6,756 research outputs found

    SIMNET: simulation-based exercises for computer net-work curriculum through gamification and augmented reality

    Get PDF
    Gamification and Augmented Reality techniques, in recent years, have tackled many subjects and environments. Its implementation can, in particular, strengthen teaching and learning processes in schools and universities. Therefore, new forms of knowledge, based on interactions with objects, contributing game, experimentation and collaborative work. Through the technologies mentioned above, we intend to develop an application that serves as a didactic tool, giving support in the area of Computer Networks. This application aims to stand out in simulated controlled environments to create computer networks, taking into ac-count the necessary physical devices and the different physical and logical topologies. The main goal is to enrich the students’ learning experiences and contrib-ute to teacher-student interaction, through collaborative learning provided by the tool, minimizing the need for expensive equipment in learning environments.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Glitchspace:teaching programming through puzzles in cyberspace

    Get PDF
    There is an increasing need to address the player experience in games-based learning. Whilst games offer enormous potential as learning experiences, the balance between entertainment and education must be carefully designed and delivered. Successful commercial games tend to focus gameplay above any educational aspects. In contrast, games designed for educational purposes have a habit of sacrificing entertainment for educational value which can result in a decline in player engagement. For both, the player experience is critical as it can have a profound effect on both the commercial success of the game and in delivering the educational engagement. As part of an Interface-funded research project Abertay University worked with the independent games company, Space Budgie, to enhance the user experience of their educational game Glitchspace. The game aimed to teach basic coding principles and terminology in an entertaining way. The game sets the player inside a Mondrian-inspired cyberspace world where to progress the player needs to reprogramme the world around them to solve puzzles. The main objective of the academic-industry collaborative project was to analyse the user experience (UX) of the game to increase its educational value for a standalone educational version. The UX design focused on both pragmatic and hedonic qualities such playability, usability and the psychological impact of the game. The empirical study of the UX design allowed all parties to develop a deeper understanding of how the game was being played and the initial reactions to the game by the player. The core research question that the study sought to answer was whether when designing an educational game, UX design could improve philosophical concepts like motivation and engagement to foster better learning experiences.</p

    A collaborative citizen science platform for real-time volunteer computing and games

    Full text link
    Volunteer computing (VC) or distributed computing projects are common in the citizen cyberscience (CCS) community and present extensive opportunities for scientists to make use of computing power donated by volunteers to undertake large-scale scientific computing tasks. Volunteer computing is generally a non-interactive process for those contributing computing resources to a project whereas volunteer thinking (VT) or distributed thinking, which allows volunteers to participate interactively in citizen cyberscience projects to solve human computation tasks. In this paper we describe the integration of three tools, the Virtual Atom Smasher (VAS) game developed by CERN, LiveQ, a job distribution middleware, and CitizenGrid, an online platform for hosting and providing computation to CCS projects. This integration demonstrates the combining of volunteer computing and volunteer thinking to help address the scientific and educational goals of games like VAS. The paper introduces the three tools and provides details of the integration process along with further potential usage scenarios for the resulting platform.Comment: 12 pages, 13 figure

    Group-centered framework towards a positive design of digital collaboration in global settings

    Full text link
    Globally distributed groups require collaborative systems to support their work. Besides being able to support the teamwork, these systems also should promote well-being and maximize the human potential that leads to an engaging system and joyful experience. Designing such system is a significant challenge and requires a thorough understanding of group work. We used the field theory as a lens to view the essential aspects of group motivation and then utilized collaboration personas to analyze the elements of group work. We integrated well-being determinants as engagement factors to develop a group-centered framework for digital collaboration in a global setting. Based on the outcomes, we proposed a conceptual framework to design an engaging collaborative system and recommend system values that can be used to evaluate the system furtherComment: 6 Pages, 3 Figures, Positive computing, International Conference on Industrial Enterprise and System Engineerin

    Design thinking and acceptance requirements for designing gamified software.

    Get PDF
    Gamification is increasingly applied to engage people in performing tool-supported collaborative tasks. From previous experiences we learned that available gamification guidelines are not sufficient, and more importantly that motivational and acceptance aspects need to be considered when designing gamified software applications. To understand them, stakeholders need to be involved in the design process. This paper aims to (i) identify key requirements for designing gamified solutions, and (ii) understand if existing methods (partially fitting those requirements) can be selected and combined to provide a comprehensive gamification design method. We discuss a set of key requirements for a suitable gamification design method. We illustrate how to select and combine existing methods to define a design approach that fits those requirements using Design Thinking and the Agon framework. Furthermore, we present a first empirical evaluation of the integrated design method, with participants including both requirements analysts and end-users of the gamified software. Our evaluation offers initial ideas towards a more general, systematic approach for gamification design

    GARUSO: a gamification approach for involving stakeholders outside organizational reach in requirements engineering

    Full text link
    Stakeholder participation is a key success factor of Requirements Engineering (RE). Typically, the techniques used for identifying and involving stakeholders in RE assume that stakeholders can be identified among the members of the organizations involved when a software system is ordered, developed or maintained—and that these stakeholders can be told or even mandated to contribute. However, these assumptions no longer hold for many of today’s software systems where significant stakeholders (in particular, end-users and people affected by a system) are outside organizational reach: They are neither known nor can they easily be identified in the involved organizations nor can they be told to participate in RE activities. We have developed the GARUSO approach to address this problem. It uses a strategy for identifying stakeholders outside organizational reach and a social media platform that applies gamification for motivating these stakeholders to participate in RE activities. In this article, we describe the GARUSO approach and report on its empirical evaluation. We found that the identification strategy attracted a crowd of stakeholders outside organizational reach to the GARUSO platform and motivated them to participate voluntarily in collaborative RE activities. From our findings, we derived a first set of design principles on how to involve stakeholders outside organizational reach in RE. Our work expands the body of knowledge on crowd RE regarding stakeholders outside organizational reach

    Immersive Telepresence: A framework for training and rehearsal in a postdigital age

    Get PDF

    Training Competences in Industrial Risk Prevention with Lego® Serious Play®: A Case Study

    Get PDF
    This paper proposes the use of the Lego® Serious Play® (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017–2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of “gamification” dynamics with Lego® Serious Play®. In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams.Spanish Ministry of Science, Innovation and Universities / European Social Fund: Ramón y Cajal contract (RYC-2017-22222
    corecore