19 research outputs found

    Heartbeat Signal from Facial Video for Biometric Recognition

    Get PDF

    ECG Biometric Authentication: A Comparative Analysis

    Get PDF
    Robust authentication and identification methods become an indispensable urgent task to protect the integrity of the devices and the sensitive data. Passwords have provided access control and authentication, but have shown their inherent vulnerabilities. The speed and convenience factor are what makes biometrics the ideal authentication solution as they could have a low probability of circumvention. To overcome the limitations of the traditional biometric systems, electrocardiogram (ECG) has received the most attention from the biometrics community due to the highly individualized nature of the ECG signals and the fact that they are ubiquitous and difficult to counterfeit. However, one of the main challenges in ECG-based biometric development is the lack of large ECG databases. In this paper, we contribute to creating a new large gallery off-the-person ECG datasets that can provide new opportunities for the ECG biometric research community. We explore the impact of filtering type, segmentation, feature extraction, and health status on ECG biometric by using the evaluation metrics. Our results have shown that our ECG biometric authentication outperforms existing methods lacking the ability to efficiently extract features, filtering, segmentation, and matching. This is evident by obtaining 100% accuracy for PTB, MIT-BHI, CEBSDB, CYBHI, ECG-ID, and in-house ECG-BG database in spite of noisy, unhealthy ECG signals while performing five-fold cross-validation. In addition, an average of 2.11% EER among 1,694 subjects is obtained

    ???????????? ????????? ?????? ?????? ?????? ?????? ?????? ??????

    Get PDF
    Department of Electrical EngineeringBiometrics such as fingerprint, iris, face, and electrocardiogram (ECG) have been investigated as convenient and powerful security tools that can potentially replace or supplement current possession or knowledge based authentication schemes. Recently, multi-spectral skin photomatrix (MSP) has been newly found as one of the biometrics. Moreover, since the interest of usage and security for wearable devices have been increasing, multi-modal biometrics authentication which is combining more than two modalities such as (iris + face) or (iris + fingerprint) for powerful and convenience authentication is widely proposed. However, one practical drawback of biometrics is irrevocability. Unlike password, biometrics can not be canceled and re-used once compromised since they are not changed forever. There have been several works on cancelable biometrics to overcome this drawback. ECG has been investigated as a promising biometrics, but there are few research on cancelable ECG biometrics. As we aim to study a way for multi-modal biometric scheme for wearable devices that is assumed circumstance under some limitations such as relatively high performance, low computing power, and limited information (not sharing users information to the public), in this study, we proposed a multi-modal biometrics authentication by combining ECG and MSP. For investigating the performances versus level of fusions, Adaboost algorithm was studied as a score level fusion method, and Majority Voting was studied as a decision level fusion method. Due to ECG signal is 1 dimensional, it provides benefits in wearable devices for overcoming the computing memory limitation. The reasons that we select MSP combination with ECG are it can be collected by measuring on inner-wrist of human body and it also can be considered as hardly stolen modality in remote ways. For proposed multi-modal biometrics, We evaluate our methods using collected data by Brain-Computer-Interface lab with 63 subjects. Our Adaboost based pro- posed multi modal biometrics method with performance boost yielded 99.7% detection probability at 0.1% false alarm ratio (PD0.1) and 0.3% equal error rate (EER), which are far better than simply combining by Majority Voting algorithm with 21.5% PD0.1 and 1.6% EER. Note that for training the Adaboost algorithm, we used only 9 people dataset which is assumed as public data and not included for testing data set, against for knowledge limitation as the other constraint. As initial step for user template protection, We proposed a cancelable ECG based user authentication using a composite hypothesis testing in compressive sensing do- main by deriving a generalized likelihood ratio test (GLRT) detector. We also pro- posed two performance boost tricks in compressive sensing domain to compensate for performance degradation due to cancelable schemes: user template guided filtering and T-wave shift model based GLRT detector for random projection domain. To verify our proposed method, we investigated cancelable biometrics criteria for the proposed methods to confirm that the proposed algorithms are indeed cancelable. For proposed cancelable ECG authentication, We evaluated our proposed methods using ECG data with 147 subjects from three public ECG data sets (ECG-ID, MIT- BIH Normal / Arrhythmia). Our proposed cancelable ECG authentication method is practically cancelable by satisfying all cancelable biometrics criteria. Moreover, our proposed method with performance boost tricks achieved 97.1% detection probability at 1% false alarm ratio (PD1) and 1.9% equal error rate (EER), which are even better than non-cancelable baseline with 94.4% PD1 and 3.1% EER for single pulse ECG authentication.ope

    ECG Biometric for Human Authentication using Hybrid Method

    Get PDF
    Recently there is more usage of deep learning in biometrics. Electrocardiogram (ECG) for person authentication is not the exception. However the performance of the deep learning networks purely relay on the datasets and trainings, In this work we propose a fusion of pretrained Convolutional Neural Networks (CNN) such as Googlenet with SVM for person authentication using there ECG as biometric. The one dimensional ECG signals are filtered and converted into a standard size with suitable format before it is used to train the networks. An evaluation of performances shows the good results with the pre-trained network that is Googlenet. The accuracy results reveal that the proposed fusion method outperforms with an average accuracy of 95.0%

    Individual identification via electrocardiogram analysis

    Get PDF
    Background: During last decade the use of ECG recordings in biometric recognition studies has increased. ECG characteristics made it suitable for subject identification: it is unique, present in all living individuals, and hard to forge. However, in spite of the great number of approaches found in literature, no agreement exists on the most appropriate methodology. This study aimed at providing a survey of the techniques used so far in ECG-based human identification. Specifically, a pattern recognition perspective is here proposed providing a unifying framework to appreciate previous studies and, hopefully, guide future research. Methods: We searched for papers on the subject from the earliest available date using relevant electronic databases (Medline, IEEEXplore, Scopus, and Web of Knowledge). The following terms were used in different combinations: electrocardiogram, ECG, human identification, biometric, authentication and individual variability. The electronic sources were last searched on 1st March 2015. In our selection we included published research on peer-reviewed journals, books chapters and conferences proceedings. The search was performed for English language documents. Results: 100 pertinent papers were found. Number of subjects involved in the journal studies ranges from 10 to 502, age from 16 to 86, male and female subjects are generally present. Number of analysed leads varies as well as the recording conditions. Identification performance differs widely as well as verification rate. Many studies refer to publicly available databases (Physionet ECG databases repository) while others rely on proprietary recordings making difficult them to compare. As a measure of overall accuracy we computed a weighted average of the identification rate and equal error rate in authentication scenarios. Identification rate resulted equal to 94.95 % while the equal error rate equal to 0.92 %. Conclusions: Biometric recognition is a mature field of research. Nevertheless, the use of physiological signals features, such as the ECG traits, needs further improvements. ECG features have the potential to be used in daily activities such as access control and patient handling as well as in wearable electronics applications. However, some barriers still limit its growth. Further analysis should be addressed on the use of single lead recordings and the study of features which are not dependent on the recording sites (e.g. fingers, hand palms). Moreover, it is expected that new techniques will be developed using fiducials and non-fiducial based features in order to catch the best of both approaches. ECG recognition in pathological subjects is also worth of additional investigations

    АНАЛІЗ БІОМЕТРИЧНИХ ЗАСОБІВ ЗАХИСТУ ІНФОРМАЦІЇ

    Get PDF
    На  сьогоднішній  день  в  індустрії  безпеки  розпочався  новий  етап.  На  загальному  фоні найбільш  динамічно  продовжують  розвиватись  сучасні  системи  ідентифікації  та  захисту інформації. Особливу увагу привертають до себе біометричні засоби захисту інформації (БЗЗІ), що обумовлено їх високою надійністю та досягненим в останній час значним здешевленням [1]. Використання  БЗЗІ  дозволяє  підняти  на  принципово  новий  рівень  якості  автоматизовані системи різнопланового призначення. Це обумовлено перспективністю використання біометрії, універсальністю біометричних  характеристик  та розвитком інформаційних технологій. Саме в момент такого великого поширення інформації [2,3,4,5,6,26,28] стосовно БЗЗІ постає проблема вибору  біометричної  технології  в  залежності  від  вимог  конкретної  прикладної  задачі,  тому створення реокмендації щодо вибору БЗЗІ є актульною задачею

    Towards a continuous biometric system based on ECG signals acquired on the steering wheel

    Get PDF
    Electrocardiogram signals acquired through a steering wheel could be the key to seamless, highly comfortable, and continuous human recognition in driving settings. This paper focuses on the enhancement of the unprecedented lesser quality of such signals, through the combination of Savitzky-Golay and moving average filters, followed by outlier detection and removal based on normalised cross-correlation and clustering, which was able to render ensemble heartbeats of significantly higher quality. Discrete Cosine Transform (DCT) and Haar transform features were extracted and fed to decision methods based on Support Vector Machines (SVM), k-Nearest Neighbours (kNN), Multilayer Perceptrons (MLP), and Gaussian Mixture Models – Universal Background Models (GMM-UBM) classifiers, for both identification and authentication tasks. Additional techniques of user-tuned authentication and past score weighting were also studied. The method’s performance was comparable to some of the best recent state-of-the-art methods (94.9% identification rate (IDR) and 2.66% authentication equal error rate (EER)), despite lesser results with scarce train data (70.9% IDR and 11.8% EER). It was concluded that the method was suitable for biometric recognition with driving electrocardiogram signals, and could, with future developments, be used on a continuous system in seamless and highly noisy settings.info:eu-repo/semantics/publishedVersio

    Biometric Recognition Using Multimodal Physiological Signals

    Get PDF
    In this paper, we address the problem of biometric recognition using the multimodal physiological signals. To this end, four different signals are considered: heart rate (HR), breathing rate (BR), palm electrodermal activity (P-EDA), and perinasal perspitation (PER-EDA). The proposed method consists of a convolutional neural network that exploits mono-dimensional convolutions (1D-CNN) and takes as input a window of the raw signals stacked along the channel dimension. The architecture and training hyperparameters of the proposed network are automatically optimized with the sequential model-based optimization. The experiments run on a publicly available dataset of multimodal signals acquired from 37 subjects in a controlled experiment on a driving simulator show that our method is able to reach a top-1 accuracy equal to 88.74% and a top-5 accuracy of 99.51% when a single model is used. The performance further increases to 90.54% and 99.69% for top-1 and top-5 accuracies, respectively, if an ensemble of models is used
    corecore