43,426 research outputs found

    Learning Human Behaviour Patterns by Trajectory and Activity Recognition

    Get PDF
    The world’s population is ageing, increasing the awareness of neurological and behavioural impairments that may arise from the human ageing. These impairments can be manifested by cognitive conditions or mobility reduction. These conditions are difficult to be detected on time, relying only on the periodic medical appointments. Therefore, there is a lack of routine screening which demands the development of solutions to better assist and monitor human behaviour. The available technologies to monitor human behaviour are limited to indoors and require the installation of sensors around the user’s homes presenting high maintenance and installation costs. With the widespread use of smartphones, it is possible to take advantage of their sensing information to better assist the elderly population. This study investigates the question of what we can learn about human pattern behaviour from this rich and pervasive mobile sensing data. A deployment of a data collection over a period of 6 months was designed to measure three different human routines through human trajectory analysis and activity recognition comprising indoor and outdoor environment. A framework for modelling human behaviour was developed using human motion features, extracted in an unsupervised and supervised manner. The unsupervised feature extraction is able to measure mobility properties such as step length estimation, user points of interest or even locomotion activities inferred from an user-independent trained classifier. The supervised feature extraction was design to be user-dependent as each user may have specific behaviours that are common to his/her routine. The human patterns were modelled through probability density functions and clustering approaches. Using the human learned patterns, inferences about the current human behaviour were continuously quantified by an anomaly detection algorithm, where distance measurements were used to detect significant changes in behaviour. Experimental results demonstrate the effectiveness of the proposed framework that revealed an increase potential to learn behaviour patterns and detect anomalies

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Smartphone apps usage patterns as a predictor of perceived stress levels at workplace

    Full text link
    Explosion of number of smartphone apps and their diversity has created a fertile ground to study behaviour of smartphone users. Patterns of app usage, specifically types of apps and their duration are influenced by the state of the user and this information can be correlated with the self-reported state of the users. The work in this paper is along the line of understanding patterns of app usage and investigating relationship of these patterns with the perceived stress level within the workplace context. Our results show that using a subject-centric behaviour model we can predict stress levels based on smartphone app usage. The results we have achieved, of average accuracy of 75% and precision of 85.7%, can be used as an indicator of overall stress levels in work environments and in turn inform stress reduction organisational policies, especially when considering interrelation between stress and productivity of workers

    Tourism and the smartphone app: capabilities, emerging practice and scope in the travel domain.

    Get PDF
    Based on its advanced computing capabilities and ubiquity, the smartphone has rapidly been adopted as a tourism travel tool.With a growing number of users and a wide varietyof applications emerging, the smartphone is fundamentally altering our current use and understanding of the transport network and tourism travel. Based on a review of smartphone apps, this article evaluates the current functionalities used in the domestic tourism travel domain and highlights where the next major developments lie. Then, at a more conceptual level, the article analyses how the smartphone mediates tourism travel and the role it might play in more collaborative and dynamic travel decisions to facilitate sustainable travel. Some emerging research challenges are discussed

    Automatic Stress Detection in Working Environments from Smartphones' Accelerometer Data: A First Step

    Full text link
    Increase in workload across many organisations and consequent increase in occupational stress is negatively affecting the health of the workforce. Measuring stress and other human psychological dynamics is difficult due to subjective nature of self- reporting and variability between and within individuals. With the advent of smartphones it is now possible to monitor diverse aspects of human behaviour, including objectively measured behaviour related to psychological state and consequently stress. We have used data from the smartphone's built-in accelerometer to detect behaviour that correlates with subjects stress levels. Accelerometer sensor was chosen because it raises fewer privacy concerns (in comparison to location, video or audio recording, for example) and because its low power consumption makes it suitable to be embedded in smaller wearable devices, such as fitness trackers. 30 subjects from two different organizations were provided with smartphones. The study lasted for 8 weeks and was conducted in real working environments, with no constraints whatsoever placed upon smartphone usage. The subjects reported their perceived stress levels three times during their working hours. Using combination of statistical models to classify self reported stress levels, we achieved a maximum overall accuracy of 71% for user-specific models and an accuracy of 60% for the use of similar-users models, relying solely on data from a single accelerometer.Comment: in IEEE Journal of Biomedical and Health Informatics, 201

    Smartphones Adoption and Usage of 50+ Adults in the United Kingdom

    Get PDF
    This is an Accepted Manuscript of a book chapter published by Routledge in Jyoti Choudrie, Sherah Kurnia, and Panayiota Tsatsou, eds., Social Inclusion and Usability of ICT-enabled Services, on October 2017, available online at: https://www.routledge.com/Social-Inclusion-and-Usability-of-ICT-enabled-Services/Choudrie-Kurnia-Tsatsou/p/book/9781138935556. Under embargo until 30 April 2019.Peer reviewedFinal Accepted Versio
    • …
    corecore