology, State, Roles and Energetics in Walking

    Get PDF
    A common feature in biological neuromuscular systems is the redundancy in joint actuation. Understanding how these redundancies are resolved in typical joint movements has been a long-standing problem in biomechanics, neuroscience and prosthetics. Many empirical studies have uncovered neural, mechanical and energetic aspects of how humans resolve these degrees of freedom to actuate leg joints for common tasks like walking. However, a unifying theoretical framework that explains the many independent empirical observations and predicts individual muscle and tendon contributions to joint actuation is yet to be established. Here we develop a computational framework to address how the ankle joint actuation problem is resolved by the neuromuscular system in walking. Our framework is founded upon the proposal that a consideration of both neural control and leg muscle-tendon morphology is critical to obtain predictive, mechanistic insight into individual muscle and tendon contributions to joint actuation. We examine kinetic, kinematic and electromyographic data from healthy walking subjects to find that human leg muscle-tendon morphology and neural activations enable a metabolically optimal realization of biological ankle mechanics in walking. This optimal realization (a) corresponds to independent empirical observations of operation and performance of the soleus and gastrocnemius muscles, (b) gives rise to an efficient load-sharing amongst ankle muscle-tendon units and (c) causes soleus and gastrocnemius muscle fibers to take on distinct mechanical roles of force generation and power production at the end of stance phase in walking. The framework outlined here suggests that the dynamical interplay between leg structure and neural control may be key to the high walking economy of humans, and has implications as a means to obtain insight into empirically inaccessible features of individual muscle and tendons in biomechanical tasks.National Institutes of Health (U.S.) (NIH Pioneer Award DP1 OD003646)Massachusetts Institute of Technology. Media Laboratory (Consortia Account 2736448)Massachusetts Institute of Technology. Media Laboratory (Consortia Account 6895867

    Application of Leg, Vertical, and Joint Stiffness in Running Performance: A Literature Overview

    Get PDF
    Stiffness, the resistance to deformation due to force, has been used to model the way in which the lower body responds to landing during cyclic motions such as running and jumping. Vertical, leg, and joint stiffness provide a useful model for investigating the store and release of potential elastic energy via the musculotendinous unit in the stretch-shortening cycle and may provide insight into sport performance. This review is aimed at assessing the effect of vertical, leg, and joint stiffness on running performance as such an investigation may provide greater insight into performance during this common form of locomotion. PubMed and SPORTDiscus databases were searched resulting in 92 publications on vertical, leg, and joint stiffness and running performance. Vertical stiffness increases with running velocity and stride frequency. Higher vertical stiffness differentiated elite runners from lower-performing athletes and was also associated with a lower oxygen cost. In contrast, leg stiffness remains relatively constant with increasing velocity and is not strongly related to the aerobic demand and fatigue. Hip and knee joint stiffness are reported to increase with velocity, and a lower ankle and higher knee joint stiffness are linked to a lower oxygen cost of running; however, no relationship with performance has yet been investigated. Theoretically, there is a desired “leg-spring” stiffness value at which potential elastic energy return is maximised and this is specific to the individual. It appears that higher “leg-spring” stiffness is desirable for running performance; however, more research is needed to investigate the relationship of all three lower limb joint springs as the hip joint is often neglected. There is still no clear answer how training could affect mechanical stiffness during running. Studies including muscle activation and separate analyses of local tissues (tendons) are needed to investigate mechanical stiffness as a global variable associated with sports performance

    Application of Leg, Vertical, and Joint Stiffness in Running Performance: A Literature Overview

    Get PDF
    Stiffness, the resistance to deformation due to force, has been used to model the way in which the lower body responds to landing during cyclic motions such as running and jumping. Vertical, leg, and joint stiffness provide a useful model for investigating the store and release of potential elastic energy via the musculotendinous unit in the stretch-shortening cycle and may provide insight into sport performance. This review is aimed at assessing the effect of vertical, leg, and joint stiffness on running performance as such an investigation may provide greater insight into performance during this common form of locomotion. PubMed and SPORTDiscus databases were searched resulting in 92 publications on vertical, leg, and joint stiffness and running performance. Vertical stiffness increases with running velocity and stride frequency. Higher vertical stiffness differentiated elite runners from lower-performing athletes and was also associated with a lower oxygen cost. In contrast, leg stiffness remains relatively constant with increasing velocity and is not strongly related to the aerobic demand and fatigue. Hip and knee joint stiffness are reported to increase with velocity, and a lower ankle and higher knee joint stiffness are linked to a lower oxygen cost of running; however, no relationship with performance has yet been investigated. Theoretically, there is a desired “leg-spring” stiffness value at which potential elastic energy return is maximised and this is specific to the individual. It appears that higher “leg-spring” stiffness is desirable for running performance; however, more research is needed to investigate the relationship of all three lower limb joint springs as the hip joint is often neglected. There is still no clear answer how training could affect mechanical stiffness during running. Studies including muscle activation and separate analyses of local tissues (tendons) are needed to investigate mechanical stiffness as a global variable associated with sports performance

    Human motion analysis and simulation tools: a survey

    Get PDF
    Computational systems to identify objects represented in image sequences and tracking their motion in a fully automatic manner, enabling a detailed analysis of the involved motion and its simulation are extremely relevant in several fields of our society. In particular, the analysis and simulation of the human motion has a wide spectrum of relevant applications with a manifest social and economic impact. In fact, usage of human motion data is fundamental in a broad number of domains (e.g.: sports, rehabilitation, robotics, surveillance, gesture-based user interfaces, etc.). Consequently, many relevant engineering software applications have been developed with the purpose of analyzing and/or simulating the human motion. This chapter presents a detailed, broad and up to date survey on motion simulation and/or analysis software packages that have been developed either by the scientific community or commercial entities. Moreover, a main contribution of this chapter is an effective framework to classify and compare motion simulation and analysis tools

    Differences between joint-space and musculoskeletal estimations of metabolic rate time profiles

    Get PDF
    Motion capture laboratories can measure multiple variables at high frame rates, but we can only measure the average metabolic rate of a stride using respiratory measurements. Biomechanical simulations with equations for calculating metabolic rate can estimate the time profile of metabolic rate within the stride cycle. A variety of methods and metabolic equations have been proposed, including metabolic time profile estimations based on joint parameters. It is unclear whether differences in estimations are due to differences in experimental data or due to methodological differences. This study aimed to compare two methods for estimating the time profile of metabolic rate, within a single dataset. Knowledge about the consistency of different methods could be useful for applications such as detecting which part of the gait cycle causes increased metabolic cost in patients. Here we compare estimations of metabolic rate time profiles using a musculoskeletal and a joint-space method. The musculoskeletal method was driven by kinematics and electromyography data and used muscle metabolic rate equations, whereas the joint-space method used metabolic rate equations based on joint parameters. Both estimations of changes in stride average metabolic rate correlated significantly with large changes in indirect calorimetry from walking on different grades showing that both methods accurately track changes. However, estimations of changes in stride average metabolic rate did not correlate significantly with more subtle changes in indirect calorimetry due to walking with different shoe inclinations, and both the musculoskeletal and joint-space time profile estimations did not correlate significantly with each other except in the most downward shoe inclination. Estimations of the relative cost of stance and swing matched well with previous simulations with similar methods and estimations from experimental perturbations. Rich experimental datasets could further advance time profile estimations. This knowledge could be useful to develop therapies and assistive devices that target the least metabolically economic part of the gait cycle

    Neuromuscular control and running economy is preserved in elite international triathletes after cycling

    Full text link
    Running is the most important discipline for Olympic triathlon success. However, cycling impairs running muscle recruitment and performance in some highly trained triathletes; though it is not known if this occurs in elite international triathletes. The purpose of this study was to investigate the effect of cycling in two different protocols on running economy and neuromuscular control in elite international triathletes. Muscle recruitment and sagittal plane joint angles of the left lower extremity and running economy were compared between control (no preceding cycle) and transition (preceded by cycling) runs for two different cycle protocols (20-minute low-intensity and 50-minute high-intensity cycles) in seven elite international triathletes. Muscle recruitment and joint angles were not different between control and transition runs for either cycle protocols. Running economy was also not different between control and transition runs for the ow-intensity (62.4 ^ 4.5 vs. 62.1 ^ 4.0 ml/min/kg, p . 0.05) and high-intensity (63.4 ^ 3.5 vs. 63.3 ^ 4.3 ml/min/kg, p . 0.05) cycle protocols. The results of this study demonstrate that both low- and high-intensity cycles do not adversely influence neuromuscular control and running economy in elite international triathletes.<br /

    Is the metabolic cost of walking higher in people with diabetes?

    Get PDF
    People with diabetes walk slower and display biomechanical gait alterations compared with controls, but it remains unknown whether the metabolic cost of walking (CoW) is elevated. The aim of this study was to investigate the CoW and the lower limb concentric joint work as a major determinant of the CoW, in patients with diabetes and diabetic peripheral neuropathy (DPN). Thirty-one nondiabetic controls (Ctrl), 22 diabetic patients without peripheral neuropathy (DM), and 14 patients with moderate/severe DPN underwent gait analysis using a motion analysis system and force plates and treadmill walking using a gas analyzer to measure oxygen uptake. The CoW was significantly higher particularly in the DPN group compared with controls and also in the DM group (at selected speeds only) compared with controls, across a range of matched walking speeds. Despite the higher CoW in patients with diabetes, concentric lower limb joint work was significantly lower in DM and DPN groups compared with controls. The higher CoW is likely due to energetic inefficiencies associated with diabetes and DPN reflecting physiological and biomechanical characteristics. The lower concentric joint work in patients with diabetes might be a consequence of kinematic gait alterations and may represent a natural strategy aimed at minimizing the CoW
    • …
    corecore