14,002 research outputs found

    Incremental learning of skills in a task-parameterized Gaussian Mixture Model

    Get PDF
    The final publication is available at link.springer.comProgramming by demonstration techniques facilitate the programming of robots. Some of them allow the generalization of tasks through parameters, although they require new training when trajectories different from the ones used to estimate the model need to be added. One of the ways to re-train a robot is by incremental learning, which supplies additional information of the task and does not require teaching the whole task again. The present study proposes three techniques to add trajectories to a previously estimated task-parameterized Gaussian mixture model. The first technique estimates a new model by accumulating the new trajectory and the set of trajectories generated using the previous model. The second technique permits adding to the parameters of the existent model those obtained for the new trajectories. The third one updates the model parameters by running a modified version of the Expectation-Maximization algorithm, with the information of the new trajectories. The techniques were evaluated in a simulated task and a real one, and they showed better performance than that of the existent model.Peer ReviewedPostprint (author's final draft

    Learning Task Priorities from Demonstrations

    Full text link
    Bimanual operations in humanoids offer the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. We address this problem from a learning from demonstration perspective, by extending the Task-Parameterized Gaussian Mixture Model (TP-GMM) to Jacobian and null space structures. The proposed approach is tested on bimanual skills but can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: two different tasks with humanoids requiring the learning of priorities and a loco-manipulation scenario, showing that the approach can be exploited to learn the prioritization of multiple tasks in parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic

    A nonparametric Bayesian approach toward robot learning by demonstration

    No full text
    In the past years, many authors have considered application of machine learning methodologies to effect robot learning by demonstration. Gaussian mixture regression (GMR) is one of the most successful methodologies used for this purpose. A major limitation of GMR models concerns automatic selection of the proper number of model states, i.e., the number of model component densities. Existing methods, including likelihood- or entropy-based criteria, usually tend to yield noisy model size estimates while imposing heavy computational requirements. Recently, Dirichlet process (infinite) mixture models have emerged in the cornerstone of nonparametric Bayesian statistics as promising candidates for clustering applications where the number of clusters is unknown a priori. Under this motivation, to resolve the aforementioned issues of GMR-based methods for robot learning by demonstration, in this paper we introduce a nonparametric Bayesian formulation for the GMR model, the Dirichlet process GMR model. We derive an efficient variational Bayesian inference algorithm for the proposed model, and we experimentally investigate its efficacy as a robot learning by demonstration methodology, considering a number of demanding robot learning by demonstration scenarios

    Online quantum mixture regression for trajectory learning by demonstration

    No full text
    In this work, we present the online Quantum Mixture Model (oQMM), which combines the merits of quantum mechanics and stochastic optimization. More specifically it allows for quantum effects on the mixture states, which in turn become a superposition of conventional mixture states. We propose an efficient stochastic online learning algorithm based on the online Expectation Maximization (EM), as well as a generation and decay scheme for model components. Our method is suitable for complex robotic applications, where data is abundant or where we wish to iteratively refine our model and conduct predictions during the course of learning. With a synthetic example, we show that the algorithm can achieve higher numerical stability. We also empirically demonstrate the efficacy of our method in well-known regression benchmark datasets. Under a trajectory Learning by Demonstration setting we employ a multi-shot learning application in joint angle space, where we observe higher quality of learning and reproduction. We compare against popular and well-established methods, widely adopted across the robotics community

    Encoding Multiple Sensor Data for Robotic Learning Skills from Multimodal Demonstration

    Get PDF
    © 2013 IEEE. Learning a task such as pushing something, where the constraints of both position and force have to be satisfied, is usually difficult for a collaborative robot. In this work, we propose a multimodal teaching-by-demonstration system which can enable the robot to perform this kind of tasks. The basic idea is to transfer the adaptation of multi-modal information from a human tutor to the robot by taking account of multiple sensor signals (i.e., motion trajectories, stiffness, and force profiles). The human tutor's stiffness is estimated based on the limb surface electromyography (EMG) signals obtained from the demonstration phase. The force profiles in Cartesian space are collected from a force/torque sensor mounted between the robot endpoint and the tool. Subsequently, the hidden semi-Markov model (HSMM) is used to encode the multiple signals in a unified manner. The correlations between position and the other three control variables (i.e., velocity, stiffness and force) are encoded with separate HSMM models. Based on the estimated parameters of the HSMM model, the Gaussian mixture regression (GMR) is then utilized to generate the expected control variables. The learned variables are further mapped into an impedance controller in the joint space through inverse kinematics for the reproduction of the task. Comparative tests have been conducted to verify the effectiveness of our approach on a Baxter robot

    Improving Task-Parameterised Movement Learning Generalisation with Frame-Weighted Trajectory Generation

    Get PDF
    Learning from Demonstration depends on a robot learner generalising its learned model to unseen conditions, as it is not feasible for a person to provide a demonstration set that accounts for all possible variations in non-trivial tasks. While there are many learning methods that can handle interpolation of observed data effectively, extrapolation from observed data offers a much greater challenge. To address this problem of generalisation, this paper proposes a modified Task-Parameterised Gaussian Mixture Regression method that considers the relevance of task parameters during trajectory generation, as determined by variance in the data. The benefits of the proposed method are first explored using a simulated reaching task data set. Here it is shown that the proposed method offers far-reaching, low-error extrapolation abilities that are different in nature to existing learning methods. Data collected from novice users for a real-world manipulation task is then considered, where it is shown that the proposed method is able to effectively reduce grasping performance errors by ∌30%{\sim30\%} and extrapolate to unseen grasp targets under real-world conditions. These results indicate the proposed method serves to benefit novice users by placing less reliance on the user to provide high quality demonstration data sets.Comment: 8 pages, 6 figures, submitted to 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Geometry-aware Manipulability Learning, Tracking and Transfer

    Full text link
    Body posture influences human and robots performance in manipulation tasks, as appropriate poses facilitate motion or force exertion along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze, control and design the robot dexterity as a function of the articulatory joint configuration. This descriptor can be designed according to different task requirements, such as tracking a desired position or apply a specific force. In this context, this paper presents a novel \emph{manipulability transfer} framework, a method that allows robots to learn and reproduce manipulability ellipsoids from expert demonstrations. The proposed learning scheme is built on a tensor-based formulation of a Gaussian mixture model that takes into account that manipulability ellipsoids lie on the manifold of symmetric positive definite matrices. Learning is coupled with a geometry-aware tracking controller allowing robots to follow a desired profile of manipulability ellipsoids. Extensive evaluations in simulation with redundant manipulators, a robotic hand and humanoids agents, as well as an experiment with two real dual-arm systems validate the feasibility of the approach.Comment: Accepted for publication in the Intl. Journal of Robotics Research (IJRR). Website: https://sites.google.com/view/manipulability. Code: https://github.com/NoemieJaquier/Manipulability. 24 pages, 20 figures, 3 tables, 4 appendice
    • 

    corecore