1,273 research outputs found

    Wearables and Internet of Things (IoT) Technologies for Fitness Assessment: A Systematic Review

    Get PDF
    Wearable and Internet of Things (IoT) technologies in sports open a new era in athlete?s training, not only for performance monitoring and evaluation but also for fitness assessment. These technologies rely on sensor systems that collect, process and transmit relevant data, such as biomark ers and/or other performance indicators that are crucial to evaluate the evolution of the athlete?s condition, and therefore potentiate their performance. This work aims to identify and summarize recent studies that have used wearables and IoT technologies and discuss its applicability for fitness assessment. A systematic review of electronic databases (WOS, CCC, DIIDW, KJD, MEDLINE, RSCI, SCIELO, IEEEXplore, PubMed, SPORTDiscus, Cochrane and Web of Science) was undertaken according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. From the 280 studies initially identified, 20 were fully examined in terms of hardware and software and their applicability for fitness assessment. Results have shown that wearable and IoT technologies have been used in sports not only for fitness assessment but also for monitoring the athlete?s internal and external workloads, employing physiological status monitoring and activity recognition and tracking techniques. However, the maturity level of such technologies is still low, particularly with the need for the acquisition of more?and more effective?biomarkers regarding the athlete?s internal workload, which limits its wider adoption by the sports community.4811-99FE-2ECD | Luis Paulo RodriguesN/

    Supervised machine learning applied to wearable sensor data can accurately classify functional fitness exercises within a continuous workout

    Get PDF
    Observing, classifying and assessing human movements is important in many applied fields, including human-computer interface, clinical assessment, activity monitoring and sports performance. The redundancy of options in planning and implementing motor programmes, the inter- and intra-individual variability in movement execution, and the time-continuous, high-dimensional nature of motion data make segmenting sequential movements into a smaller set of discrete classes of actions non-trivial. We aimed to develop and validate a method for the automatic classification of four popular functional fitness drills, which are commonly performed in current circuit training routines. Five inertial measurement units were located on the upper and lower limb, and on the trunk of fourteen participants. Positions were chosen by keeping into account the dynamics of the movement and the positions where commercially-available smart technologies are typically secured. Accelerations and angular velocities were acquired continuously from the units and used to train and test different supervised learning models, including k-Nearest Neighbors (kNN) and support-vector machine (SVM) algorithms. The use of different kernel functions, as well as different strategies to segment continuous inertial data were explored. Classification performance was assessed from both the training dataset (k-fold cross-validation), and a test dataset (leave-one-subject-out validation). Classification from different subsets of the measurement units was also evaluated (1-sensor and 2-sensor data). SVM with a cubic kernel and fed with data from 600 ms windows with a 10% overlap gave the best classification performances, yielding to an overall accuracy of 97.8%. This approach did not misclassify any functional fitness movement for another, but confused relatively frequently (2.8–18.9%) a fitness movement phase with the transition between subsequent repetitions of the same task or different drills. Among 1-sensor configurations, the upper arm achieved the best classification performance (96.4% accuracy), whereas combining the upper arm and the thigh sensors obtained the highest level of accuracy (97.6%) from 2-sensors movement tracking. We found that supervised learning can successfully classify complex sequential movements such as those of functional fitness workouts. Our approach, which could exploit technologies currently available in the consumer market, demonstrated exciting potential for future on-field applications including unstructured training

    Recent Advances in Motion Analysis

    Get PDF
    The advances in the technology and methodology for human movement capture and analysis over the last decade have been remarkable. Besides acknowledged approaches for kinematic, dynamic, and electromyographic (EMG) analysis carried out in the laboratory, more recently developed devices, such as wearables, inertial measurement units, ambient sensors, and cameras or depth sensors, have been adopted on a wide scale. Furthermore, computational intelligence (CI) methods, such as artificial neural networks, have recently emerged as promising tools for the development and application of intelligent systems in motion analysis. Thus, the synergy of classic instrumentation and novel smart devices and techniques has created unique capabilities in the continuous monitoring of motor behaviors in different fields, such as clinics, sports, and ergonomics. However, real-time sensing, signal processing, human activity recognition, and characterization and interpretation of motion metrics and behaviors from sensor data still representing a challenging problem not only in laboratories but also at home and in the community. This book addresses open research issues related to the improvement of classic approaches and the development of novel technologies and techniques in the domain of motion analysis in all the various fields of application

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today’s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    A Review of Physical Human Activity Recognition Chain Using Sensors

    Get PDF
    In the era of Internet of Medical Things (IoMT), healthcare monitoring has gained a vital role nowadays. Moreover, improving lifestyle, encouraging healthy behaviours, and decreasing the chronic diseases are urgently required. However, tracking and monitoring critical cases/conditions of elderly and patients is a great challenge. Healthcare services for those people are crucial in order to achieve high safety consideration. Physical human activity recognition using wearable devices is used to monitor and recognize human activities for elderly and patient. The main aim of this review study is to highlight the human activity recognition chain, which includes, sensing technologies, preprocessing and segmentation, feature extractions methods, and classification techniques. Challenges and future trends are also highlighted.

    Ensemble residual network-based gender and activity recognition method with signals

    Get PDF
    Nowadays, deep learning is one of the popular research areas of the computer sciences, and many deep networks have been proposed to solve artificial intelligence and machine learning problems. Residual networks (ResNet) for instance ResNet18, ResNet50 and ResNet101 are widely used deep network in the literature. In this paper, a novel ResNet-based signal recognition method is presented. In this study, ResNet18, ResNet50 and ResNet101 are utilized as feature extractor and each network extracts 1000 features. The extracted features are concatenated, and 3000 features are obtained. In the feature selection phase, 1000 most discriminative features are selected using ReliefF, and these selected features are used as input for the third-degree polynomial (cubic) activation-based support vector machine. The proposed method achieved 99.96% and 99.61% classification accuracy rates for gender and activity recognitions, respectively. These results clearly demonstrate that the proposed pre-trained ensemble ResNet-based method achieved high success rate for sensors signals. © 2020, Springer Science+Business Media, LLC, part of Springer Nature

    A low-power opportunistic communication protocol for wearable applications

    Get PDF
    © 2015 IEEE.Recent trends in wearable applications demand flexible architectures being able to monitor people while they move in free-living environments. Current solutions use either store-download-offline processing or simple communication schemes with real-time streaming of sensor data. This limits the applicability of wearable applications to controlled environments (e.g, clinics, homes, or laboratories), because they need to maintain connectivity with the base station throughout the monitoring process. In this paper, we present the design and implementation of an opportunistic communication framework that simplifies the general use of wearable devices in free-living environments. It relies on a low-power data collection protocol that allows the end user to opportunistically, yet seamlessly manage the transmission of sensor data. We validate the feasibility of the framework by demonstrating its use for swimming, where the normal wireless communication is constantly interfered by the environment
    corecore