4,469 research outputs found

    Summary of Gateway Power and Propulsion Element (PPE) Studies

    Get PDF
    NASA's Power and Propulsion Element (PPE) is based on a joint industry/NASA demonstration of an advanced solar electric propulsion powered spacecraft to meet commercial and NASA objectives. The PPE can establish the initial presence in cislunar space for the Gateway through initial operations and the subsequent deployment of additional partner-provided elements for the cislunar platform. Five commercial vendors were selected to conduct PPE studies which addressed key drivers for PPE development and support for the Gateway concept formulation. The study vendors focused on their performance trades and assessing their strategic capabilities, leveraging their existing and planned capabilities for PPE development. The industry studies examined differences between prior Solar Electric Propulsion (SEP) mission concepts, expected industry capabilities, and potential needs supporting NASA's Gateway concept. These studies provided data on commercial capabilities relevant to NASA's exploration needs and reduced risk for a new, powerful, and efficient SEP-based PPE spacecraft

    Toward a history of the space shuttle. An annotated bibliography

    Get PDF
    This selective, annotated bibliography discusses those works judged to be most essential for researchers writing scholarly studies on the Space Shuttle's history. A thematic arrangement of material concerning the Space Shuttle will hopefully bring clarity and simplicity to such a complex subject. Subjects include the precursors of the Space Shuttle, its design and development, testing and evaluation, and operations. Other topics revolve around the Challenger accident and its aftermath, promotion of the Space Shuttle, science on the Space Shuttle, commercial uses, the Space Shuttle's military implications, its astronaut crew, the Space Shuttle and international relations, the management of the Space Shuttle Program, and juvenile literature. Along with a summary of the contents of each item, judgments have been made on the quality, originality, or importance of some of these publications. An index concludes this work

    Kansas environmental and resource study: A Great Plains model

    Get PDF
    The author has identified the following significant results. Improvement in the land use classification accuracy of ERTS-1 MSS multi-images over Kansas can be made using two distances between neighboring grey tone N-tuples instead of one distance. Much more information is contained texturally than spectrally on the Kansas image. Ground truth measurements indicate that reflectance ratios of the 545 and 655 nm wavebands provide an index of plant development and possibly physiological stress. Preliminary analysis of MSS 4 and 5 channels substantiate the ground truth interpretation. Results of the land use mapping experiment indicate that ERTS-1 imagery has major potential in regionalization. The ways in which land is utilized within these regions may then be studied more effectively than if no adequate regionalization is available. A model for estimating wheat yield per acre has been applied to acreage estimates derived from ERTS-1 imagery to project the 1973 wheat yields for a ten county area in southwest Kansas. The results are within 3% of the preharvest estimates for the same area prepared by the USDA. Visual identification of winter wheat is readily achieved by using a temporal sequence of images. Identification can be improve by stratifying the project area into subregions having more or less homogeneous agricultural practices and crop mixes

    Supportability Challenges, Metrics, and Key Decisions for Future Human Spaceflight

    Get PDF
    Future crewed missions beyond Low Earth Orbit (LEO) represent a logistical challenge that is unprecedented in human space flight. Astronauts will travel farther and stay in space for longer than any previous mission, far from timely abort or resupply from Earth. Under these conditions, supportability { defined as the set of system characteristics that influence the logistics and support required to enable safe and effective operations of systems { will be a much more significant driver of space system lifecycle properties than it has been in the past. This paper presents an overview of supportability for future human space flight. The particular challenges of future missions are discussed, with the differences between past, present, and future missions highlighted. The relationship between supportability metrics and mission cost, performance, schedule, and risk is also discussed. A set of pro- posed strategies for managing supportability is presented (including reliability growth, uncertainty reduction, level of repair, commonality, redundancy, In-Space Manufacturing (ISM) (including the use of material recycling and In-Situ Resource Utilization (ISRU) for spares and maintenance items), reduced complexity, and spares inventory decisions such as the use of predeployed or cached spares - along with a discussion of the potential impacts of each of those strategies. References are provided to various sources that describe these supportability metrics and strategies, as well as associated modeling and optimization techniques, in greater detail. Overall, supportability is an emergent system characteristic and a holistic challenge for future system development. System designers and mission planners must carefully consider and balance the supportability metrics and decisions described in this paper in order to enable safe and effective beyond-LEO human space flight

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 335)

    Get PDF
    This bibliography lists 143 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during March, 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Biological and Medical Experiments on the Space Shuttle, 1981 - 1985

    Get PDF
    This volume is the first in a planned series of reports intended to provide a comprehensive record of all the biological and medical experiments and samples flown on the Space Shuttle. Experiments described have been conducted over a five-year period, beginning with the first plant studies conducted on STS-2 in November 1981, and extending through STS 61-C, the last mission to fly before the tragic Challenger accident of January 1986. Experiments were sponsored within NASA not only by the Life Sciences Division of the Office of Space Science and Applications, but also by the Shuttle Student Involvement Program (SSIP) and the Get Away Special (GAS) Program. Independent medical studies were conducted as well on the Shuttle crew under the auspices of the Space Biomedical Research Institute at Johnson Space Center. In addition, cooperative agreements between NASA and foreign government agencies led to a number of independent experiments and also paved the way for the joint US/ESA Spacelab 1 mission and the German (DFVLR) Spacelab D-1. Experiments included: (1) medically oriented studies of the crew aimed at identifying, preventing, or treating health problems due to space travel; (2) projects to study morphological, physiological, or behavioral effects of microgravity on animals and plants; (3) studies of the effects of microgravity on cells and tissues; and (4) radiation experiments monitoring the spacecraft environment with chemical or biological dosimeters or testing radiation effects on simple organisms and seeds

    Pattern Identification - A Foundation for Research in the Emphasis of Design Patterns in Systems Engineering and Knowledge Capture

    Get PDF
    Pattern Language describes the morphology and functionality of a system in the absence of design particulars. Harnessing this capability will provide the Systems Engineering discipline a means of managing the development of increasingly complex systems with increasingly distributed design teams while capturing and retaining knowledge for future generations. Pattern Language is a syntax for describing, and structurally relating, design patterns. Design patterns contextually describe the application of domain knowledge in the engineered solution to the force balance problem. The parallels between pattern recognition and application, as a fundamental stage of human learning, and pattern observation within a complex system, suggests pattern language may be a valuable tool in the capture and dissemination of knowledge. Pattern application has enjoyed considerable study over the last several decades, however much of this work has focused on the replication of design particulars. This work returns to the roots of Pattern Language and explores the utility of patterns as an architectural description and guide, and knowledge capture method, for complex system development beginning with the identification of a time proven design pattern

    National Security Space Launch

    Get PDF
    The United States Space Force’s National Security Space Launch (NSSL) program, formerly known as the Evolved Expendable Launch Vehicle (EELV) program, was first established in 1994 by President William J. Clinton’s National Space Transportation Policy. The policy assigned the responsibility for expendable launch vehicles to the Department of Defense (DoD), with the goals of lowering launch costs and ensuring national security access to space. As such, the United States Air Force Space and Missile Systems Center (SMC) started the EELV program to acquire more affordable and reliable launch capability for valuable U.S. military satellites, such as national reconnaissance satellites that cost billions per satellite. In March 2019, the program name was changed from EELV to NSSL, which reflected several important features: 1.) The emphasis on “assured access to space,” 2.) transition from the Russian-made RD-180 rocket engine used on the Atlas V to a US-sourced engine (now scheduled to be complete by 2022), 3.) adaptation to manifest changes (such as enabling satellite swaps and return of manifest to normal operations both within 12 months of a need or an anomaly), and 4.) potential use of reusable launch vehicles. As of August 2019, Blue Origin, Northrop Grumman Innovation Systems, SpaceX, and United Launch Alliance (ULA) have all submitted proposals. From these, the U.S. Air Force will be selecting two companies to fulfill approximately 34 launches over a period of five years, beginning in 2022. This paper will therefore first examine the objectives for the NSSL as presented in the 2017 National Security Strategy, Fiscal Year 2019, Fiscal Year 2020, and Fiscal Year 2021 National Defense Authorization Acts (NDAA), and National Presidential Directive No. 40. The paper will then identify areas of potential weakness and gaps that exist in space launch programs as a whole and explore the security implications that impact the NSSL specifically. Finally, the paper will examine how the trajectory of the NSSL program could be adjusted in order to facilitate a smooth transition into new launch vehicles, while maintaining mission success, minimizing national security vulnerabilities, and clarifying the defense acquisition process.No embargoAcademic Major: EnglishAcademic Major: International Studie

    Space Flight LiDARs, Navigation & Science Instrument Implementations: Lasers, Optoelectronics, Integrated Photonics, Fiber Optic Subsystems and Components

    Get PDF
    For the past 25 years, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center's Photonics Group in the Engineering Directorate has been substantially contributing to the flight design, development, production, testing and integration of many science and navigational instruments. The Moon to Mars initiative will rely heavily upon utilizing commercial technologies for instrumentation with aggressive schedule deadlines. The group has an extensive background in screening, qualifying, development and integration of commercial components for spaceflight applications. By remaining adaptable and employing a rigorous approach to component and instrument development, they have forged and fostered relationships with industry partners. They have been willing to communicate lessons learned in packaging, part construction, materials selection, testing, and other facets of the design and production process critical to implementation for high-reliability systems. As a result, this successful collaboration with industry vendors and component suppliers has enabled a history of mission success from the Moon to Mars (and beyond) while balancing cost, schedule, and risk postures. In cases where no commercial components exist, the group works closely with other teams at Goddard Space Flight Center and other NASA field centers to fabricate and produce flight hardware for science, remote sensing, and navigation applications. Summarized here is the last ten years of instrumentation development lessons learned and data collected from the subsystems down to the optoelectronic component level
    corecore