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Abstract

Biometrics such as fingerprint, iris, face, and electrocardiogram (ECG) have been

investigated as convenient and powerful security tools that can potentially replace

or supplement current possession or knowledge based authentication schemes. Re-

cently, multi-spectral skin photomatrix (MSP) has been newly found as one of the

biometrics. Moreover, since the interest of usage and security for wearable devices

have been increasing, multi-modal biometrics authentication which is combining

more than two modalities such as (iris + face) or (iris + fingerprint) for powerful

and convenience authentication is widely proposed.

However, one practical drawback of biometrics is irrevocability. Unlike password,

biometrics can not be canceled and re-used once compromised since they are not

changed forever. There have been several works on cancelable biometrics to overcome

this drawback. ECG has been investigated as a promising biometrics, but there are

few research on cancelable ECG biometrics.

As we aim to study a way for multi-modal biometric scheme for wearable devices

that is assumed circumstance under some limitations such as relatively high perfor-

mance, low computing power, and limited information (not sharing users information

to the public), in this study, we proposed a multi-modal biometrics authentication

by combining ECG and MSP. For investigating the performances versus level of

fusions, Adaboost algorithm was studied as a score level fusion method, and Ma-

jority Voting was studied as a decision level fusion method. Due to ECG signal is 1

dimensional, it provides benefits in wearable devices for overcoming the computing

memory limitation. The reasons that we select MSP combination with ECG are it

can be collected by measuring on inner-wrist of human body and it also can be

considered as hardly stolen modality in remote ways.

For proposed multi-modal biometrics, We evaluate our methods using collected

data by Brain-Computer-Interface lab with 63 subjects. Our Adaboost based pro-

posed multi modal biometrics method with performance boost yielded 99.7% de-

tection probability at 0.1% false alarm ratio (PD0.1) and 0.3% equal error rate



(EER), which are far better than simply combining by Majority Voting algorithm

with 21.5% PD0.1 and 1.6% EER. Note that for training the Adaboost algorithm,

we used only 9 people dataset which is assumed as public data and not included for

testing data set, against for knowledge limitation as the other constraint.

As initial step for user template protection, We proposed a cancelable ECG based

user authentication using a composite hypothesis testing in compressive sensing do-

main by deriving a generalized likelihood ratio test (GLRT) detector. We also pro-

posed two performance boost tricks in compressive sensing domain to compensate

for performance degradation due to cancelable schemes: user template guided filter-

ing and T-wave shift model based GLRT detector for random projection domain. To

verify our proposed method, we investigated cancelable biometrics criteria for the

proposed methods to confirm that the proposed algorithms are indeed cancelable.

For proposed cancelable ECG authentication, We evaluated our proposed methods

using ECG data with 147 subjects from three public ECG data sets (ECG-ID, MIT-

BIH Normal / Arrhythmia). Our proposed cancelable ECG authentication method

is practically cancelable by satisfying all cancelable biometrics criteria. Moreover,

our proposed method with performance boost tricks achieved 97.1% detection prob-

ability at 1% false alarm ratio (PD1) and 1.9% equal error rate (EER), which are

even better than non-cancelable baseline with 94.4% PD1 and 3.1% EER for single

pulse ECG authentication.
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CHAPTER I

Introduction

1.1 Aim of the Research

The aim of this research is to investigate a way of using biometrics as alternative of knowledge

based authentication methods for computationally constrained and data limited circumstance

such as wearable devices. The detail aims of the study are (1) to investigate a combining methods

of uni-modal biometrics (in this study we used electrocardiogram (ECG) and multi-spectral skin

photomatrix (MSP)) for multi-modal biometrics authentication, (2) to overcome the practical

drawback of biometrics by investigating of user template protection methods which is called as

cancelable biometrics, and (3) to compensate the performance degradation which is commonly

observed by protecting user templates, we finally studied the ways of performance boosting

while practically keeping the cancelability of authentication system.

1.2 Biometrics Authentication

Biometrics such as fingerprint, face, and iris provide convenient and powerful security tools

to verify or identify individuals. A biometric system is essentially a pattern recognition system

that operates by acquiring biometric data from an individual, extracting a set of features from

the acquired data, and comparing this feature set to the enrolled feature set [3].

1



Figure 1.1: Examples of biometric characteristics: (a) face, (b) fingerprint, (c) hand geometry,

(d) iris, (e) keystroke, (f) signature, and (g) voice [1]

Fingerprint recognition has been widely used in smart phone authentication, computer login,

and access control system for buildings. Face recognition and iris based user verification are

often used in modern electronic devices. Biometrics are now combined with electronic passport

for border control systems in many countries [4]. Combining more than one biometrics as a

multimodal biometrics has been widely investigated for strong security [5, 6]. A comprehensive

review on recent biometrics research can be found in [7].

1.3 Contribution of This Thesis

In this study, We investigate the potential of MSP which is recently proposed, as biometrics

material for wearable devices. And also, by performing various simulations for observation of the

modality combination e↵ect, we propose an Adaboost algorithm for multi-modal authentication

method for ECG and MSP with 63 subjects provided by BCI labs. Since ECG is 1-dimensional

signal, and by vectorizing the feature of MSP that may simultaneously measured with ECG,

it against the low computing power that is one of constraint on wearable devices. We tried to

overcome the limitation, due to wearable device implementation, for every proposed methods

in this study.

Furthermore, we propose a cancelable ECG biometrics by deriving a near-optimal general-

ized likelihood ratio test (GLRT) detector from a composite hypothesis testing in compressed

sensing (CS) domain. The CS theory was about recovering the original signal from undersam-

pled data [8] when enough samples are acquired. Recently, CS was applied to conventional

statistical signal processing tools such as detection and filtering [9,10]. One of the results in [10]

showed that statistical signal processing tools in CS domain is more e�cient than using CS re-

covery and signal processing tools separately in terms of sampling size. Therefore, we conjecture

2



that our new GLRT detector in CS domain is e�cient, but not recoverable with appropriately

small sample size. Our proposed GLRT method was investigated to see if it satisfied cancelable

biometrics criteria (e�ciency, re-usability, diversity and non-invertibility) [11]. To the authors’

knowledge, this article is the first work of combining CS theory with ECG biometrics for can-

celable ECG biometrics with near-optimal metric and of evaluating the proposed method for

cancelable biometrics criteria. Fira et al. proposed to use a random matrix of normal distribu-

tion for ECG signals using CS theory, but their work focused on e�cient data compression for

di↵erent pathological classes [12].

For performance degradation due to cancelable biometrics scheme, we also propose to use

two performance improvement tricks called user template guided filtering [13] and T-wave circu-

lar shift model [14] that were shown to be e↵ective in performance boosting in ECG biometrics.

For user template guided filtering, it is required to store an original user template informa-

tion [13], but in cancelable ECG biometrics, it should not be stored. In this article, we propose

an irreversible guide signal construction method to resolve this conflict so that user template

guided filtering can be used for detectors in CS domain. For T-wave shift model, we also propose

an e�cient algorithm to use T-wave shift model in CS domain.

Part of the works here was presented at the 2017 IEEE EMBC [15]. Its extended version was

submitted to IEEE T-IFS including more detailed descriptions, more ECG data to all simula-

tions (MIT-BIH Normal / Arrhythmia data sets [16,17] were added to ECG-ID [18] with signal

normalization additionally), investigating cancelable biometrics criteria with more simulation

results, and proposing a new T-wave shift method is CS domain (related to Chapter III). For

the other part related to Chapter II of the works here is in preparation for submission to IEEE

T-IFS. We are going to propose an Adaboost based multimodal authentication method with

combination of ECG and MSP with 63 subjects while overcoming the circumstance limitation

in wearable devices.

1.4 Organization of This Thesis

This thesis is organized as follows. Chapter II describes some works on authentication

method for uni-modal each, and its combination e↵ect, and proposes a Adaboost algorithm

for multi-modal authentication by using ECG and MSP. Chapter III reviews some previous

works on cancelable biometrics, and proposes a cancelable ECG biometrics by deriving the gen-

eralized likelihood ratio test (GLRT) in compressed sensing (CS) domain with two performance

boost tricks. Finally, in chapter IV concludes this thesis with a summary and future works.

3



CHAPTER II

Multimodal Biometrics Authentication by

Combining ECG and MSP

2.1 Background and Related Works

2.1.1 Electrocardiogram as Biometrics

Electrocardiogram (ECG) has been investigated as a promising biometrics for authentica-

tion, identification and liveness validation [19–21]. One pulse of an ECG signal consists of P

wave, QRS complex, and T wave (in Figure.2.1) that are from atrial depolarization, ventricular

depolarization, and ventricular repolarization, respectively [22]. These characteristics depend

on the structure and biological substrate of a heart which are known to be di↵erent on each

person [23].
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Figure 2.1: Electrocardiogram (ECG) signal, consists of P wave, QRS complex, and T wave
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There have been many works on ECG biometrics since early 2000’s. Biel et al. was one

of the first works on ECG biometrics using fiducial features such as amplitude, duration, and

deflection of QRS complex [24]. Since then, fiducial and non-fiducial features of ECG have

been investigated for biometrics such as using durations / intervals of ECG waves [25], using

intervals, amplitude and angles [26], autocorrelation and discrete cosine transform [27] and

wavelet transform [28]. Various classification / authentication algorithms have also been applied

for ECG biometrics such as decision based neural network [29], linear discriminant analysis

(LDA) with PCA [18], dynamic time warping (DTW) and Fisher’s LDA [30], various distance

metrics such as DTW, earth mover’s distance, Frechet distance and Hausdor↵ distance [31] and

Euclidean distance variants [20,32,33]. For more comprehensive reviews on ECG biometrics, we

refer readers to [34, 35].

It is worth noting that recent works on ECG biometrics have made significant progresses

so that ECG biometrics can be potentially used in various daily activities through wearable

ECG sensors and devices. Wearable ECG sensors have been investigated for long-term health

monitoring [36, 37]. There have been recent works on ECG biometrics for wearable devices in

terms of wearable ECG band development [38], low power circuit design [39], and light-weight

authentication algorithm [40]. ECG has also been investigated as part of multimodal biometrics

systems with fingerprint / face [41], voice [42] or palmprint [43]. ECG has a great potential as

a biometrics.

2.1.2 ECG signal modeling and authentication

The acquired ECG signal f 0 can be modeled as:

f 0 = x+ n+ r + p (II.1)

where x is an original ECG signal (length K), n is high frequency noise, r is baseline drift and p

is power-line noise. Usually, preprocessing of f 0 can reduce unwanted noise or artifacts. Slowly

varying baseline drift r can be corrected by high-pass filtering or wavelet based drift correction.

Power-line noise p is on specific frequency such as 50Hz or 60 Hz it can be reduced by bandstop

filters (see [44] for details). High frequency noise n can be reduced by low-pass filtering, but this

filtering could also remove some high frequency details of x. Thus, low-pass filtering should be

used with care to preserve details, while to reduce noise. Here we assume that low-pass filtering

is not applied. Then, the pre-processed ECG signal f can be modeled as:

f ⇡ x+ n. (II.2)

5



2.1.3 Multi-spectral Skin Photomatrix

The multi-spectral skin photomatrix (MSP) is recently investigated as a biometrics [2].

According to this research, due to optical patterns of their inner-wrist skin tissue is unique, it can

be used as potential identification tools. For MSP data acquisition, optical patterns are measured

by 2⇥ 8 photodiode channel with selective wavelength (called IR and Yellow) which is positioned

on the inner-wrist skin. Despite it is initial study as biometrics, they achieve moderately high

performance (FAR 0.3% and FRR 0%) with 21 subjects by using linear discriminant analysis

(LDA) for IR + Yellow feature case.

Figure 2.2: Anatomical structure of human skin with penetration depths of light [2].

2.1.4 Distance Measurements

The conventional user authentication is done by measuring the distance between enrolled

template signals f1, . . . , fN and current input signals s1, . . . , sM as follows:

d({f1, . . . , fN}, {s1, . . . , sM})
reject
?

accept
� (II.3)

where d is a distance metric or classifier and � is a threshold. Especially in case of ECG user

authentication, It has been shown that this can yield better performance with more ECG signals

(or larger N , M) [34].

One of the conventional user authentication methods for limited memory and computation

power is to use a single user template t and a single biometrics feature s such that t =
PN

i=1 fi/N

6



and s = s1 with a simple Euclidean distance as follows:

d(t, s) =

v

u

u

t

K
X

j=1

(t[j]� s[j])2
reject
?

accept
�0 (II.4)

where �0 is a threshold. It has been shown that this simple detector is actually a generalized

likelihood ratio test (GLRT) detector if n follows an independent and identically distributed

(i.i.d.) Gaussian noise [14]. This method has been demonstrated to be e↵ective for user au-

thentication when proper performance improvement methods with mild computation increases

are used together [13, 14]. As we described in section. 2.1.1, there are various studies for signal

similarity or distance measuring not only for using Euclidean distance.

2.1.5 Fusion Methods

According to the Sarhan et al, There are four standard fusion types including feature level

fusion, score level fusion, decision level fusion, and sensor level fusion. Comparative performance

evaluation is here [6].

Figure 2.3: Types of fusion level: Feature, Score, and Decision.

In this study, we concentrated on two methods: Majority Voting (Algorithm 1 [45,46]), and

Adaboost (Algorithm 2 [47]) which are two di↵erent methods of decision level fusion. Majority

Voting method can be simply described that acceptance is decided when the sum of every

voting is over half of number of classifiers by assuming every uni-modal decision as one voting.

Adaboost algorithm can be explained as finding appropriate coe�cients between weak classifiers

by updating the observation weight based on classification error. Shortly, MV means all sum of

decision without any weighting while the Adaboost method implies the weighted sum of each

classifiers. Since decision level fusion is relatively simple to implement when the device already

store the classifiers, we choose that decision level fusion may be more suitable for multimodal

biometrics on wearable devices than other fusion on di↵erent stages. Comprehensive information

of other methods for decision level fusion is here [48].
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Algorithm 1 Majority voting [45,46]

1: For the given threshold, th and number of classifier, M .

G(x) =
M
X

i=1

gm(x) > bM/2c

where x is input score, and the classifier,

gm(x) =

8

>

<

>

:

1, x > th

0, x < th

Algorithm 2 Adaboost.M1 for multi-modal biometrics [47]

1: Initialize the observation weight
2: wi = 1/N , i = 1, 2, ...,N . and yi 2 [�1, 1].
3: for m = 1 to M do
4: Thresholding the distances with given threshold, th.
5:

fm(xi) =

(

1, xi > th

�1, xi < th

6: Compute an error.

errm =

PN
i=1wiI(yi 6= fm(xi))

PN
i=1wi

where I(·) is an indicator function.
7: Compute weight, ↵ for individual classifier
8:

↵m = log((1� errm)/errm)

9: Update the weights
10:

wi  wi · exp[↵m · I(yi 6= fm(xi))], 8i

11: Weight normalization such that
N
X

i=1

wi = 1

12: end for
13: Final Decision,

F (x) = sign[
M
X

m=1

↵mfm(x)]
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2.2 Simulation Settings

2.2.1 Data Pre-processing

In this experience, we divided a measured ECG and MSP data set into 6 records regarding

3 pulses and 3 feature respectively. For the measured few-minute ECG records per one subject,

to segment into single pulses with regarding to R-peak, Pan-Tompkins method for R-peak

detection was applied [49] after base-line correction by band-pass filtering. Due to its sampling

rate is 250 Hz, single pulse, which cover P-QRS-T fragment, can be acheived by cut with length

160 samples or 0.64 seconds, which are �67,+92 samples from the R-peak.

For the case of MSP data per one subject, 4 ⇥ 32 feature (Red, Yellow, IR, IY and 32

channels) vectors were collected. Two features (R+Y) were used for authentication method by

linearly combining. Thus, for each subject, MSP feature matrix transformed into one vector

with 64 lengths.

Totally, 111 subjects participated for measuring the data. After pre-process step, we divided

a data set into ’Experiment’ and ’Public’. The ’Experiment’ set which is composed with the 63

subjects who have both ECG and MSP features. The other, ’Public’, data set is composed with

the 39 subjects have only ECG pulses and 9 subjects have only MSP features. The ’Public’ data

set was used for AdaBoost training.

2.2.2 Performance Evaluation

For evaluating the performance, we used EER,PD1, and PD0.1. EER can be obtained by

the finding the point where FRR = FAR := EER. PD1 and PD0.1 are detection probability

at FAR is same as 1% and 0.1% respectively. Since the performance evaluation should be done

under fixed FAR value, we assume that by setting the fixed threshold is means fixed FAR value.

Thus, in under fixed threshold which is under same situation, the better detection probability is

the better performance. Also FRR0 means FRR value at FAR equals to 0 value which means

relatively hard thresholding situation.

2.2.3 Distance Normalization.

Our proposed authentication system is based on the Euclidean distance between ’Enrolled’

and ’Authenticate’ features. However, since the range of ECG pulses and MSP features are

di↵erent, the distance normalization was necessary for using the same classifier. Max distance

normalization was used by computing all the distances between subjects.
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2.2.4 Method Description

1. Thresholding (TH) based on distance between enrolled and 1 single feature or pulse then

simple thresholding with given threshold.

2. Averaging (AVG) based on distance between enrolled and averaged of more than 2 fea-

tures or pulses then simple thresholding with given threshold.

3. Majority Voting (MV) based on distance between enrolled and more than 2 features or

pulses each then classify with majority voting that composed of simple thresholdings with

given threshold.

4. Ada.MV based on distance between enrolled and more than 2 pulses and feature each then

classify with one single classifier which is weighted sum of classifier. In this exp, 4 classifier

was used (3 ECG pulses and 1 MSP feature).

5. Ada.AVG based on distance between enrolled and averaged of more than 2 pulses and

feature then classify with one single classifier which is weighted sum of classifier. In this

exp, 2 classifier was used (averaging of 3 ECG pulses and 1 MSP feature).

2.3 Results

2.3.1 Uni-Modal Authentication

Table 2.1: Performance results for all experiments about uni-modal authentication
ECG Only MSP Only

Method
#Feature
vectors

EER PD0.1 FRR0 Method
#Feature
vectors

EER PD0.1 FRR0

TH 1 1.7 47.0 3.42 TH 1 1.2 90.8 3.33

AVG
2 1.3 95.4 9.23

AVG
2 1.2 90.8 3.10

3 1.0 97.3 4.76 3 1.2 93.3 3.10

MV
2 1.8 87.6 29.1

MV
2 1.2 95.1 2.99

3 1.8 87.6 29.1 3 1.2 93.8 3.10

Ada.MV
2 1.8 87.6 29.1

Ada.MV
2 1.2 95.1 2.99

3 1.7 87.2 28.9 3 1.2 95.1 2.99

Table. 2.3.1 is the result of ROC curve for uni-modal authentication comparison. The best

performance was yielded by using averaged 3 ECG pulses case. That method was even better

than using majority voting or adaboost based majority voting. Note that here, under extremely

low FAR case, using MSP feature was better than ECG pulses overall.
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2.3.2 Multi-Modal Authentication

Table 2.2: Performance results for all experiments about multi-modal authentication versus

proposed methods

#Feature

vectors

MV Ada.MV Ada.AVG

EER PD0.1 FRR0 EER PD0.1 FRR0 EER PD0.1 FRR0

1,1 0.5 44.1 2.91 0.1 99.86 4.13 0.1 99.86 4.13

2,2 0.5 94.9 2.86 0.1 99.85 2.99 0.1 99.99 0.61

3,3 0.5 99.3 2.75 0.1 99.80 2.94 0.1 1.00 0.03

Tabel 2.2 summarizes all experiment results for multi-modal authentication. By simply com-

bining two modality with majority voting, we achieved far better results than using uni-modal

based authentication. Furthermore, by using adaboost to performance enhancing, it showed

that was e↵ective way. And also, it is observed that the best performance was adaboost with 3

features and pulses each (0.03%,FRR0)

2.4 Discussion

In this chapter, we investigated the ways of combining two modality, ECG and MSP. We

showed that our final proposed methods (Ada.AVG) yielded the best result. It is far better

than other uni-modal based authentication. By observing the performance di↵erence between

averaging 3 pulses of ECG and combining 3 pulses of ECG and 3 MSP feature by majority

voting method, One more interesting point was averaging e↵ect was more stronger than we

expected. Furthermore, since this Adaboost coe�cients are trained by public data only (not

including the test data), it means that we may can find an appropriate weight distribution

between ECG modality and MSP modality.
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Figure 2.4: Potentially useful observation:threshold determination.

Finally, with this proposed combination methods, we showed powerful performance while

overcoming given constrained comes from using wearable devices as following: knowledge limi-

tation by Adaboost training with only public data set, low computing power by using ECG and

MSP in the shape of 1-dimensional signal, and with relatively high performance.

As a future work, we aim to investigate the threshold determination. It is commonly known

that determining appropriate thresholds without any other dataset except the user informa-

tion is challenging problem. Based on interesting observation in Figure 2.4, it is observed that

performance with experiment data set (63 subjects) on the threshold which is determined by

minimizing the error on public data set (9 subjects) showed appropriate results. That perfor-

mance has only 0.001 di↵erence with optimal EER point of experiment data set.
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CHAPTER III

Authentication Scheme by Using Protected

User Template

3.1 Background and Related Works

3.1.1 Cancelable Biometrics

Biometrics is a convenient and powerful security tool, but one of the drawbacks is its irrevo-

cability. If one password is compromised, this password can be immediately canceled and then

a new password can be generated and used. However, once biometrics is compromised, it can

not be canceled and re-used. Biometrics can not be changed forever.

Jain et al. emphasized strengthening the security of biometric system in [1]. Bolle et al.

proposed the concept of cancelable biometrics for protecting user-specific features [50]. Maltoni

et al. summarizes four criteria that cancelable biometrics must satisfy as follows [51,52]:

1. E�ciency: cancelable biometrics should not deteriorate recognition performance.

2. Re-usability: there should be straightforward revocation and reissue procedures in the

event of compromise.

3. Diversity: the same cancelable template should not be used in two di↵erent applications.

4. Non-invertibility: the recovery of the original biometric template from cancelable biomet-

rics should be prevented.
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There have been several works on cancelable biometrics for fingerprint [53, 54], face [55, 56]

and iris [57]. Cancelable multimodal biometrics have also been proposed and investigated re-

cently [58,59]. These cancelable biometrics works are usually based on Johnson-Lindenstrauss(JL)

lemma [60] or compressive sensing (CS) [8]. They both showed that the distance between two

signals can be approximately preserved before and after random projections of them if the

random projection matrix is properly designed. Thus, randomly projected biometric signals or

features can be used for authentication or identification. Cancelable face biometrics was inves-

tigated based on JL lemma [52, 61]. Other works for cancelable biometrics were based on CS

theory for iris [57]. There has been some works on cancelable biometrics using BioHash for

face [56]. For more comprehensive reviews on cancelable biometrics and cancelable multimodal

biometrics, we refer readers to [62–64].

Recently, cancelable ECG biometrics have been investigated based on BioHash [65] and CS

theory [12,66]. It has been shown that highly compressed ECG yielded reasonable authentication

performance [12,66]. Applications of CS theory for ECG have been investigated for compression

or classification [67,68].

Unfortunately, it has been observed that protecting biometrics information comes with the

price of lowering authentication or identification performance [69, 70]. Moreover, compressed

biometric signals may preserve the distance between signals well based on JL lemma or CS

theory, but the usual choice for distance metric for compressed biometric signals is Euclidean

distance or its variant, which may be sub-optimal. Originally, CS theory has been developed

to recover the original signal from compressed samples [8]. Therefore, it is critical to check the

method based on CS theory has non-invertibility. There has been no prior work on cancelable

ECG biometrics that deals with the issue of performance degradation due to cancelable schemes,

near-optimal distance metric for compressed samples, and validation for cancelable biometrics

criteria altogether.

3.1.2 Compressive sensing and restricted isometry property

Compressive sampling (CS) theory models that the measurement y 2 RL for the original

signal x 2 RK is

y = �x (III.1)

where � is an L⇥K sensing matrix. The matrix � satisfies restricted isometry property (RIP)

of order P if there exists a constant � 2 (0, 1) such that

(1� �) kxk22  k�xk
2
2  (1 + �) kxk22 (III.2)
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holds for all x 2 ⌃P where the set ⌃P is all P -sparse signals such that

⌃P = {x 2 RK : kxk0  P}.

The RIP condition implies that some matrices with very small � can approximately preserve

the l2 norm of a signal. Examples are Gaussian random matrix and modified Bernoulli ran-

dom matrix [8]. This condition also implies that the distance between two P -sparse signals is

approximately preserved after applying � to these signals.

The CS theory also provided a way of reconstruct the original signal from the measurement

using a computationally e�cient l1 minimization as follows [8]:

min
x̃2RK

kx̃kl1 s.t. �x̃ = y. (III.3)

It has been shown that the recovery in (III.3) is exact for P -sparse signals and is reasonably

good for non P -sparse signals with the measurement size L that is larger than a certain number,

but is much smaller than K [71, 72].

3.1.3 Signal processing with compressive measurement

The conventional CS theory focused on estimation problems in signal processing [71, 72].

The CS theory has been extended to other signal processing problems such as filtering and

signal detection [9, 10]. We review the signal detection in CS domain.

Davenport et al. proposed a hypothesis testing [10]:

8

<

:

H0 : �n

H1 : � (x+ n)
(III.4)

where x 2 RK is a known signal, n ⇠ N(0,�2IK) 2 RK is an i.i.d. Gaussian noise and � is a

random matrix. Then, the probability density functions for the hypothesis testing (III.4) can

be derived as follows:

f0(y) =
exp

�

�1
2y

T (�2��T )�1y
 

|�2��T |1/2 (2⇡)L/2

f1(y) =
exp

�

�1
2(y � �x)T (�2��T )�1(y � �x)

 

|�2��T |1/2 (2⇡)L/2

where T is a transpose of a matrix and | · | is a matrix determinant.
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The optimal Neyman-Pearson(NP) detector for the hypothesis testing (III.4) is a likelihood

ratio test as follows:

⇤(y) =
f1(y)

f0(y)

H1

?
H0

⌘

where ⌘ is a threshold. By taking logarithm, the final detector in CS domain can be obtained:

yT (��T )�1�x
H1

?
H0

�2log(⌘) +
1

2
xT�T (��T )�1�x := �.

One interesting result in signal detection in CS domain is that Detection in CS domain yielded

much better performance than detection in signal domain after CS reconstruction with very

small measurement size [10], which can be potentially useful for cancelable biometrics.

3.2 Methods

3.2.1 Cancelable ECG biometrics using composite hypothesis testing with

compressive measurement

Storing the enrolled ECG template t in (II.4) is necessary in conventional ECG based user

authentication, but once compromised, the same template can not be revoked and re-used.

Inspired by [10], here we propose a new detector with compressive sensing measurement based

on the conjecture that this new detector does have reasonably good authentication performance

while does not have enough measurements for good signal recovery.

The compressive measurement for ECG can be defined as follows:

y = Hf ⇡ H(x+ n) (III.5)

where n ⇠ N(0,CK), CK is a K ⇥K covariance matrix, and H is a modified Bernoulli random

matrix with the size of L⇥K with the element of either 1/
p
K or �1/

p
K with probability 0.5.

We chose this particular random matrix because this random matrix H only requires L(K � 1)

summations, L subtractions, and L devisions as well as a small storage of LK bits. These prop-

erties of H can potentially be appropriate for low cost wearable bands with limited computing

power and memory.

We formulated a composite hypothesis test as follows:

8

<

:

H0 : µ = µ0 :=Hx

H1 : µ 6= µ0

(III.6)
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where their probability density functions are

f0(y) =
exp

�

�1
2(y � µ0)T (�2HCKHT )�1(y � µ0)

 

|�2HCKHT |1/2 (2⇡)L/2
,

f1(y;µ) =
exp

�

�1
2(y � µ)T (�2HCKHT )�1(y � µ)

 

|�2HCKHT |1/2 (2⇡)L/2
,

respectively. The nearly-optimal GLRT detector is

⇤(y) =
maxµ 6=µ0 f1(y;µ)

f0(y)
=

f1(y; µ̂ML)

f0(y)

H1

?
H0

� (III.7)

where µ̂ML is the maximum likelihood estimator using f1(y;µ). In this case, µ̂ML is the sample

y so that the numerator of (III.7) becomes a constant. Further simplification of (III.7) leads to

(y � µ0)
T (HCKHT )�1(y � µ0)

H1

?
H0

�0 (III.8)

where �0 determines the trade-o↵ between detection probability and false alarm probability.

The original randomly projected ECG signal µ0 = Hx is usually not available. However,

for the case where a low noise user template t and a single ECG pulse input s are available,

it is reasonable to assume that Hx ⇡ Ht. By using a ‘plug-in’ approach, the proposed GLRT

detector becomes

(Hs�Ht)T (HCKHT )�1(Hs�Ht)
H1

?
H0

�0 (III.9)

The noise covariance matrix CK can be estimated from the data. However, for simplicity, in

this paper we further simplified this by assuming i.i.d. Gaussian noise n so that the proposed

GLRT detector becomes

(Hs�Ht)T (HHT )�1(Hs�Ht) ? �00. (III.10)

where �00 is a threshold.

Note that (Ht) and H will be stored for authentication so that the user template t will be

protected unless both (Ht) and H are compromised and the original signal can be recovered

from them. We will investigate the possibility of recovering the original user template from (Ht)

and H in the simulation.
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3.2.2 Performance boost trick I: Guided filtering in CS domain
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Figure 3.1: Examples of GF results with di↵erent guide signals (user template, the proposed

irreversible guide signal, and flat signal) and their zoomed plots.

It is well known that the performance degradation in cancelable biometrics is inevitable [69,

70]. Therefore, using performance boost tricks for cancelable biometrics is desirable.

Guided image filter (GF) was originally proposed in computer vision and has yielded excel-

lent performance in various applications such as denoising, artifact removal and upsampling [73].

Recently, Chun proposed to use a 1D GF for ECG authentication to yield improved perfor-

mance [13]. This user template guided filter utilized the enrolled ECG template t as a guide

signal to denoise the single pulse ECG input signal s. Since GF is essentially the local a�ne

fitting of a guide image (or signal in 1D) to a noisy image (or signal) within moving local win-

dows, this operation requires very low computation complexity O(1) [73]. We denote this GF

procedure as:

ŝ = GF (s; t). (III.11)

Then t and ŝ are used for authentication instead of t and s.

Unfortunately, user template guided filtering for ECG authentication [13] can not be used

in cancelable ECG authentication schemes since it requires storing the original user template t.

In here, we propose a method to use this user template GF for cancelable biometrics.

Here are a few observations on the user template GF for ECG based authentication as also

shown in Fig. 3.1:

1. When using GF with a flat signal, good denoising results were obtained for P and T waves.

2. Having a good guide signal for denoising QRS complex is critical for good performance.

3. A scaled version of a guide signal still yields good denoising results.

18



Figure 3.2: Steps for generating an irreversible guide signal from ECG template: cropping,

padding, and random scaling.

Based on them, we propose a guide construction method, called irreversible guide signal for

GF, to process the original ECG template t using a couple of consecutive irreversible operations

such as cropping P / W waves and random scaling with unknown scaling factor as illustrated

in Fig. 3.2. The resulting signal, tir, can be stored and used as an irreversible guide signal:

ŝ = GF (s; tir). (III.12)

It is expected that

GF (s; tir) ⇡ GF (s; t)

as demonstrated in Fig. 3.1. Recovering tir from t is infeasible due to two irreversible operators

used to create tir. Note that the scaling factor should not be stored.

3.2.3 Performance boost trick II: T-wave shift in CS domain

GLRT based ECG authentication method using T-wave circular shift model was proposed to

improve the authentication performance for the case of having unknown heart rate variation [14].

This method also requires to use the original ECG template t to find the minimum distance

between the template t and T-wave shifted ECG input s with unknown shift value. In here, we

propose a new T-wave shift model to use it in CS domain.
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We first modeled the input signal s to be separated into the PQRS segment sF and T wave

segment sS as also used in [14]. Then, the T wave can be modeled to be shifted for di↵erent

heart rate as follows:
"

sF

�↵sS

#

(III.13)

where �↵ is a circular shift operator with an integer step size ↵. Then, we construct a composite

hypothesis testing to consider variable heart rate as follows:

H0 : y↵ ⇠ N(µ0,CK)

H1 : y↵ ⇠ N(µ,CK),µ 6= µ0

(III.14)

where µ, ↵ are unknown and

y↵ :=H

"

sF

�↵sS

#

.

Then, we derived a GLRT detector with T wave shift model as follows:

max
µ 6=µ0,↵

exp
�

�1
2(y↵ � µ)T (HCKHT )�1(y↵ � µ)

�

max
↵

exp
�

�1
2(y↵ � µ0)T (HCKHT )�1(y↵ � µ0)

� . (III.15)

For the unknown µ0, a ‘plug-in’ approach can be used to replace it by Ht. Since the numerator

of (III.15) becomes 1 for the maximum likelihood estimator for µ, the GLRT detector can be

simplified as follows:

min
↵

n

(y↵ � �)T (HCKHT )�1 (y↵ � �)
o H1

?
H0

� (III.16)

where � = Ht and � is a threshold.

Equation (III.16) is computationally expensive due to brute-force search for ↵. We derived

an equivalent operation for (III.16) using matrix-vector form to speed up computation as follows:

minD
�

(H��X)T (HCKHT )�1(H��X)
 

H1

?
H0

� (III.17)

where X =
h

· · · � · · ·
i

2 RL⇥K0
, K 0 is the length of the T wave segment (sS), D is an

operator to extract diagonal elements to form a vector, and

� =

"

sF · · · sF

�1sS · · · �K0sS

#

2 RK⇥K0
.

Note that K 0 is about the half of K. This result implies that since H is a RIP operator to
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approximately preserve the distance between two signals, the comparison that has been done

in signal domain for T wave shift model can be approximately done in CS domain.

Figure 3.3: Schematic diagram for the summary of enrollment and authentication procedures.

3.2.4 Cancelability criteria evaluation

Cancelable biometrics methods should be evaluated in terms of di↵erent aspects. Here we

investigated our proposed GLRTmethod (III.10) for cancelable ECG biometrics. to validate that

the proposed method satisfies all cancelable biometrics criteria that we discussed in [11,61,74].

E�ciency Our proposed GLRT method is based on the CS theory and signal processing detec-

tion theory in CS measurement with appropriate random matrix H. Therefore, our detector

will be e↵ective in CS domain. In addition, two performance boost tricks in CS domain will

help having e�cient authentication. Simulation results will also support this aspect of our

proposed methods.

Re-usability Our proposed method has straightforward revocation and reissue procedures.

Once compromised, a new random matrixH will be generated and through the new enrollment

step, new user template t will be obtained. Both H and Ht will be stored and re-used, but t

will be discarded.

Diversity In two di↵erent applications, two random matrices H’s can be generated. However,

the probability that these two random matrices are the same will be almost 0. For example,

our simulation used a random matrix H with the size of 32⇥ 320. Then, the probability that

two random matrices are the same is (1/2)32⇥320 ⇡ 0.

Non-invertibility Cancelable ECG template must be obtained using non-invertible transfor-

mation to prevent the recovery of biometric data from secure template. In CS theory, the
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original signal can be recovered with a random matrix H if both H and Ht are available and

the size of the compressive sensing measurement is large enough.

We conjecture that our GLRT detector in CS domain requires much smaller amount of samples

than the CS recovery does for good reconstruction. We will extensively investigate this issue

with simulations in Section 3.3.5 for the worst case (Considered as one of the strongest attack

by the Simoens et al. [75] ): compromised H and Ht.

Note that a random matrix H can be securely stored and used using hardwares such as smart

card. If there is no H available, then our proposed scheme is simply non-invertible.

3.3 Simulation Results

We investigated our proposed methods of cancelable ECG biometrics detector using GLRT

(III.10), performance boost tricks in CS domain such as user template GF (III.11), (III.12)

and T wave shift model (III.17) with a few public ECG databases. MATLAB was used for all

implementations (The Mathwork, Inc., MA, USA). Fig. 3.3 illustrates enrollment and authen-

tication procedures of our proposed methods. All the details will be described in the following

sub-sections.

3.3.1 Public ECG databases and data normalization

Figure 3.4: Data normalization across di↵erent ECG databases. Top and bottom figures show
histograms of three public ECG databases for the amplitude of ECG signals before and after
data normalization, respectively.
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Three public ECG databases from the PhysioNet were combined and used in simulations [17]

including subjects with normal heart condition as well as arrhythmia. The ECG-ID database

consists of ECG data from 89 healthy subjects with recordings from the same or di↵erent

days [18]. Each raw ECG record was acquired for about 20 seconds with the 500 Hz sampling

rate, 12-bit resolution. The ECG-ID database provides pre-processed ECG signals for baseline

draft, power-line noise, and high-frequency noise. The MIT-BIH Normal Sinus Rhythm database

contains ECG data from 18 healthy subjects for about one day (24 hours) with 128 Hz sampling

rate [16]. Five records were extracted per subject data. Lastly, ECG data from 40 subjects with

arrhythmia in the MIT-BIH Arrhythmia database were used in our simulation. These consist

of 48 half-hour excerpts of two-channel ambulatory with 360 Hz sampling rate, 11-bit resolu-

tion. Five records were extracted per subject data. ECG signals from both MIT-BIH Normal

Sinus Rhythm and MIT-BIH Arrhythmia databases were resampled with 500 Hz sampling rate,

which is the same as ECG signals in ECG-ID. Since three public ECG databases used di↵erent

sensors with di↵erent sensitivity, all three databases were normalized according to their am-

plitude histograms as shown in Fig. 3.4. Before data normalization, amplitude histograms of

di↵erent databases were not matched well, but after normalizing the maximum amplitude of

each database, amplitude histograms were now matched approximately.

3.3.2 Data pre-processing

Two records per subject from three public ECG databases were used in our simulations.

Each record was processed using Pan-Tompkins method for R-peak detection [76]. Then, each

ECG record was segmented with the length of 320 samples (0.64 second), which are -134,+185

samples from the R-peak covering all P-QRS-T fragment. From selected 12 ECG pulses, an

average ECG template was generated. One record was used for ECG template generation and

the other record was used for user authentication test with cross validation. Compressive sensing

random matrix for each person was generated where the numbers of projected samples are 32,

96, 160, respectively. We denote these cases as ‘compressed to 10%, 30%, 50%, respectively.

For irreversible guide signal generation, QRS complex part was extracted from from 0.218s

to 0.342s among 0.64s for each ECG pulse. Then, other parts of the extracted QRS complex

(0s - 0.218s, 0.342s - 0.64s) were padded with values to ensure the continuity of the resulting

signal. Then, finally, a random number was chosen from [0.5, 0.8] and then was multiplied to

the padded QRS complex to yield an irreversible guide signal.

For the performance evaluation, we adopt AUC, PD1 and EER where AUC can be obtained

by numerical integration of ROC curve, PD1 is detection probability at FAR = 1%, ROC curve
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is a plot of false alarm probability PF or FAR vs. detection probability PD, and EER is a point

where FRR = FAR =: EER.

3.3.3 Proposed GLRT based cancelable ECG biometrics
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Figure 3.5: Examples of compressed samples from ECG signals with di↵erent compression ratio.

Fig. 3.5 illustrates examples of compressed samples from a ECG signal (shown in the top-

left figure of Fig. 3.5) with di↵erent compression ratio. Other compressed signals in Fig. 3.5 did

not shown any visually meaningful interpretation since they are randomly projected. Table 3.1

presents the results of authentication performance for Conventional, not projected (Euclidean

distance in signal domain, baseline), Conventional, compressed to 10% (Euclidean distance in

CS domain) and GLRT, compressed to 10% (proposed GLRT in CS domain). Note that the

proposed GLRT with compressed to 10% yielded comparable results to the baseline. However,

mild performance degradation was observed in cancelable biometrics methods. Proposed GLRT

method yielded better PD1 and EER than conventional method with the same measurement

(compressed to 10%) even though performance gap was marginal.

3.3.4 Proposed performance boost tricks in CS domain

Table 3.2 summarizes the results of the two proposed performance boost tricks for GLRT

based cancelable ECG biometrics. When using GF with user template guide signal, significant

performance increase was observed in terms of all performance metrics over GLRT, compressed
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Table 3.1: Performance summary for GLRT. Cancelable biometrics yielded comparable results
to conventional ECG biometrics.

Method PD1 (%) AUC EER (%)
Conventional, not projected 94.4 0.996 3.1
Conventional, compressed to 10 % 92.0 0.995 3.6
GLRT, compressed to 10 % 92.2 0.995 3.5

to 10%. Using GF enabled the proposed cancelable ECG biometrics method to yield better per-

formance than baseline (Euclidean in signal domain). GF with irreversible guide signal yielded

comparable performance to GF with original user template. T-wave model in CS domain yielded

better EER than the original GLRT, but yielded worse PD1 than that. Finally, using both tricks

yielded significantly improved performance over GLRT, compressed to 10% as well as baseline

in signal domain.

3.3.5 Cancelable biometrics: e�ciency and non-invertibility

Tables 3.1 and 3.2 demonstrated that the proposed cancelable biometrics methods are ef-

ficient so that they satisfy one of the cancelable biometrics criteria since the authentication

performance of them is comparable to or better than the baseline using user template.

For non-invertibility of cancelable biometrics criteria, firstly, CS recoveries from compressed

ECG samples with di↵erent compression ratios were performed. Fig. 3.6 illustrates examples of

recovered ECG signals from the compressed samples with 50%, 30% and 10%. For compressed

to 50%, recovered ECG signal is visually similar to the original ECG pulse. For compressed

to 30%, recovered signal still contains part of the shapes of the original signal. However, some

details such as P wave, S wave are contaminated by artifacts. For compressed to 10%, almost

no details were recovered. Therefore, with the compressed to 10% cancelable ECG samples, we

were able to achieve good performance as shown in Tables 3.1 and 3.2, but we were not able to

recover the original signal if the random matrix H and the secure user template Ht are given.

Table 3.2: Performance summary for performance boost tricks. Proposed tricks significantly
improved authentication over baseline.

Method PD1 (%) AUC EER (%)
GLRT, 10 % 92.2 0.995 3.5
GLRT, 10 %, GF 95.9 0.996 3.0
GLRT, 10 %, GF irreversible 96.1 0.996 2.9
GLRT, 10 %, T-wave 91.6 0.996 3.3
GLRT, 10 %, GF irreversible, T-wave 97.1 0.998 1.9
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Figure 3.6: Examples of CS recovery results of ECG signals from samples with di↵erent com-
pression ratios (50%, 30% and 10%).

We further simulated cases to examine that this recovered ECG data from compressed to

10% samples can be potentially used for authentication. One case is where an imposter stole the

cancelable ECG temple Ht with the random matrix H, recovered ECG signal using CS recovery,

and then tried to intrude into the authentication system having the same random matrix H

(called C1). The other case is almost the same as C1, but now the imposter tried to intrude

into the system having di↵erent random matrix (H 0) that was re-generated after revocation and

having a new secure user template (called C2). We also simulated a baseline case where the true

user is using this new system with re-generated random matrix H 0 as well as re-issued secure

template H 0t (called P).

Fig. 3.7 shows plots of performance metrics (EER, PD1) versus the number of compressed

Table 3.3: Performance table for non-invertibility evaluation
Compressed to Cases PD1 (%) AUC EER (%)

10 %
P 93.5 0.996 2.8
C1 19.1 0.863 22.0
C2 17.7 0.880 20.6

30 %
P 95.7 0.997 2.1
C1 74.9 0.985 6.3
C2 54.0 0.965 10.4

50 %
P 96.2 0.997 2.0
C1 92.7 0.996 2.6
C2 91.2 0.996 3.0
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Figure 3.7: Performance plots of EER (top) and PD1 (bottom) versus number of compressed
samples. For imposter cases with small number of samples, low authentication performances
were achieved.

samples. For very small number of compressed samples such as 10 or 20 samples, the proposed

GLRT based detector yielded good performance. However, for more than 30% compression

ratio, the imposters were able to achieve good authentication with recovered ECG signal from

a random matrix as well as secure ECG template. Table 3.3 also shows quantitatively that the

imposters with recovered signal from compressed to 10% secure template and random matrix

was not able to achieve good authentication performance.

3.4 Discussion

In this article, we proposed cancelable ECG biometrics methods using composite hypothesis

testing in CS domain. We showed that these proposed methods yielded comparable to or better

than the baseline method of using original ECG user template with the small amount of sam-

ples (10% in simulations) that were not enough for recovering the original signal. The proposed

detectors in CS domain seem to use samples more e�ciently than detectors in signal domain

using recovered signals from CS measurements. This is an important property for cancelable bio-

metrics with e�ciency and non-invertibility. Even though the detection probability of imposter

cases were about 19.1 and 17.7 % for non-invertibility evaluation, the system can be protected

well against these imposters using a scheme similar to ‘password lock’ that blocks an incoming

user with several consecutive authentication fails. Therefore, the argument for non-invertibility

of the proposed methods is still valid.

We also proposed two performance boost tricks that can be used in CS domain. Note that

user template guided filtering for ECG biometrics has shown that GF was useful to improve the
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performance of simple algorithms such as Euclidean metric or dynamic time warping (DTW),

but was not improving performance for more sophisticated algorithms such as principle com-

ponent (PCA) based authentication, which already is robust to noise [13]. We expect that the

proposed tricks can be useful for the cases with limited access to others’ ECG data or with

limited computation power and memory (e.g., low cost wearable band).

Having the irreversible guide signal for GF may potentially decrease the security level of

cancelable biometrics. However, note that GF is not the only method to increase the security

level of the system. For systems that require strong security level, one may consider using

multimodal biometrics including our proposed ECG biometrics without GF. Locally di↵erent

random scaling can potentially increase the security level of irreversible guide signal. Further

studies may be interesting for this issue.
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CHAPTER IV

Conclusion

In this study, we investigated an ability of combining ECG and MSP as a biometrics in-

gredients. By training Adaboost algorithm on each thresholds with 9 subjects of public data,

outperform authentication results (which are 99.7% PD0.1 and 0.2 % EER) was yielded with 63

subjects. Further investigation for the method of fusion will be performed in various way such

as feature level or score level not only decision level fusion.

We proposed a cancelable ECG biometric using compressive sensing based composite hy-

pothesis testing (GLRT) and investigated its cancelable biometrics properties. We further inves-

tigated a couple of tricks to compensate for performance degradation due to proposed cancelable

biometric scheme. Our proposed method yielded up to 97.1% PD1 and 1.9% EER with the in-

tegrated public ECG database with 147 subjects. As a future works, proposed method can be

extended by investigation of cancelability of MSP biometrics and it further includes the fusion

for cancelable multi-modal biometrics combined of ECG and MSP.

This study may contribute for development a powerful multi-modal biometrics based authen-

tication for wearable devices, while they are computationally low cost, preventing the directing

and indirecting spoofing, and potentially simple to implement.
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